SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

Fundusze Europejskie Dofinansowane przez :*) *:
dla Wielkopolski Unie Europejska et

AKADEMIA NAUK
STOSOWANYCH
W KONINIE

Analiza danych i uczenie maszynowe

Materialy dydaktyczne dla uczestnikow szkolenia

Pawel Sobczak

Konin 2026

Tytut
Analiza danych i1 uczenie maszynowe

Materiaty dydaktyczne dla uczestnikow szkolenia

Autor
Pawel Sobczak

Projekt pn.

,»R0zw0j studiéw o profilu praktycznym i form ksztatcenia ustawicznego
dostosowanych do potrzeb Wielkopolski Wschodniej”,
realizowany przez Akademi¢ Nauk Stosowanych w Koninie,
jest wspotfinansowany przez Uni¢ Europejska
ze $srodkéw Funduszu na rzecz Sprawiedliwiej Transformacji
w ramach programu Fundusze Europejskie dla Wielkopolski 2021-2027

oigts . *ta ¥
Fundusze Europejskie Dofinansowane przez S0 e w&g&%ﬁgﬂw‘\
dla Wielkopolski Unie Europejska "t 1Y | WIELKOPOLSKIEGO

@NS

W KONINIE

Wydawca
Akademia Nauk Stosowanych w Koninie
ul. Przyjazni 1, 62-510 Konin

E Fundusze Europejskie Dofinansowane przez P SAMORZAD
dla Wielkopolski Unie Europejska %, . *: ‘ W%JLE,(\QI)OP?,E;%QGO
Spis tresci
WPTOWAAZENIC......ceevieeeiieeiiieeciee ettt ett e et e e et e e s te e e s taee e sbeeesaeeessseesssaeesssaaesssaeensseeennseeennsens 5
PYNON. ..ttt ettt et e et e e bt e tb e e bt e eabeenbeesnneesaens 7
Przygotowanie srodowiska do pracy z analizg danych i uczeniem maszynowym................. 7
KOMENTATIZ ...ttt ettt et 9
ZUIMECIINEC ...ttt ettt ettt stt et e e e s ae et e ate s bt et e e st e sb e et e eatesb e et e sateebeenbeentenbeenbeeatenbeennens 10
INSEIUKCIA PIINT .ttt et e et e et eeeta e e e b e e esbaeeessaeeesseeeesseeennseeennns 11
Podstawowe typy ZMIENNYCHccciiiiiiiiiiiicciie et ree e e 14
ZMIENNE tEKSTOWE (SIT) .uviiiiiiiiiiiie ettt e e e eta e e e aa e e s be e e sabaeeeareeeesseeennseeennns 16
Zmienne [0ZICZNE (DOOL) ..ocvviiiieiiieiiieeie ettt et e e e e e e e e naeeenne 16
OPeratory arytMELYCZIE ...cceeeuvvreeeeiiiieeeeiiieeeeeteeeeesiateeeesetaeeeeestaeeeesssaeeesnsssaeessnnsseesssnnseeens 17
OPETALOTY TEIACTI . eeuvieutieeiieeiie ettt ettt et ettt et e et e et eebeesabeesbeessbeenseesaseenseasnseenseens 17
(0315 - 110) 5 A (0T a ToF LSRR 18
INtETakty WY PIOZIAIM .. .viiiiiiieeiiee et ettt ettt e tee et e et e e ee et eeeaaeeebaeeessaeessseeessseeennseeennns 18
TYPY SEKWENCYTIICeievvieiieeiee ettt ettt ettt e st e esbee st e enbeesabeenseasnneenseens 19
TYP NAPISOWY ..eetieeiiieeetie ettt ettt e et e et e e et e e e teeesstaeessbeeensaeeessseeensaeesssseesnseeensseeensseeans 20
5551 OSSR PTRUURURSRIIN 21
KCTOTKT ottt sttt b e ettt nbeeae 24
03 U] o 2 PSSR 25
SEOWIIK .ttt ettt et e st e bt e s b e s 26
Instrukcje WarunKoOWe 1f...........ooouiiiiiiiiiiiecee et 27
oS F2 T (0 SRS 30
Petla WHileeiieeeieee et e e e naeeenne 34
FUNKCje W PYtROMNIC ...ttt ettt ettt st 36
R0 A2 L1 < RSP STUSTURRPRRR 38
Elementy programowania 0bieKtOWEEZ0cccuvieeiiiiiiiieeiie e 40
Wprowadzenie do operacji na plikachccccoeiiiiiiiiiiiiiiiie e 45
PLIKIT DINAINE ...ttt ettt be e et esaeeebeeeaees 50
7adania (PYthoOMn)coooiiiiiie ettt et et e e et e e e e e e e e e e naee e e 51
ROZWI9Zania Zadanccueiiiuiiiiiiiiiciee ettt ettt e e e e 57
Analiza danych 1 UCZENIE MASZYNOWE......cccuueeriuieeriieeriieertieesreeessaeeesreeeseeesseeesseeessseessseeens 65
Co to jest analiza danych 1 UCZenie MASZYNOWE?.......c..cevvieerireeriieeiieeeiieeeieeeereeesree e 65
Podzial technik uczenia MasZyNOWEZOcc.eevieeriieriieiiecie ettt ettt 67
Biblioteki i narzedzia W Pythonieccoooiiiiiiiiiiiiicicecee e 71
Og6lny algorytm analizy danych i uczenia maszynoOwegocceeevveeerereeeireeerireeenveeennnens 74
Dobor technik uczenia maszynowego do rodzaju problemu i danych...........c.ccccoeevrenneennee. 78

SAMORZAD

Fundusze Europejskie Dofinansowane przez :*) *: O N WA

dla Wielkopolski Unie Europejska et WIELKOPOLSKIEGO
Pozyskiwanie danych do analizy danych i uczenia maszynowego.........c.ccoceveeveervenueenne. 84
Przyktad analizy danych — studium przypadku krok po krokuccceeveuvieniiiiniininene 88

Przyktad budowy modelu uczenia maszynowego — regresja logistyczna krok po kroku 97
LEETALUTA ..c..etiteeiece et ettt st sb et et b e et e a e sbe e bt e st e sbe e b enee e 114

Fundusze Europejskie Dofinansowane przez :* * *: w&g&Zg\DDZTWA
dla Wielkopolski Unie Europejska et WIELKOPOLSKIEGO
Wprowadzenie

Do nauki analizy danych i uczenia maszynowego mozna wykorzysta¢ rézne jezyki
programowania, jednak w praktyce warto wybiera¢ technologie, ktore sg szeroko stosowane na
rynku, posiadaja bogate zaplecze materiatéw edukacyjnych i przyktadow, a jednoczesnie
charakteryzuja si¢ niskim progiem wejscia. Oznacza to, ze juz przy podstawowej wiedzy
mozliwe jest samodzielne wykonywanie analiz oraz budowanie pierwszych modeli.

Jezykiem, ktéry w najwigkszym stopniu spetnia te wymagania, jest Python. Jest to
nowoczesny 1 uniwersalny jezyk programowania o otwartym kodzie zrodtowym, wspierajacy
rozne paradygmaty programowania, w tym podejscie proceduralne, obiektowe oraz funkcyjne.
Python nalezy obecnie do najczesciej wykorzystywanych jezykow programowania na §wiecie,
a jego popularno$¢ w obszarze analizy danych 1 uczenia maszynowego wynika
z bardzo rozbudowanego ekosystemu bibliotek oraz narzedzi analitycznych.

Python jest jezykiem wieloplatformowym — oprogramowanie w nim napisane moze
dziata¢ na najczesciej uzywanych systemach operacyjnych, takich jak Windows, Linux oraz
macOS, a takze wspotpracowac z innymi Srodowiskami i technologiami. Dzigki temu znajduje
on zastosowanie zarowno w srodowiskach akademickich, jak i w projektach komercyjnych.

W kontekscie analizy danych i uczenia maszynowego Python oferuje biblioteki
umozliwiajace:

v efektywne przetwarzanie 1 analiz¢ danych numerycznych 1 tabelarycznych

(np. NumPy, Pandas),

v' wizualizacj¢ danych i wynikow analiz (np. Matplotlib, Seaborn),

v budowe, trenowanie oraz ocen¢ modeli uczenia maszynowego (np. scikit-learn),

v tworzenie bardziej zaawansowanych modeli sztucznej inteligencji 1 uczenia

glebokiego (np. TensorFlow, PyTorch).

Cho¢ Python jest gtéwnym jezykiem wykorzystywanym w trakcie kursu, warto
zaznaczy¢, ze w praktyce analitycznej czesto wspoOtpracuje on z innymi technologiami,
w szczegolnosci z jezykiem SQL, wykorzystywanym do pracy z bazami danych, oraz
narz¢dziami statystycznymi i systemami raportowymi.

Warto rowniez zaznaczy¢, ze w analizie danych 1 wuczeniu maszynowym
wykorzystywane sg takze inne jezyki programowania, w szczegolnosci R, ktory znajduje
zastosowanie gléwnie w analizach statystycznych, badaniach naukowych oraz

zaawansowanym wnioskowaniu statystycznym. W praktyce rynkowej Python i R czgsto si¢

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

* %
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

uzupehniaja, jednak w ramach niniejszego kursu Python zostat wybrany jako jezyk wiodacy ze
wzgledu na swoja uniwersalno$¢ oraz szerokie zastosowanie w projektach analitycznych
1 komercyjnych.

Ze wzgleddéw organizacyjnych kurs koncentruje si¢ na podstawowych, ale kluczowych
zagadnieniach zwigzanych z analizg danych i uczeniem maszynowym w jezyku Python. Zakres
materiatu zostal dobrany w taki sposob, aby umozliwi¢ uczestnikom samodzielng prace
z danymi, wykonywanie analiz oraz budowe¢ prostych modeli predykcyjnych.

Skrypt nalezy traktowac jako praktyczne wprowadzenie do $wiata analizy danych
1 uczenia maszynowego, z ograniczong iloscig teorii oraz duza liczba przyktadéw i1 ¢wiczen,
ktére pozwalajg stopniowo rozwija¢ umiejetnosci analityczne i programistyczne.

Aby nauczy¢ si¢ analizy danych i uczenia maszynowego, nie wystarczy tylko czyta¢
— kluczowe jest samodzielne pisanie kodu, praca z danymi oraz wielokrotne
eksperymentowanie z modelami.

Skrypt zostal podzielony na dwa zasadnicze rozdziaty, ktore odpowiadaja kolejnym
etapom nauki 1 stopniowo wprowadzajg uczestnika w obszar analizy danych oraz uczenia
maszynowego.

Pierwszy rozdzial stanowi wprowadzenie do j¢zyka Python. Jego celem jest zapoznanie
uczestnikow z podstawami programowania, skladnia jezyka oraz najwazniejszymi
konstrukcjami, ktore beda wykorzystywane w dalszej czgsci kursu. Zakres materialu zostat
dobrany w taki sposob, aby umozliwi¢ swobodne postugiwanie si¢ jezykiem Python jako
narzedziem do pracy z danymi.

Drugi rozdzial poswigcony jest praktycznej drodze od analizy danych do uczenia
maszynowego. W tej czg$ci uczestnicy uczg si¢, jak pozyskiwaé, przetwarza¢ i analizowac
dane, jak je wizualizowac¢ oraz w jaki sposob budowac i ocenia¢ modele uczenia maszynowego.
Rozdziat ten koncentruje si¢ na rzeczywistym procesie pracy analityka i specjalisty ML,
obejmujac petlny cykl pracy z danymi — od surowych danych do wnioskow i predykcji. Taki
podzial skryptu pozwala na systematyczne rozwijanie kompetencji, tgczac nauke podstaw
programowania z praktycznym zastosowaniem Pythona w analizie danych 1 uczeniu

maszynowym.

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

**
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska
Python

Przygotowanie Srodowiska do pracy z analiza danych i uczeniem

maszynowym

Zanim rozpoczniemy nauk¢ analizy danych i uczenia maszynowego oraz pisanie
wlasnych programow, konieczne jest przygotowanie odpowiedniego S$rodowiska pracy.
W trakcie kursu wykorzystywane beda narzgdzia umozliwiajace zardwno klasyczne

programowanie, jak i interaktywng analiz¢ danych.

1) Instalacja jezyka Python
Pierwszym krokiem jest instalacja aktualnej wersji j¢zyka Python. Oficjalng wersje instalacyjna

nalezy pobra¢ ze strony: https://www.python.org/downloads/.

Podczas instalacji zaleca si¢ zaznaczenie opcji Add Python to PATH, co umozliwi
uruchamianie Pythona z poziomu wiersza polecen oraz integracj¢ z innymi narz¢dziami. Pliki
z kodem programu w jezyku Python zapisywane sa z rozszerzeniem .py

(np. analiza_danych.py).

2) PyCharm — Srodowisko IDE do programowania w Pythonie
PyCharm (wersja Community) to rozbudowane $rodowisko programistyczne (IDE),
szczegblnie przydatne przy:

e pisaniu wigkszych programéw i projektow,

e tworzeniu aplikacji,

e pracy z kodem w sposob uporzadkowany i modutowy.
PyCharm oferuje m.in.:

e podpowiedzi sktadni i automatyczne uzupeinianie kodu,

o wykrywanie btedow na etapie pisania programu,

o zarzadzanie bibliotekami i Srodowiskami wirtualnymi,

e wygodne uruchamianie i debugowanie programéow.

Srodowisko PyCharm mozna pobraé ze strony: https://www.jetbrains.com/pycharm/download/

Uruchomienie programu w PyCharm odbywa sig¢:
e za pomocg przycisku Run,

e lub skrotu klawiszowego Shift + F10.

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

* %
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

PyCharm jest szczegélnie polecany do nauki podstaw programowania oraz pracy nad

projektami, gdzie kod zapisany jest w plikach .py.

3) Jupyter Notebook — interaktywna analiza danych
Jupyter Notebook to narz¢dzie stworzone z mys$la o analizie danych i uczeniu maszynowym.
Umozliwia prace w formie tzw. notebookow, ktore sktadaja si¢ z komorek zawierajacych:

e kod Pythona,

o tekst opisowy (Markdown),

e wyniki obliczen,

o wykresy i wizualizacje.
Jupyter Notebook jest szczegdlnie przydatny do:

o cksploracyjnej analizy danych,

o testowania fragmentéw kodu,

e prezentowania wynikéw analiz krok po kroku,

e nauki i eksperymentowania z modelami ML.
Kod w notebooku uruchamia si¢ komorka po komérce, co pozwala na biezagco obserwowac
wyniki dziatania programu. Jupyter pracuje na plikach .ipynb.
Aby zainstalowa¢ Jupyter wystarczy w konsoli emd wpisac polecenie: pip install jupyter.
Jak uruchomi¢ Jupyter Notebook:

e zapomocg konsoli emd przejs$¢ do folderu, gdzie znajduja si¢ pliku projektu 1 wykonac

polecenie: jupyter notebook,

e lub w przypadku nowszego interfejsu nalezy w cmd wpisac: jupyter lab.

4) Google Colab — Python i Jupyter w przegladarce
Google Colab (Colaboratory) to internetowa wersja srodowiska Jupyter Notebook, dziatajaca
bez konieczno$ci instalacji oprogramowania na komputerze. Colab pracuje na plikach .ipynb.
Zalety Google Colab:

o dziata bezposrednio w przegladarce,

e nie wymaga instalacji Pythona ani bibliotek,

o umozliwia zapisywanie notebooké6w na Dysku Google,

e pozwala korzysta¢ z dodatkowych zasobow obliczeniowych (CPU/GPU).

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

**
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

Google Colab jest idealnym narzgdziem:
e na poczatek nauki,
e do szybkiego testowania kodu,
e do pracy na roznych komputerach,
e do wspodlnej pracy i udostgpniania analiz.

Dostep do Google Colab: https://colab.research.google.com/.

Kiedy uzywa¢ ktorego narzedzia?
e PyCharm — gdy tworzymy klasyczne programy 1 projekty w plikach .py, uczymy si¢
struktury kodu i pracy programistyczne;.
o Jupyter Notebook — gdy analizujemy dane, tworzymy wykresy i eksperymentujemy
z modelami.
e Google Colab — gdy chcemy pracowaé bez instalacji lub szybko uruchomi¢ analize
w przegladarce.
Tak przygotowane $srodowisko umozliwia pltynne przejscie od nauki programowania, przez

analiz¢ danych, az po budowe¢ modeli uczenia maszynowego.

Komentarz

Bardzo czgsto podczas pisania programow komputerowych komentuje si¢ pewne
fragmenty kodu lub pewne linie w celu sprawdzenia innego kodu, gdy nie chcemy usuwac
poprzedniej wersji lub chcemy wyjasni¢ pewne zapisy w kodzie. Kod programu opatrzony
komentarzem nie jest interpretowany przez kompilator. Stosowanie komentarzy w kodzie jest
dobrg praktyka i ulatwia zrozumienie kody nawet po czasie lub przez innego programiste.
Wyr6zniamy komentarz jednoliniowy: jezeli linie tekstu poprzedzimy znakiem # oraz

393999 9393

komentarz blokowy, gdy tekst znajduje si¢ w . Przyktad uzycia komentarza

przedstawia Rys. 1.

Fundusze Europejskie Dofinansowane przez P SAMORZAD
. . . . * * WOJEWODZTWA
dla Wielkopolski Unie Europejska et WIELKOPOLSKIEGO
= 1.py

Rys. 1. Komentarz jednoliniowy i blokowy w Pythonie.

Zrédto: Opracowanie Whasne

Zmienne

Pierwszym waznym elementem w programowaniu sg zmienne, czyli nazwy (pudetka),
ktore potrafig przechowywaé wartosci rdéznego typu. Operowanie na zmiennych to jedna
z najwazniejszych funkcjonalnosci, jakie oferuja jezyki programowania. Krotko mozna
napisaé, ze zmienna to po prostu nazwa, ktéra wskazuje na jakas warto$¢ (przechowuje jakas
warto$¢). Jezyk programowania Python posiada kilka wbudowanych typéw danych dla
zmiennych, takich jak: liczby catkowite, rzeczywiste itp. W Python podczas tworzenia
(deklarowania) zmiennej nie musisz podawac jaki typ danych bedziesz przechowywaé
w zmiennej. Po prostu podaje si¢ nazwe¢ zmiennej i przypisuje si¢ jej wartos¢, np.
liczba km = 20.5. Znak rownosci (=) to operator przypisania. Na Rys. 2. zostaty pokazane
przyktadowe deklaracje zmiennych. Wartosci zmiennych mogg si¢ zmienia¢ w czasie dziatania

programu.

& 2.py
zmienna = 5
moje_imie = "PAWEL"
nazwaJdezyka = "Python"
liczbalOsob = 10

srednia_ocen = 4.85

Rys. 2. Deklaracja zmiennych w jezyku Python.

Zrédto: Opracowanie Wiasne

10

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

**
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

Klika zasad tworzenia zmiennych:

= nazwy zmiennych moga by¢ dowolnie dtugie,

= mogg zawiera¢ zarowno litery, jak i liczby, ale nie moga rozpoczynac si¢ od liczby,

= cho¢ dozwolone jest uzycie wielkich liter, w przypadku nazw zmiennych wygodne
jest stosowanie wylgcznie matych liter,

= w przypadku nazw ztozonych zalecane jest stosowanie znaku podkreslenia lub
metody camelCase (np. ile_osob_w_sklepie, liczbaOsob),

= takie same nazwy, ale napisane malymi badz wielkimi literami, oznaczajg r6zne
zmienne,

= nazwy zmiennych nie mogg zawiera¢ spacji,

= zmiennym nie mozna nadawac nazw zastrzezonych dla instrukcji jezyka Python

(np. and, for, if, del, while, ...itp.).

Instrukcja print

Instrukcja print pozwala wyswietla¢ na ekranie tekst lub warto$ci zmiennych.
W ogolnosci mozna zapisaé print(wartosc), gdzie wartosciag moze by¢ tekst "Programowanie
w Python” lub warto§¢ zmiennej. Przyktad uzycia instrukcji print przedstawia Rys. 3.
W przyktadzie zadeklarowano dwie zmienne, w pierwszej kolejnosci zostaje wyswietlony tekst
“Programowanie w Python”, a nastgpnie zostaja wyswietlone wartosci zmiennych zmienna

2% 9

1 moje_imie. W instrukcji print tekst zasadniczo powinno si¢ zapisywac w > 7.

& 3.py

Zmienna = &
moje_imie = "PAWEX"

print("Programowanie w Python")
print(zmienna)
print(moje_imie)

Programowanie w Python
5
PAWEL

Rys. 3. Instrukcja print (kod programu i wynik uruchomienia).

11

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

**
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

Zrédto: Opracowanie Wiasne

Instrukcja print po kazdym wyswietleniu warto$ci (tekstu lub warto$ci zmiennych)
przechodzi do nowej linii. Czasami jednak pozadane jest pozosta¢ w biezacej linii, woOwczas
znak nowej linii mozna zastgpi¢ na inny znak, np. spacj¢: print(wartos¢, end=""). Rys. 4.
przedstawia przyktad zamiany znaku nowej linii na znak spacji w instrukcji print. Print moze
réwniez wyswietli¢ wynik instrukcji (operacji) oraz kilka zmiennych na raz jak zostato to
pokazane na Rys. 5. W tym przyktadzie pokazany jest wynik odejmowania zmiennych oraz
potaczenie napiséw z wartos$cig zmiennej. Tych zmiennych w instrukcji print moze by¢ kilka,
a nawet kilkanascie. Mozna réwniez zastosowac¢ odpowiednie formatowanie wyswietlanych

warto$ci zmiennych, jednak nie bedzie to przedmiotem tego skryptu.

& 4.py

print("czeko", end=" ")
print("lada", end="")

czeko lada

Rys. 4. Instrukcja print, zamiana znaku nowe;j linii na spacje.

Zrédto: Opracowanie Wtasne

® 5.py

zmiennal
zmienna?2

programista = "Pawei"

print(zmiennal-zmienna2)
print("Witaj ",programista, "!")

2
Witaj Pawel !

Rys. 5. Wykorzystanie instrukcji print.

Zrédto: Opracowanie Whasne

W przypadku zmiennych tekstowych tzw. tahcuchow mozna dokonywa¢ konkatenacji,
czyli taczenia kilku zmiennych tekstowych w jeden. Operator + taczy dwa tancuchy w jedng

calo$¢, tworzac nowy, dtuzszy tancuch jak zostalo to pokazane na Rys. 6.

12

Fundusze Europejskie Dofinansowane przez P SAMORZAD
. . . . * * WOJEWODZTWA
dla Wielkopolski Unie Europejska et WIELKOPOLSKIEGO
& 6.py

zml = "Witaj "

zm2 = "Swiecie "
zm3 = "!"

zm = zml + zm2+ zm3

print(zm)
Witaj Swiecie !
Rys. 6. Konkatenacja tancuchow.

Zrédto: Opracowanie Wtasne

Bardzo czesto zdazaja si¢ sytuacje, ze w jednej instrukcji print trzeba wyswietli¢
zmienne roznych typow, wowczas bardzo pomocna jest notacja f-string, ktéra w tatwy sposéb
pozwala wyswietli¢ zmienne r6znego typu w potaczeniu z tekstem. Przyktad notacji f-string
przedstawia Rys. 7. Stosujac powyzsza notacj¢ przed cudzystow zawierajacy tekst wstawia sie
litere f, czyli f’tekst”, a poszczegdlne zmienne w tekScie umieszcza si¢ w nawiasach
klamrowych {}, taki zapis w prosty sposob pozwala wyswietli¢ w instrukcji print zmienne
réznych typow. Modyfikacji warto$ci zmiennej wykonujemy podobnie, jak bySmy
przypisywali warto$¢ do zmiennej z tg roéznicg, ze musimy podaé nazwe istniejagcej juz
zmiennej, aby ja zmodyfikowa¢. Mozemy réwniez zmiennej przypisa¢ warto$¢ innej zmienne;j,

czy tez nadpisa¢ wartos¢ innej zmienne;.

nazwaStarejZmiennej = nowaWartoséStarejZmiennej

owoce = "banany"
ile_za_kg = 7.66
ile_kg = 2

wartosc = ile_kg * ile_za_kg
print(f"Zamowitem {owoce}, {ile_kg}lkg w cenie {ile_za_kg} zt za kilo, do zaptaty {wartosc} zi")

Zamowitem banany, 2kg w cenie 7.66z% za kilo, do zaptatyl5.32z%

Rys. 7. Notacja f-string, czyli wyswietlanie zmiennych réznych typéw w potaczeniu z tekstem

Zrédto: Opracowanie Wtasne

Przyktad modyfikacji zmiennej i przypisanie zmiennej wartosci innej zmiennej przedstawia

Rys. 8.
13

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

**
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

& 8.py
a =12

print(a)

a = 18
print(a)
b=10C

b = a
print(b)

Rys. 8. Zmiana warto$ci zmiennych

Zrédto: Opracowanie Whasne

Na ekranie zobaczymy wartosci 12, 18, 18, poniewaz na poczatku zmienna a miata warto$¢
12, nastgpnie warto$¢ zmiennej a zostata zmodyfikowana na warto$¢ 18. Zmienna b miata

warto$¢ 100, jednak w linii siddmej do b zostata przypisana warto$¢ zmiennej a, czyli 18.

Podstawowe typy zmiennych

Jak juz zostalo wspomniane jezyk programowania Python nie wymaga podawania typu
zmiennej podczas jej deklaracji, jednak mozemy wskaza¢ podstawowe typy zmiennych
w zalezno$ci od przechowywanych przez nie wartosci, tj.: liczby (int, float), tekst (str) i typ
logiczny (bool). W jezyku tym za pomocg instrukcji fype mozna sprawdzi¢ typ zamiennej lub

wartosci

type(nazwaZmiennej).

Rys. 9. prezentuje, jak sprawdzi¢ typ zmiennej lub warto$ci. /nt to zmienne typu catkowitego
(pozwalaja przechowywac liczby catkowite), float to zmienne typu zmiennoprzecinkowego
(pozwalaja przechowywaé liczby rzeczywiste, w ktorych rozdziela si¢ cze$¢ calkowita
od dziesietnej za pomocag kropki .). Nic nie stoi na przeszkodzie, by zmienng przekonwertowac
z typu rzeczywistego na catkowity 1 odwrotnie. Mozemy réwniez liczbe wprowadzong
W postaci napisu przekonwertowac na zmienng typu catkowitego lub rzeczywistego, wiecej na

ten temat bedzie poruszone podasz wprowadzania warto$ci z klawiatury (konsoli). Funkcja int()

14

SAMORZAD
WOJEWODZTWA

. . . *
Fundusze Europejskie Dofinansowane przez Ll
WIELKOPOLSKIEGO

dla Wielkopolski Unie Europejska

* oy x

konwertuje zmienng do tupu catkowitego, natomiast funkcja float() do typu rzeczywistego.

Przyktadowe konwersje zmiennych przedstawia Rys. 10.

& 9.py
a = 0.5
b =2
c = "Czesc"

print (type(a)) <class 'float'>

print (type(b)) <class 'int'>
print (type(c)) <class 'str'>
print (type(100)) <class 'int'>

print (type("Python")) <class 'str'>

Rys. 9. Sprawdzenie typu zmiennej i wartosci

Zrédto: Opracowanie Whasne

Zmienna d na poczatku ma warto$¢ 3.4, jednak po konwersji do typu catkowitego ma warto$¢
3. Z kolei zmienna e to warto$¢ zmiennej b przekonwertowana do typu rzeczywistego, czyli
2.0. Warto$¢ zmiennej f, to warto$¢ 1.5, gdyz napis zostat przekonwertowany do wartosci
rzeczywistej, a linia 11 spowoduje wyswietlenia wartosci 4.5 w konsoli. J¢zyk Python bardzo

dobrze radzi sobie z konwersja r6znych typdw zmiennych.

& 10.py

a= 1.4

b =2

c = 2.4

d=a+b # 1.4 +2 = 3.4

print(d)

d = int(d) # 3.4 do int, to 3

e = float(h) # 2 do float, to 2.0

f = float("1.5") # nopis "1.5" do fleat, to 1.5 3.4

print (d) 3

print (e) 2.0
5 3 5 4.5

print(f+3.0) #1.5 + 3.0 = 4.5

Rys. 10. Konwersja zmiennych

Zrédto: Opracowanie Wiasne

15

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

**
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

Zmienne tekstowe (str)

Typ str reprezentuje w Pythonie wszelkiego rodzaju teksty/napisy. Tekst mozemy
umiesci¢ pomigdzy znakami pojedynczego (') lub podwdjnego (" ") cudzystowu — efekt bedzie
doktadnie taki sam, np. imie = "Pawel", jezyk = ‘Python’. ZadeklarowaliSmy dwie zmienne
tekstowe. Rowniez warto$ci zmiennych typu catkowitego lub rzeczywistego mozna
konwertowa¢ do warto$ci tekstowej za pomocag funkcji str(), jak zostato to pokazane na

Rys. 11. W linii drugiej wiek zostat skonwertowany do napisu.

& 11.py
wiek = 160
print("Mam "+str(wiek)+" lat") Mam 100 lat

Rys. 11. Konwersja zmiennej liczbowej do tekstowej

Zrédto: Opracowanie Wiasne

Zmienne logiczne (bool)
Wartosci logiczne reprezentuja logiczng prawde lub falsz. W jezyku programowania
Python istniejg predefiniowane nazwy odpowiednio 77ue dla logicznej prawdy (1) i False dla

logicznego fatszu (0):

p = True #deklaracja wartosci logicznej "prawda"

f=False #deklaracja wartosci logicznej "fatsz".

W celu przeksztatcenia dowolnej warto$ci na warto$¢ logiczng mozna wykorzysta¢ funkcje

wbudowang bool(). Dla przyktadu:

a=1

b=10

bool(a) # True
bool(b) # False.

Konwersja warto$ci zmiennej a zwroci True, czyli prawde, a zmiennej b zwroci False, czyli

falsz.

16

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

**
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

Operatory arytmetyczne
Zadne obliczenia w programie nie bylyby mozliwe, gdyby nie operatory arytmetyczne.

Wyrdzniamy nastgpujace operatory arytmetyczne (+, -, *, /, %, **).

Dodawanie + 2+4)
Odejmowanie - (11-5)
Mnozenie * 2*4)
Dzielenie / (6/2)

Modulo — reszta z dzielenia % (10% 3)
Potggowanie ** (2 **2)

Na Rys. 12. przedstawiono uzycie podstawowych operatorow arytmetycznych (+, -, * 1/). Poki
co, kod programu nie zostat zabezpieczony na ewentualno$¢ dzielnie przez 0, czyli zeby liczba2
byta r6ézna od zera. Takie zabezpieczenie zrobimy po wprowadzeniu instrukcji warunkowej if
1 operatorow relacji. Warto juz zaznaczy¢, ze w linii 2 1 3 kodu do liczb liczbal i liczba2 zostata
przypisana wartos¢ wczytana z klawiatury, ktére zostaty skonwertowane do typu liczbowego

zmiennoprzecinkowego float, o czym bedzie mowa w dalszej czgéci rozdziatu (interaktywny

program).

@120y
print("Prosty kalkulator™) Prosty kalkulator
liczbal = float(input("Podaj pierwsza liczbe: ")) Podaj pierwsza liczbe: 3
liczba2 = float(input("Podaj drugg liczbe: ")) Podaj drugg liczbe: 2
print("Wynik operacji na liczbach:") Wynik operacji na liczbach:

print(f"{liczbal} + {liczba2} = {liczbal+liczba2}") 3.0 + 2.0 =5.0
print(f"{liczbal} - {liczba2} = {liczbal-liczba2}") 5.6 - 2.06=1.0
print(f"{liczbal} * {liczba2} = {liczbal*liczba2}") 3.0 x 2.0 = 6.0
print(f"{liczbal} / {liczba2} = {liczbal/liczba2}") S0) 2.8 = 1.5

Rys. 12. Operatory arytmetyczne (+, -, *, /)

Zrédto: Opracowanie Wiasne

Operatory relacji

Dostgpne operatory relacji, ktore wykorzystuje si¢ w instrukcji warunkowej if oraz

petlach sa zebrane ponizej. Wynikiem poroéwnania jest warto$¢ logiczna True dla prawdy lub

17

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

**
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

False dla falszu. Przyklady uzycia operatorow relacji zostang pokazane po wprowadzeniu

wspomnianej wyzej instrukcji if.

> wigkszy niz

< mniejszy niz

== réwny wzgledem

>= wigkszy lub rowny wzgledem
<= mniejszy lub réwny wzgledem

I=r6zny wzgledem

Operatory logiczne

W jezyku programowania Python wykorzystuje si¢ réwniez operatory logiczne,
podobnie jak operatory relacji najczesciej w potaczeniu z instrukcjag warunkowg if oraz
w petlach. Operator AND, to w logice ,,i” (koniunkcja), natomiast OR, to w logice ,,/ub”
(alternatywa), z kolei NOT, to zaprzeczenie (negacja). Gdy zanegujemy prawde True
to otrzymamy fatsz, czyli False i na odwrot. Logiczne ,,/ub” zwraca prawdg, gdy przynajmnie;j
jeden z warunkéw jest prawdziwy, w przeciwnym razie zwraca fatsz. Z kolei logiczne
i zwraca prawde w przypadku, gdy wszystkie warunki sg prawdziwe, w przeciwnym razie

zwraca falsz.

AND
OR
NOT

Interaktywny program

Interaktywny program, to program, w ktorym uzytkownik ma mozliwo$¢ wprowadzania
danych w konsoli w czasie rzeczywistym. Python udostepnia wbudowang funkcje input, ktéra
umozliwia wprowadzenie danych przez uzytkownika. Po wywolaniu funkcji input w konsoli
pokazuje si¢ kursor oczekiwania na wprowadzenie ciggu znakdw. Po wprowadzaniu wartosci
(ciggu znakow) uzytkownik zatwierdza wprowadzong warto$¢ klawiszem Enter.
Wprowadzony cigg znakoéw z klawiatury musi zosta¢ przypisany do jakie§ zmiennej. Warto

zaznaczy¢ bardzo wazng rzecz: jezeli nawet wezytamy znaki bedace liczba, to nalezy pamietaé,

18

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

* 4 %

**

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

ze to nie jest liczba, tylko ciag znakoéw (string), ktory nalezy przekonwertowaé do warto$ci

liczbowe;.

imie = input(""Wprowad? imig: ")

Po wywotaniu funkcji input na ekranie pokazuje si¢ napis ,, Wprowadz imie”: oraz kursor
oczekiwania na wprowadzenie ciggu znakéw. Uzytkownik wprowadza imi¢ (cigg znakow),
ktory zatwierdza klawiszem Enter, wprowadzony cigg znakdw zostaje przypisany do zmiennej
imie (string jest zwracany poprzez funkcj¢ inmput i przypisany do zmiennej imie). Ponizej
podobnie wprowadzany jest ciag znakow wiek, ktéry ma by¢ docelowo wartoscig liczbowa,
dlatego dodatkowo jest konwertowany do typu int, czyli wartosci liczbowej catkowitej. Gdy

chcemy dokona¢ konwersji ciggu znakéw do wartosci zmiennoprzecinkowej uzywamy funkcji

float.

wiek= int(input("' Wprowad? swoj wiek: "))

Omawiane wyzej dwa przyklady zostaty pokazane Rys. 13.

@ 13py
imie = input("Wprowadz imie: ")

wiek= int(input("Wprowadz swoj wiek: ")) Wprowadz imle: Pawet

WprowadZ swoj wiek: 460

. e e . Witaj Pawel, masz 40 lat.
print(f"Witaj {imie}, masz {wiek} lat.")

Rys. 13. Interaktywny program, czyli wprowadzanie ciaggéw znakow z konsoli.

Zrédto: Opracowanie Wiasne

Typy sekwencyjne
Sekwencyjne typy danych stuza do zapamigtywania wielu warto$ci w pojedynczej
zmiennej, w odréznieniu od typdw prostych, takich jak int, float, ktore w pojedynczej zmienne;j

moga zachowac tylko jedng wartosc.

19

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

**
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

Typ napisowy

Tak naprawdg¢ napisy sa sekwencjami znakow. Kazdy typ sekwencyjny pozwala na
dostep do kazdego swojego elementu z osobna. Aby uzyska¢ dostep do znaku na okreslone;j
pozycji podajemy nazwe zmiennej oraz indeks (numer porzadkowy liczony od lewej, zero

oznacza pierwszy znak napisu) w nawiasach kwadratowych:

imie = "Pawet”

imie[l] #a’

print(imie[4]) # wyswietli znak t na ekranie konsoli.

Nalezy zapamigtaé, ze znaki (elementy) sa numerowane od 0, czyli powyzszy napis imie sktada
si¢ z 5 elementow numerowanych od 0 do 4. Mozna réwniez numerowac elementy liczbami
ujemnymi, jednak celowo nie wprowadzam tego sposobu indeksowania, by nie zmniejszaé
czytelno$ci indeksowania typow sekwencyjnych. Aby pozna¢ dlugo$¢ napisu (liczbe

elementow), postugujemy sie funkcja len:

len(imie) # 5, numerowane od 0 do 4.

Przyktad odwotania si¢ do pojedynczych znakdéw napisu oraz dlugo$¢ napisu prezentuje Rys.

14.

@ 14py

#Typy sekwencyjne: typ napiso

imie = "Pawel"

nazwisko = "Sobczak"

print(imie) Pawet

print(f"Liczba elemntow zmiennej imie: {len(imie)}") Liczba elemntéw zmiennej imie: 5
print(imie[4]) t

print(nazwisko[0]) S

Rys. 14. Typ napisowy (odwotalnie do pojedynczych znakow, dtugos$¢ napisu).

Zrédto: Opracowanie Whasne

20

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

**
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

Dla typu napisowego istnieje szereg przydanych metod, ktore bardzo ulatwiaja prace
programiscie, ponizej zostaly zaprezentowane przyktadowe metody. Jezeli nasza zmienna

napisowa to imie = “Pawel”’, to mozemy dla niej uruchomi¢ pewne metody:

imie.capitalize() - zmienia pierwszq litere na duzg
imie.count(Pa) - zlicza wystgpienie podciggu Pa w napisie imie
imie.isdigit() - sprawdza czy wszystkie znaki sq cyframi
imie.islower() - sprawdza czy wszystkie litery sq mate
imie.isupper() - sprawdza czy wszystkie litery sq duze
imie.replace(old, new) - zastepuje stary podcigg nowym

imie.strip() - usuwa poczgtkowe i koncowe biate znaki.

Warto zaznaczy¢, ze uruchomienie metody dla zmiennej znakowej odbywa si¢ przez podanie
nazwy zmiennej, nastepnie znaku kroki (.) 1 nazwy metody. Wynika to z programowania

obiektowego, ktore poznacie Panstwo na szkoleniu.

nazwa_zmiennej.nazwa_metody

Listy

Najpopularniejszym i najczesciej stosowanym typem zmiennych zawierajacym wigcej
niz jedng warto$¢ sg listy (od angielskiego ,,list”), czasami nazywane tez tablicami. Lista to
uporzadkowany zbior réznych elementéw. Najczesciej wewnatrz listy stosuje si¢ jeden typ
zmiennych, ale nic nie stoi na przeszkodzie, aby w jednej liscie umiesci¢ wartosci zupetnie
r6znych typéw (Python na to pozwala, jednak jezyk C/C++ juz nie). Zmienne tworzymy,
zapisujac pomi¢dzy nawiasami kwadratowymi (,,[” 1 ,,]”’) elementy, ktore chcemy, aby nasza
lista przetrzymywata. Ponizej zostala zadeklarowana /istal zlozona z 5 elementow

numerowanych od 0 do 4 zawierajaca zmienne roznego typu.

listal =[5, 1.28, ”Programowanie”, ”Python”, -2.36]

indeks 0 1 2 3 4

wartosé 5 1.28 Programowanie Python -2.36

21

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

**
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

Jak juz zostato to wspominane, listy najczgsciej sg zlozone z elementow tego samego typu.
Ponizej zostata zaimplementowana lista ztozona z liczb catkowity oraz pusta lista, ktora nie

zawiera na ten moment zadnego elementu.

listal = [0, 2, 4, 6, 8]
lista2 =[]

listal przechowuje 5 elementow, ktore zostaly umieszczone w nawiasach kwadratowych([].
Mozna wyswietli¢ wszystkie elementy listy lub pojedynczy element. Mozna réwniez dokonaé

zmiany wartosci elementu w liscie.

print(listal) #/0, 2, 4,6, 8]

print(listal[2]) #4

listal[2] =5 # element o indeksie 2 bedzie miat wartos¢ 5
print(listal) #/0, 2,5, 6,8]

Indeksowanie list jest identyczne jak indeksowanie typu napisowego i zaczyna si¢ od O.
Roéwniez w innych jezykach programowania np. C/C++ tablice indeksuje si¢ od 0. Nasza /listal
sktada si¢ z 5 elementow indeksowanych od 0 do 4, gdzie pierwszy element to 0, a ostatni (4)
warto$¢ 8. Nie ma indeksu o wartosci 5! Jest to bardzo wazne przy pracy z listami, by nie wyj$¢

poza zakres listy.

v" Dodawanie elementu do listy
Aby doda¢ element do listy, uzywamy funkcji append, ktorej jako parametr podajemy

wartos$¢, jaka chcemy doda¢ do naszej listy, np.
print(listal) #/0, 2, 5, 6,8]

listal.append(10) # dodanie elementu 10 do listy
print(listal) #/0, 2,5, 6,8, 10].

22

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

**
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

Czyli do wyzej omawianej listal zostal dodany kolejny element o wartosci 10. Element ten

zostal dodany na koniec listy.

v Usunigcie elementu po indeksie

Aby usunac¢ jakis element z listy, nalezy uzy¢ instrukcji del od angielskiego stowa ,, delete”,
czyli wlasnie usuwac. Instrukcja del usunie element z listy o okreslonym indeksie. Nalezy
zwrécié szczegdlng uwage na indeks elementu, ktérego chcemy usungé, by nie odwotywac si¢

do elementu, ktory nie istnieje.

lista2=[7,2,4,6,1] #[7, 2,4,6,1]
del lista2[2] # usuniecie elementu z listy o indeksie 2

print(lista2) #[7,2,6, 1]

Powyzej zostal utworzona nowa lista? ztozona z 5 elementéw indeksowana od 0 do 4.
Nastepnie zostal usunigty element o indeksie numer 2, czyli element 4, po czym zostaly
wyswietlone elementy listy. Warto zwrdci¢ uwage, ze po takim dziataniu nasza lista ulegta
skréceniu, a wiec 1 numeracja indeksow ulegta zmianie. W tej chwili ostatni element tablicy

ma numer 3. Uzycie indeksu o wartosci 4 spowoduje blad w programie.

v Dodanie elementu w dowolne miejsce

Jesli chcemy doda¢ element w konkretne miejsce na liscie, musimy zna¢ numer elementu
(indeks), przed ktory chcemy wstawi¢ nowa warto$¢. Dodanie elementu do listy na konkretne;j
pozycji wykonuje si¢ przez funkcje¢ insert, ktéra przyjmuje dwa parametry. Pierwszy parametr
funkcji insert to indeks miejsca, przed ktére chcemy wstawi¢ nowy element, a drugi to element,

ktory chcemy doda¢ do naszej listy.

lista2.insert(2, 4) # dodanie elementu do listy o wartosci 4 na pozycji 2

print(lista2) #[7,2,4,6,1]

v’ Sprawdzenie czy element wystepuje na liScie

W celu sprawdzenia czy dany element wystepuje w liScie, stosujemy polecenie:

23

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

**
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

lista3=[0,2,4,6,8] #]0 24,6, 8]
print(2 in lista3) # Wyswietli True, bo element 2 jest na liscie.

Podobnie jak do typu napisowego istnieje kilka przydatnych metod do obstugi list, przyktadowe
ponizej:

list(s) konwertuje sekwencje s na liste

s.append(x) dodaje nowy element x na koncu listy s

s.count(x) zlicza wystgpienie x w liscie s

s.index(x) zwraca najmniejszy indeks i, gdzie s[i] ==

s.pop(i) zwraca i-ty element z listy i usuwa go z listy s

s.remove(x) odnajduje wartosc¢ x i usuwa go z listy s

s.reverse() odwraca w miejscu kolejnosc¢ elementow listy s.

Przyktadowe operacje na liscie zostatly zebrane na Rys. 15.

@& 15py
lista =["Python", 3, 2.5, "programowanie"] 318
print(lista) #
print(listal[0]) # wys
listal = [2, 4, 5, 1, 5]
print(listal)
print(listall[4])

['Python', 3, 2.5, 'programowanie']

listal.append(10) # dodanie wartosci 10 na koniec listy [2, 4, 5, 1, 5]
print(listal) 5
del listal[1] # usu 1 [
print(listal)

listal.insert(2,8) # wstawienie elementu 8 na pozycje 2 [
print(listal)

print(8 in listal) # sprawdzenie, czy warto$é 8 jest na liscie True

(&3]
[

, 5, 10]
, 10]
., 5, 10]

»
\UW\LH.D
o=
[

Rys. 15. Przyktadowe operacje na listach.

Zrédto: Opracowanie Wiasne

Krotki

Innym typem zmiennych, ktory moze przetrzymywacé wigcej niz jedng wartos¢, sg tak
zwane krotki. Krotki sg bardzo podobne do list z jedng bardzo wazng réznica — dane
w krotkach sa niezmienne. Czyli raz utworzona krotka juz do konca ma takie elementy, jakie
zostaly podane przy jej implementacji. Krotki deklaruje si¢ tak samo jak listy, tylko zamiast

nawiaséw kwadratowych uzywa si¢ zwyktych ().W przypadku krotek, tak samo jak i w listach,

24

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

**
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

mozemy wyswietla¢ pojedyncze elementy za pomoca instrukcji print lub wszystkie, rowniez

indeksujemy je od zera.

krotkal = (1, 3, 5, 7, 9)
print(krotkal) #(l, 357 9)
print(krotkal[1]) # wyswietlamy element 1 czyli 3

Krotki sg bardzo przydatnym typem danych wszedzie tam, gdzie kolejnos¢ elementow ma
znaczenie, a bardzo nie chcemy, zeby program moéglt zmienia¢ zawarto§¢ naszej zmienne;.
Zastosowanie krotki moze mie¢ miejsce w zdefiniowaniu parametrow konfiguracyjnych
naszego programu np.. polagczenie z bazg danych, login do bazy, hasto itp. Przyklad

wyswietlenia elementéw krotki pokazany jest na Rys. 16.

& 16.py
krotka = (3, 2, 1, 5) 1
krotkal = ("Ala", "ma", "kota", 3, 3.05)
print(krotkal)
print(krotka) ysu e
print(krotka[3]) yswietlenie po

('Ala', 'ma', 'kota', 3, 3.05)
elementdw (3, 2, 1, 5
zego elementu krotki 5

SR N

Rys. 16. Wyswietlanie elementow krotki.

Zrédto: Opracowanie Wiasne

Zbiory

Trzecim typem zmiennych mogacych posiada¢ wigcej niz jedng warto$¢ sa zbiory,
posiadaja one pewna bardzo ciekawa wilasciwos$¢, ktora moze by¢ bardzo pomocna przy
rozwigzywaniu niektorych probleméw: jej elementy nie moga si¢ powtarza¢. Dodatkowa
cechg zbiorow jest to, ze sg nieuporzadkowane, a co za tym idzie nie mozemy wyswietlac
dowolnego ich elementu w taki sposob jak w przypadku list, czy krotek. Mozna za to dodawac¢

1 usuwac elementy ze zbiordw. Zbiory tworzymy za pomoca nawiasow klamrowych {}.

zbiorl = {2, 4,6, 8, 10} # tworzymy zbior elementow

print(zbiorl) #{2,4,6,8 10}
zbiorl.add(1) # dodajemy do zbiorl wartosc 1
zbiorl.add(3)) # dodajemy do zbiorl wartos¢ 3

25

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

**
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

print(zbiorl) #{1, 2 3, 4,638, 10}
zbior.remove(10) # usuwamy ze zbioru wartosc 10
print(zbior) #{1,2 3, 4,6, 8}

zbior2 = set() # tworzymy zbior pusty

zbior2= {5, 3, 1} # przypisujemy lamenty do zbioru

Za pomoca metody add mozna doda¢ elementy do zbioru, z kolei za pomocg remove mozna

usung¢ element ze zbioru. Funkcja /len (np. len(zbior2)) zwrdci liczbg elementéw w zbiorze.

Stowniki

Ostatnim z typoéw danych mogacych posiada¢ wigcej niz jedng warto$¢ sa stowniki.
Stowniki sg zupelnie innym typem danych od dotychczas opisywanych. Pierwszy element jest
nazywany kluczem, a drugi wartoscig. Jednemu elementowi (kluczowi), jest przypisana jakas
warto$¢. Warto zauwazy¢, ze kolejnos¢ elementow w stownikach nie ma znaczenia, poniewaz
dane w nich i1 tak wyszukuje si¢ po kluczu. Stowniki mozna modyfikowac, czyli mozna do nich
dodawac¢ nowe elementy i usuwac juz istniejace. Jedyna zasada to taka, ze klucze nie moga sie
powtarza¢. W stowniku wszystko moze by¢ kluczem, tak samo jak i wszystko moze by¢

wartoscig. Mozliwe sg zatem takie przyktadowe konstrukcje:

na_slowa = {1:jeden’, 2:'dwa’, 3:'trzy’, 4:'cztery’, 5:'piec'}
print(na_slowa) #{1:eden’, 2:'dwa’, 3:'trzy’, 4:'cztery’, 5:'piec'}

na_cyfry = {jeden':1, 'dwa’:2, 'trzy':3, ‘cztery':4, 'piec':5}
print(na_cyfry) #{jeden': 1, 'dwa':2, 'trzy':3, 'cztery':4, 'piec':5}

Powyzsze konstrukcje pozwalaj zamienia¢ napisy na liczby 1 odwrotnie. Stowniki, tak samo
jak zbiory, tworzymy przy uzyciu nawiaséw klamrowych. Pierwszy element to klucz, drugi to
wartos¢. Klucz jest oddzielony od wartosci dwukropkiem (:), a poszczeg6élne pary klucz-

wartos¢ przecinakami (,).

print(na_slowa[3]) # wyswietli 'trzy’
print(na_cyfry['trzy']) # wyswietli 3

26

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

**
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

Aby doda¢ nowy element do stownika, po prostu wpisujemy w nawiasy kwadratowe klucz,

ktorego chcemy uzy¢ 1 przypisujemy mu warto$c:

na_slowa[6]="szesc¢' # dodanie do stownika pary o kluczu 6 i wartosci 'szes¢'

print(na_slowa) #{1: jeden', 2: 'dwa’, 3: 'trzy', 4: 'cztery’, 5: 'piec’, 6. 'szes¢'}

Usuwanie elementow ze stownika wyglada podobnie jak w przypadku list, ale zamiast indeksu

elementu podajemy klucz, ktory chcemy usuna¢ wykorzystujac metode pop.

na_slowa.pop(3) # usuniecie elementu ze stownika na_slowa o kluczu 3
print(na_slowa) #{1: jeden', 2: 'dwa', 4: 'cztery', 5. 'piec'}
na_cyfry.pop('trzy') # usuniecie elementu ze stownika na_cyfry o kluczu ‘trzy’

print(na_cyfry) # {'cztery’: 4, 'dwa': 2, jeden': 1, 'piec': 5}

Instrukcje warunkowe if

Praktycznie prawie w kazdym programie sg podejmowane pewne decyzje, sg pewne
warunki, ktore wptywaja na pracg programu. Do podejmowania decyzji w programowaniu
stuzy instrukcja warunkowa if, czyli z jezyka angielskiego ,,jesli”. Fragment kodu programu
wykona si¢ tylko wtedy, gdy bedzie spetniony warunek (warunek bedzie prawdziwy, czyli
bedzie miat warto$¢ logiczng True). Sytuacji takich jest bardzo duzo, np. dzielnie zostanie
wykonane tylko wtedy, gdy dzielnik bedzie rézny od zera. Instrukcja if posiada rowniez
opcjonalng, dodatkowa czgs¢ w postaci instrukcji else, czyli ,,w przeciwnym wypadku”.
Dodatkowa cze$¢ else nie jest obowigzkowa, ale bardzo czesto jest przydatna, gdy chcemy,
by program sprawdzit jaki§ warunek 1 wykonat jaki$ kod, jesli warunek jest prawdziwy lub
wykonal inny kawatek kodu, je§li warunek byl nieprawdziwy (fatszywy). Uzycie instrukcji

if — else wyglada w Pythonie nastepujaco:
if (wyrazenie warunkowe):

instrukcja 1

instrukcja 2

27

Fundusze Europejskie Dofinansowane przez P SAMORZAD
. . . . * * WOJEWODZTWA
dla Wielkopolski Unie Europejska et WIELKOPOLSKIEGO
else:

instrukcja 1

instrukcja 2

W czesci ,,wyrazenie warunkowe” wpisujemy, to co chcemy, aby nasz program sprawdzit (czyli
stawiamy pewien warunek). Wyrazenie warunkowe moze by¢ zapisane w nawiasach, jednak
nie jest to wymagane. Po czes$ci wyrazenie warunkowe musimy wpisa¢ dwukropek, co oznacza,
ze dalej wystepuja instrukcje, ktore maja by¢ wykonane, jesli warunek jest prawdziwy. Warto
zaznaczy¢, ze instrukcji moze by¢ dowolna ilo$¢, ale wszystkie instrukcje musza by¢ wcigte
wzgledem instrukcji if. W ten sposéb Python rozpoznaje ktore instrukcje ma wykonaé po
sprawdzeniu prawdziwosci wyrazenia. Tak samo po instrukcji else musimy wstawié
dwukropek, a instrukcje muszg by¢ wcigte. Np. w jezyku programowania C/C++ wcigcia to
tylko dobra praktyka programisty, a operacje (instrukcje) blokuje si¢ za pomocag klamer{}.

Dziatanie instrukcji if - else odzwierciedla Rys. 17.

Start

Yes No
Condition
I true?
Execute codein Execute code in
if block else block
Execute code
outside if block

Rys. 17. Instrukcja warunkowa if - else.

Zrédto: Opracowanie wlasne

Ponizej prosty przyktad uzycia instrukcji if’ (Rys. 18.). Program wczytuje¢ liczbe

z konsoli i konwertuje ja do typu catkowitego. Nastepnie sprawdzany jest warunek, jesli

28

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

**
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

wprowadzona liczba jest wigksza od 10, wowczas w konsoli wyswietla si¢ komunikat 'Wpisates
cyfre wiekszq niz dziesiec', gdy jednak mniejsza lub rowna 10, to nic si¢ nie dzieje. Kolejna
instrukcja jest instrukcja print wyswietlajgca komunikat 'Koniec programu'niezaleznie od tego,

czy warunek byl prawdziwy, czy fatszywy.

& 17.py
zmienna = int(input('Podaj cyfre: '))
if (zmienna > 10):
print('Wpisates cyfre wiekszg niz dziesiec¢') Podaj cyfre: 11
Wpisates$ cyfre wiekszg niz dziesieé
5 print('Koniec programu')

Koniec programu

Rys. 18. Przyktad uzycia instrukcji warunkowej if.

Zr6dto: Opracowanie wlasne

Na Rys. 19. zostala pokazana zmodyfikowana wersja programu z Rys. 18. Modyfikacja
polegata na dodaniu dodatkowej czes¢ else, ktora wykona si¢, gdy warunek jest nieprawdziwy,
tzn., gdy wprowadzona cyfra jest mniejsza od 10. Program ma jeszcze jeden defekt,
nieprawidlowo si¢ zachowa, gdy wprowadzimy cyfr¢ réwng 10. W celu usunig¢cia ww. defektu

musimy dodac¢ jeszcze jedng instrukcje if, jak zostato to pokazane na Rys. 20.

& 18.py

zmienna = int(input('Podaj cyfre: '))

if (zmienna > 10):
print('Wpisate$ cyfre wieksza niz dziesiecé')

else: .
Podaj cyfre: ¢
print('Wpisates cyfre mniejszg niz dziesiec')
Wpisates cyfre mniejszg niz dziesiec

i . Koniec programu
print('Koniec programu')

Rys. 19. Przyktad uzycia instrukcji warunkowej if - else.

Zrédto: Opracowanie wlasne
Jak wida¢ z Rys. 20. mozna zagniezdza¢ instrukcje warunkowe, czyli w instrukcji warunkowej

umiesci¢ kolejng instrukcje. Linie 5 1 6 kodu z Rys. 20. mozna polaczy¢ w jednag linie. Zamiast

pisac else:, a nastepnie if(), mozna od razu zapisac elif, jak zostato to pokazane na Rys. 21.

29

Fundusze Europejskie Dofinansowane przez P SAMORZAD
ielk ki . ik * * WOJEWODZTWA
dla Wielkopolski Unie Europejska .yt WIELKOPOLSKIEGO

zmienna = int(input('Podaj cyfre: '))

if (zmienna > 108):
print('Wpisatesé cyfre wiekszag niz dziesiec')

else:
if (zmienna == 10):
print('Wpisates$ cyfre roéwng dziesiec')
else:
9 print('Wpisates$ cyfre mniejszg niz dziesiec') Podaj cyfre: 18
Wpisates cyfre réwng dziesieé
print('Koniec programu') Koniec programu

Rys. 20. Przyktad uzycia zagniezdzonej instrukcji warunkowej if - else.

Zrédto: Opracowanie wlasne

zmienna = int(input('Podaj cyfre: '))

if (zmienna > 10):
print('Wpisates cyfre wieksza niz dziesiec')
elif (zmienna == 10):
print('Wpisate$ cyfre réwng dziesiec')

else:
print('Wpisate$ cyfre mniejszg niz dziesie¢') Podaj cyfre: 9
Wpisates cyfre mniejszg niz dziesiec
print('Koniec programu') Koniec programu
Rys. 21. Przyktad uzycia instrukcji elif.
Zr6dto: Opracowanie wlasne
Petla for

Poznanie instrukcji iteracyjnych (pgtli) pozwala programiscie rozwigzywac trudniejsze
zadnia, problemy. Obok instrukcji warunkowej, znajomos$¢ petli jest konieczna do pisania
programéw. Piszac programy, bardzo czgsto zdarzy sie¢, ze bedziemy chcieli wykonaé jakie$
zadanie (instrukcje) wiecej niz jeden raz. Korzystajac z petli mozemy okreslong operacje
(instrukcje) wykonywac z gory okreslong ilos¢ razy, np. 1000, 20000, 3 miliony lub tak dtugo,
jak warunek jest prawdziwy. Ide dziatania instrukcji iteracyjnych (pgtli) przedstawia Rys. 22.

Pierwsza petle jako sobie omowimy, jest petla for. Petla ta ma kilka postaci. Jako

pierwsza opiszemy petle for z zakresem range. Petla ta ma nastepujaco postac:

foriinrange(101):

<instrukcje>

30

Fundusze Europejskie Dofinansowane przez :* * *: w&g&%ADDZTWA
dla Wielkopolski Unie Europejska et WIELKOPOLSKIEGO
Start
Yes .
Execute while | Co;ﬂ:;on
block code ’
No
Execute code
outside while...do
block

Rys. 22. Idea dziatania pgtli.

Zr6dto: Opracowanie wlasne

W tej konstrukcji, funkcja range przyjmuje parametr i zwraca kolejno cyfry z zakresu
<0; wartos¢), czyli w naszym wypadku <0; 101). Piszac prosciej petla wykona si¢ 101 razy,
a w kazdym obiegu petli parametr (zmienna) i bedzie przyjmowaé odpowiednio warto$ci:
0,1,2,3,4,...,100. Warto zwr6ci¢ uwage, jakie warto$¢ przyjmie parametr i. Znak mniejszosci
< oznacza, ze zaczynamy od 0 wlacznie i konczymy na 101 (czyli warto$ci zapisane]
w nawiasie) ale bez tej warto$ci, bowiem jest nawias otwarty). Po podaniu wartosci funkcji
range() stawia si¢ :, a nastgpnie wypisuje si¢ instrukcje, ktore maja by¢ wykonane w petli.
Wszystkie instrukcje, ktore majg by¢ wykonywane w petli musza by¢ wcigte w stosunku do
instrukcji for, podobnie jak to byto w przypadki instrukcji if. Funkcja range moze przyjmowac

nastepujace postacie:
v’ bez zakresu poczatkowego range(10) #1[0,1,2,3,4,5,6,7,8, 9],

v’z zakresem poczatkowym i koncowy range(1,10) #][1,2,3,4,5,6,7,8,9],
v’z zakresem poczatkowym, koncowym i krokiem range(1,10,2) #[1,3,5,7,9].

31

. . m
Fundusze Europejskie Dofinansowane przez :* ': w&g&%ADDZTWA
dla Wielkopolski Unie Europejska et WIELKOPOLSKIEGO
& 23py

etla for in range
for i in range(10):
print(i, end=" ")

print(“ ")

for i in range(1, 8):
print(i, end=" ")
print(" ") 01234567809
1234567
024638

for i in range(8, 9, 2):
print(i, end=" ")

Rys. 23. Przyktad uzycia petli for in range.

Zrédto: Opracowanie wlasne

W ogolnosci sktadnia petli for jest nastgpujaca:

for <nazwa_zmiennej> in <obiekt> :
instrukcjal
instrukcja2

instrukcja3

Zamiast <nazwa zmiennej> wstawiamy dowolng nazwe, ktora bedzie wykorzystywana
do przechowywania kolejnych elementéw pobieranych z <obiekt>. Petle for dla przykiadu
mozemy wykorzysta¢ do wypisania wszystkich elementdéw z listy. Petla wykona sig tyle razy,
ile elementdw jest na liScie. Przyklad uzycia petli for do odczytu wszystkich elementéw listy

przedstawia Rys. 24.

@ 24.py

lista = [0, 2, 4, 8, 10]

for zm in lista:
print (zm, end=" ") 024810

Rys. 24. Przyktad uzycia petli for z elementami listy.

Zrédto: Opracowanie wlasne

W tym przyktadzie petla for pobiera kolejne elementy z listy, ,,wrzuca” je do zmiennej

zm 1 nastgpnie przechodzi do wykonywania instrukcji, ktére jak zawsze sa wypisane

32

SAMORZAD
WOJEWODZTWA

- . m
Fundusze Europejskie Dofinansowane przez Ll
WIELKOPOLSKIEGO

dla Wielkopolski Unie Europejska

* ok

po dwukropku i we wcigciu. W tym konkretnym przypadku jest to instrukcja print, ktora
wys$wietla poszczeg6lne elementy z listy.
Zdarzajg si¢ sytuacje, ze oprocz wyswietlenia elementow listy potrzebujemy wyswietli¢

indeksy poszczegdlnych elementdw. W takiej sytuacji stosujemy petle for w postaci enumerate:

for indeks, wartos¢ in enumerate(lista):

print(indeks, wartosc)

* zipy Element o indeskie @, ma wartos$é: 3
lista = [3, 2, 4, 8, 10] Element o indeskie 1, ma warto$é: 2
Element o indeskie 2, ma wartos$c¢: 4

for indeks, wartosc in enumerate(lista): Element o indeskie 3, ma wartosé: 8
print(f"Element o indeskie {indeks}, ma wartosc: {wartosc}") Element o indeskie 4, ma warto$é: 10

Rys. 25. Petla for dla list (wySwietlenie indeksow 1 warto$ci elementow listy.

Zr6dto: Opracowanie wlasne

Warto przypomnie¢, ze listy numeruje si¢ od 0. Przyktad jak odczytywac indeksy i warto$ci
poszczegbdlnych elementdéw listy za pomocg instrukcji for pokazany jest na Rys. 25. Podobnie

petle for mozna wykorzysta¢ do pracy ze stownikami.

for key in slownik:

<instrukcje>

Petla for rowniez pozwala wykona¢ operacje na stownikach, zawracajac jego klucz (key) .Gdy
znamy klucz do stownika, to mozemy wyswietli¢ warto$¢ pod wskazanym kluczem. Przyktad

wykorzystania p¢tli for do pracy ze stownikami zostata pokazany na Rys. 26.

@ 26.py
slownik = {"jeden": 1, "dwa": 3, "trzy": 5} 19
Pod kluczem jeden jest wartosc¢: 1
for key in slownik: # key przyjmuje klucze: "jeden", "dwa", "trzy" Pod kluczem dwa jest wartos$é: 3
print(f"Pod kluczem {key} jest wartos¢: {slownik[key]}") Pod kluczem trzy jest wartos$cé: 5

Rys. 26. Przyktad uzycia petli for dla stownikow.

Zrédto: Opracowanie wlasne

33

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

**
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

Petle mozna zagniezdza¢ (czyli w petli moze umieszczaé kolejne petle) i taczy¢ z innymi

instrukcjami, np. instrukcja warunkowa if, jak zostato to pokazane Rys. 27.

& 27.py

lista = [5, 2, 11, 8, 3, 7, 1

for element in lista:
if (element > 5):
print(element, end=", ") 11. 8, 7;

Rys. 27. Przyktad polaczenia petli for i instrukcji warunkowe;j if.

Zrédto: Opracowanie wlasne

Powyzszy przyktad wyswietla elementy listy, jednak tylko te, ktore sa wigksze od 5.

Petla while

Peta for wykonuje si¢ z gory okreslona liczbe razy albo dla wszystkich elementow
z listy, stownika, jednak jesteSmy wstanie okresli¢, ile razy ta petla si¢ wykona.
W programowaniu sg jednak takie sytuacje, ze nie wiem z gory, ile razy maja si¢ wykonac
instrukcje w petli, wowczas mozemy wykorzystac petle while, ktora bedzie si¢ wykonywac tak
dhugo, jak warunek w niej bedzie prawdziwy. Petla while, czyli ,,dopoki” tak samo jak
instrukcja if sprawdza pewien warunek oraz ma podane instrukcje do wykonania. Réznica
pomiedzy instrukcjg if a while jest taka, ze instrukcja if wykona operacje w niej zawarte jedne
raz, gdy warunek jest prawdziwy, a petla while tak dtuga jak warunek bedzie prawdziwy. Czyli
petla while sprawdza warunek, wykonuje instrukcje, znowu sprawdza warunek, znowu
wykonuje instrukcje i robi to tak dtugo, dopoki warunek jest prawdziwy. Jesli warunek bedzie
falszywy (nieprawdziwy) instrukcje nie zostang wykonane ani razu, a program przejdzie do

dalszej czesci programu. Szkielet petli while wyglada nastepujaco:

while (warunek):
instrukcje 1

instrukcje 2

Warto znowu przypomnie¢, ze instrukcje, ktore majg by¢ zawarte w petli musza by¢ wcigte

w stosunku do stowa kluczowego while. Przyktad uzycia petli while jest pokazany na Rys. 28.

34

. . m
Fundusze Europejskie Dofinansowane przez :* *: w&g&%ADDZTWA
dla Wielkopolski Unie Europejska et WIELKOPOLSKIEGO
& 28.py
a=>s

Wartos¢ zmiennej
while a > 0: Warto$¢ zmiennej
Wartos$¢ zmiennej

print (f"Wartos$¢ zmiennej a : {a}") Wartosé zmiennej

a=a-1 Warto$¢ zmiennej

o 0 O o0 o
BN WO

Rys. 28. Przyktad wykorzystania petli while.

Zrédto: Opracowanie whasne

Na poczatku zmienna @ ma warto§¢ 5, ona postuzy do sterowania petla, ktora bedzie si¢
wykonywata tak dlugo, jak warto§¢ zmiennej bedzie wigksza niz 0. Mamy zwarte dwie
instrukcje w petli: wyswietlamy warto§¢ zmiennej 1 zmniejszamy warto$¢ zmiennej
o 1. Omawiajac petle while warto wspomnie¢ o dwoch instrukcjach: continue 1 break.
Instrukcja continue — pomija wykonanie instrukcji i powoduje przejscie do kolejnej iteracji
(obrotu petli), z kolei instrukcja break — powoduje przerwanie wykonywanie catej petli.
Powyzsze instrukcje mozna stosowac¢ zarowno z petla for, jak 1 while. Rys. 29. pokazuje jak
dziata instrukcja continue, w tym przypadku na ekranie konsoli zostang wyswietlone liczby
012 z listy liczby. Pozostate liczby nie zostang wyswietlone, gdyz operacja continue przerywa

obieg petli, gdy liczba x bedzie mniejsza od 0.

& 29.py

inetpukein rontinie
1ST

1NS UKCJa continue
liczby = [-2, -1, 0, -4, 2]
for x in liczby:

if x < 0O:
continue
print(x)

Rys. 29. Przyktad wykorzystania instrukcji continue.

Zrédto: Opracowanie wiasne
Na Rys. 30. pokazany jest przyktad uzycia instrukcji break, ktéra w tym konkretnym przypadku

spowoduje, ze w konsoli zostang wyswietlone jedynie liczby -2 i -1, gdyz break przerywa

dziatanie calej petli, gdy x przyjmie wartos¢ rowna 0.

35

Fundusze Europejskie Dofinansowane przez P SAMORZAD
. . . . * * WOJEWODZTWA
dla Wielkopolski Unie Europejska et WIELKOPOLSKIEGO
& 30.py
liczby = [-2, -1, 0, 1, 2]

for x in liczhy:
if x ==
break
print(x)

Rys. 30. Przyktad wykorzystania instrukcji break.

Zrédto: Opracowanie wlasne

Funkcje w Pythonie

Do tej pory korzystalismy tylko z gotowych funkcji (tak na naprawde metod, ale o tym
p6zniej), ktorych Python dostarcza olbrzymia ilo§¢. W tym miejscu jednak nauczymy si¢
tworzy¢ wiasne funkcje. Jest to bardzo proste i jednoczesnie bardzo przyspiesza tworzenie
nowych programdéw, poniewaz raz napisany kod mozna bardzo tatwo i1 szybko wykorzystac¢
ponownie. Nowg funkcje deklarujemy uzywajac stowa kluczowego def od podania jej nazwy

oraz parametrow, jakie funkcja bedzie pobierac, jesli w ogoble jakies ma pobieraé:

def <nazwa funkcji>():
instrukcje 1

instrukcje 2

Jezeli funkcja ma zwraca wartos¢, to wowczas bedzie miata postac:

def <nazwa funkcji>():
instrukcje 1
instrukcje 2

return wartos¢
Ponizej mamy przyktad funkcji suma, ktéra dodaje dwie liczby. Argumentami funkcji sg

wlasnie sumowane liczby (x, y). Funkcja nic nie zwraca, a jedynie wyswietla wynik sumowania

liczb.

36

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

**
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

def suma(x, y):
z=x+ty

print(z)

Ta samom funkcj¢ mozna rowniez napisa¢ w taki sposob, by zamiast wyswietlania sumy liczb

zwracata wynik.

def suma(x, y):
z=x+ty

return z

Nalezy jednak pamigtaé, ze jezeli funkcja zwraca wartos¢, to nalezy ja przypisa¢ do jakie$

zmiennej. Ponizej przyktad wywolania funkcji zwracajace warto$¢:

a=3
b=2
¢ = suma(a, b)

print(c)

Funkcja w tym konkretny przypadku zwraca warto$¢ 5, gdyz sumuje dwie liczby zapisane
w zmiennych a i b (3, 2). Do zmiennej ¢ zostanie przypisana warto$¢ zwracana przez funkcje,
a funkcja print na ekranie wyswietli warto$¢ 5. Funkcj¢, wywolujemy tak samo jak kazda inna,
czyli uzywajac jej nazwy, a w nawiasy wpisujgc parametry. Parametrami funkcji moga by¢
zaro6wno zmienne, jak i state. W wiekszosci przypadkow funkcja zwraca jeden wynik, jednak
nalezy pamigta¢, ze w Pythonie funkcja moze zwroci¢ ich wiele jednoczesnie. Zostalo to

pokazane na przyktadzie ponizej.

def'licz(x, y):

Z=X-y
m=x**y
r=x-+ty

returnz, m, r

37

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

* 4 %

* oy x

Fundusze Europejskie Dofinansowane przez :* o
dla Wielkopolski Unie Europejska *

Ponizej wywotanie funkcji z argumentami:

wynik = licz(10, 5)
print(wynik[0], wynik[1], wynik[2])

Wywotanie funkcji wymaga podania warto$ci dla wszystkich parametrow - jezeli nie podamy
wartos$ci dla wszystkich parametrow formalnych, wystapi btad. Mozemy tego unikng¢, podajac

domyslne warto$ci argumentéw- wiecej o tym watku zostanie powiedziane podczas szkolenia.

Wyjatki

Do tej pory zawsze zaktadaliSmy, ze nasz kod programu dziata poprawnie (np. dzielac
liczby zaktadalismy, ze nikt nie bedzie chcial dzieli¢ przez zero). Co si¢ jednak dzieje, kiedy
co$ pojdzie nie tak? W takich sytuacjach “wyrzucany” jest wyjatek. Wyjatek jest obiektem
specjalnego typu, ktory powoduje awaryjne przerwanie wykonania programu. Dla przykladu:
wyjatek jest "wyrzucany” np. kiedy staramy si¢ odwota¢ do nieistniejgcego elementu w liscie,

bedziemy probowac dzieli¢ przez zero itd. Jezeli sprobujemy wykona¢ kod:

lista=[1, 2, 3, 4]
print (lista[5])

to wowczas pojawi si¢ wyjatek, jak pokazano na Rys. 2.31.

C:\kurs_analiza\Scripts\python.exe C:\kurs_analiza\przy.py
Traceback (most recent call last):
File "C:\kurs_analiza\przy.py", line 3, in <module>
print (lista[5])

T

IndexError: list index out of range

Rys. 31. Przyktad wyjatku podczas odwotania si¢ do nieistniejgcego elementu w liscie

Zrédto: Opracowanie wlasne

38

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

**
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

* gk

Jak wida¢ na Rys. 31. ostatnia linia informuje, jakiego rodzaju btad wystapit. ,,IndexError” jest
typem wyjatku, ktory oznacza, ze numer indeksu, do ktorego probujemy si¢ odwotaé, jest
niepoprawny. Z kolei po dwukropku nastepuje stowny opis btedu, ktory w tym przypadku
informuje, ze podalismy zbyt duzg cyfre jako indeks listy. ,,Wyrzucony” wyjatek moze zosta¢
przez program ztapany i obstuzony. Kiedy wyjatek jest ,,wyrzucany”, wykonanie programu jest
przerywane 1 wyjatek jest wyrzucany tak dlugo, az zostanie obstuzony lub dopoki nie bedzie
juz nic powyzej 1 wtedy program konczy swoje dzialanie z btedem. Wyjatki obstuguje sie
specjalng sktadnia, ktora wyglada nastepujaco:

try:
instrukcjal
instrukcja2
except:
instrukcjal
instrukcja2

Dla naszego powyzszego przyktadu, obstuga wyjatku wygadataby nastepujaco:

try:
al3]
except:

print(‘poza zakresem listy')

Taki kod zadziata, ,,wyrzucany” wyjatek zostanie obstuzony, jednak w ogdlnosci lepiej zapisac
obstuge wyjatku w bardziej ogélnej formie (niezaleznie od warto$ci indeksu i z konkretnym

typem wyjatku) :

lista=[1, 2, 3, 4]
indeks = 5
try:
print(listafindeks])
except IndexError:

print(lista[len(lista)-1])

39

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

**
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

Konstrukcja ,.try ... except ... ” moze mie¢ na koncu dotozong opcjonalng czes¢ ,, else”,
ktora bedzie wywotywana, jesli kod wewnatrz sekcji ,,try ” zostanie wykonany poprawnie bez

wyrzucania wyjatku.

try:
print(tablicafindeks])
except IndexError:
print(tablica[len(tablica)-1])
else:

print("Kod w bloku try zostat wykonany poprawnie”)

Mozna jeszcze dotozy¢ jedna opcje (finally), ktora wykona si¢ niezaleznie, czy

powstanie wyjatek, czy tez nie.

try:
print(tablicafindeks])
except IndexError:
print(tablica[len(tablica)-1])
else:

print("Kod w bloku try zostal wykonany poprawnie”)
finally:
print("Ten print wykona si¢ zawsze bez wzgledu na to czy

powstanie wyjqtek czy nie")

Elementy programowania obiektowego

Programowanie obiektowe r6zni si¢ od tradycyjnego programowania proceduralnego,
gdzie dane 1 procedury nie sg ze sobg bezposrednio zwigzane. Programowanie obiektowe ma
utatwi¢ pisanie, konserwacj¢ 1 wielokrotne uzycie programow lub ich fragmentow.
W programowaniu obiektowym programista moze deklarowa¢ wtasne typy zmiennych, tak
zwane klasy, ktore maja w sobie pola, czyli wiasnosci oraz zachowanie, czyli metody. Na
podstawie wzorca (szablonu), jakim jest klasa programista tworzy nowe obiekty.

Klasy definiujemy wedtug nastepujacego schematu:

40

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

**
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

class NaszaNowaKlasa:
pola
metody

Z kolei obiekty tworzymy wedlug nastepujacego schematu:

NazwaObiektu = NazwaKlasy(argumenty)

Waznym elementem uzywania obiektéw jest notacja obiektowa. Do pdl i metod obiektow

dostajemy si¢ piszac nazwe zmiennej dowigzanej do obiektu, kropke 1 nazwe atrybutu obiektu.

nazwaObiektu.nazwaMetody()
nazwaObiektu.nazwaMetody(argumenty)

Kolejnym waznym elementem klasy jest zmienna self.
Wewnatrz metod, zmienna self odnosi si¢ do samego obiektu.
e Dzigki temu mozliwy jest dostep do pol obiektu, np. self.a.
e W momencie wywotania metody obiektu, zostaje on automatycznie wstawiony jako
pierwszy argument metody i uzytkownik podaje o jeden mniej argument niz metoda

wymaga.

Przyklad klasy przedstawiony jest ponizej:

class Wektor():
def _init__(self, x, y):

self.a = x
self.b =y

print "wektor zostat stworzony!"

wl = Wektor(5, 7) # wektor zostat stworzony

41

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

**
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

Tak jak zmienna self daje dostgp do pol obiektu, tak metoda init jest wywotywana
automatycznie w momencie tworzenia obiektu. Metoda ta powinna wykonywaé wszystkie
operacje potrzebne do zainicjowania nowego obiektu, w szczegolnos$ci powinna ona nadawac
wartosci jego polom. Oprocz specjalnej metody init programista moze tworzy¢ wlasne

metody. Metoda jest to funkcja zdefiniowana wewnatrz klasy.

class NazwaKlasy:

def NazwaMetody(self, atrybuty):

[ciato metody]
Wywotanie metody odbywa si¢ nastepujaco:
NazwaObiektu = NazwaKlasy(atrl, ..., atrN) # tworzenie obiektu
NazwaObiektu.NazwaMetody(atrybuty) # wywolanie metody na obiekcie

Przykladowe zadanie z rozwiazaniem
Napisz program, ktory postuzy do przechowania studentéw w liscie. Utworz klasg¢ Student:
e Pola: imig, nazwisko, oceny
e Metody: dodajOcene(ocena), wypiszOceny(), policzSrednia()
Utworz menu: 1 - dodaj studenta, 2 - pokaz studentéw, 3 - usun studenta, 4 - dodaj ocene

studentowi, 5 - wypisz oceny studenta, 6 - §rednia studenta, 7 - koniec.

Przyktad klasy Student pokazany jest na Rys. 32., natomiast dalsza czg¢$¢ programu

z powyzszego zadania przedstawiona jest na Rys. 33. 1 Rys. 34.

42

Fundusze Europejskie Dofinansowane przez :* * *: w{;g&Zg\DDZTWA
dla Wielkopolski Unie Europejska . WIELKOPOLSKIEGO

class Student:
def __init__(self, imie, nazwisko):
self.imie=imie
self.nazwisko=nazwisko

self.oceny=[]

1 usage
def dodajOcene(self, ocena):
self.oceny.append(ocena)

1 usage
def wypisz(self):
for x in self.oceny:
print(x)

1 usage

def policzSrednia(self):
suma=0
for x in self.oceny:

sSuma=suma+Xx

srednia=suma/len(self.oceny)

print(srednia)

Rys. 32. Przyktad klasy Student.

Zrodto: Opracowanie wiasne

43

SAMORZAD
WOJEWODZTWA

. . . *
Fundusze Europejskie Dofinansowane przez #
WIELKOPOLSKIEGO

dla Wielkopolski Unie Europejska

* oy x

listaStudentow = []
while True:
menuv = int(input("1-dodaj studenta, "

"2-pokaz studentow, "
"3-usun studenta, "
"4-dodaj ocene studentowi, "
"b-wypisz oceny studenta, "
"6-srednia studenta, "
"7-koniec"))

if menu ==
imie = input("Podaj imie: ")
nazwisko = input("Podaj nazwisko: ")
student=5tudent(imie,nazwisko)
listaStudentow.append(student)

elif menu ==
for x in listaStudentow:
print(f"imie: {x.imie}, Nazwisko: {x.nazwiskol}")

elif menu == 3:
nazwisko = input("Podaj nazwisko: ")
for x in listaStudentow:
if x.nazwisko==nazwisko:
listaStudentow.remove(x)

Rys. 33. Obstuga programu z klasa Student, czes¢ 1.

Zrbdto: Opracowanie wlasne

44

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

Fundusze Europejskie Dofinansowane przez
dla Wielkopolski Unie Europejska %o

* X% |

f -

elif menu == 4:
nazwisko = input("Podaj nazwisko: ")
for x in listaStudentow:

if x.nazwisko == nazwisko:
ocena = int(input("Podaj ocena: "))
Xx.dodajOcene(ocena)
elif menu == 5:

nazwisko = input("Podaj nazwisko: ")
for x in listaStudentow:

if x.nazwisko == nazwisko:
X.wypisz()
elif menu == é4:

nazwisko = input("Podaj nazwisko: ")

for x in listaStudentow:

if x.nazwisko == nazwisko:
¥.policzSrednia()
elif menu == 7:
break

Rys. 33. Obstuga programu z klasg Student, cze$¢ 2.

Zr6dto: Opracowanie wlasne

Programowanie obiektowe, ma wiele aspektow, ktore zostang bardziej szczegdtowo

omowione podczas szkolenia , min. hermetyzacja, dziedziczenie, i wiele innych.

Wprowadzenie do operacji na plikach
Zmienne stanowig pewien sposob przechowywania informacji i uzyskiwania do nich
dostepu w trakcie wykonywania programu, jednak po wylaczeniu programu informacje ulatuja.

Dlatego warto zapisa¢ dane w taki sposob, aby mozna je byto po6zniej odzyska¢. Do takiego

45

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

**
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska on

trwalego zapisu mozna wykorzysta¢ pliki. Pliki mozna otworzy¢ na kilka sposobdw (z réznymi

atrybutami) w zaleznos$ci od potrzeby.
e Odczytywanie danych z plikow tekstowych

text file = open("odczyt.txt", "r")
text file.close()

Powyzsze instrukcje pozwalajg na otwarcie pliku o nazwie odczyt.txt z atrybutem r, czyli do
odczytu. Po tej instrukcji mozemy czyta¢ dane z pliku. Po zakonczeniu czytania nalezy plik
zamkna¢. Plik mozemy czyta¢ na kilka sposobow, np. linia po linii. Ponizej zostal
przedstawiony przykladowy kod programu, ktory czyta 3 linie pliku o nazwie odczyt.txt,

a nastepnie wyswietla je na ekranie. W tym przyktadzie czytamy plik po jednym wierszu naraz.

text_file to taki uchwyt do pliku.

text file = open("odczyt.txt", "r")
print(text_file.readline())
print(text_file.readline())
print(text_file.readline())

text file.close()

Mozemy rowniez wczyta¢ caty pliku do listy, a nastepnie wyswietli¢ je linia po linii. Metoda

readline(), czyta jedna linie, z kolei readlines() czyta wszystkie linie z pliku.

text file = open("odczyt.txt", "r")

lines = text file.readlines()

print(lines) # wszystkie linie od razu

print(len(lines)) # liczba linii

for line in lines: # tak diugo jak sq linie
print(line) # linia po linii

text file.close()

46

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

**
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

Tak naprawde mozna to zrobi¢ bez instrukcji readlines(). Przyklad kodu jest zaprezentowany

ponizej.

text_file = open("odczyt.txt", "r")
Sor line in text_file:

print(line)
text file.close()

Wybrane tryby dostepu do pliku tekstowego:

F = open("plik.txt","tryb")

e .’ -0dczyt danych z pliku tekstowego. Jesli plik nie istnieje, zasygnalizuje btad.

e _w” - Zapis danych do pliku tekstowego. Jesli plik juz istnieje, jego zawartos¢
zostaje zastgpiona przez nowe dane. Jesli nie istnieje, zostaje utworzony.

e .a” - Dopisanie danych na koncu pliku tekstowego. Jesli plik istnieje, nowe dane

zostaja do niego dopisane. Jesli plik nie istnieje, jest tworzony.

e Zapisywanie lancuchow znakow do pliku

text file = open("zapisz.txt", "w")
text file.write("Wiersz 1\n"
text file.write("To jest wiersz 2\n"

text file.write("Ten tekst tworzy wiersz 3\n")

text file.close()

Metody write() zapisuje tancuch znakow do pliku. Warto wiedzie¢, ze metoda write() nie
wstawia automatycznie znaku nowego wiersza na koncu tancucha, ktéry zapisuje. Nalezy
samemu wstawi¢ znaki nowego wiersza tam, gdzie sg one potrzebne. Podobnie jak readlines(),
metoda writelines() obstuguje liste tancuchow, lecz zamiast wczytywaé zawarto$¢ pliku

tekstowego do listy, zapisuje liste fancuchow do pliku.

47

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

**
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

text file = open("zapisz_to.txt", "w")
lines = ["Wiersz I\n",

"To jest wiersz 2\n",

"Ten tekst tworzy wiersz 3\n"]

text_file.writelines(lines)

text file.close()

Wybrane metody do obshugi pliku
e close() - Zamyka plik. Odczytywanie danych z zamknigtego pliku oraz zapisywanie
do niego jest niemozliwe, dopoki nie zostanie ponownie otwarty.
e readline() - Metoda zwraca wszystkie znaki od pozycji biezacej do konca wiersza.
e readlines() - Odczytuje wszystkie wiersze pliku i zwraca je jako elementy listy.
e write(dane) - Zapisuje tancuch dane do pliku.

e writelines(dane) - Zapisuje tancuchy bedace elementami listy dane do pliku.

Przyklad programu z obshugg plikéw

Napisz program do wprowadzania studentow w zakresie informacji (imi¢, nazwisko, grupa).
Program ma przechowywaé¢ dane w pliku txt, ma umozliwia¢ dodawanie, usuwanie, zmiang
oraz pokazywanie listy studentow. Usuwanie oraz zmian¢ moga wykonywac¢ np. po nazwisku.
Program wyposazony jest w interaktywne menu (1-dodaj, 2-pokaz, 3-usun, 4-zmien,

5-wyjscie).

Przyktadowa realizacja zadania z obstuga plikow jest pokazana na Rys. 34. i Rys. 35.
W przypadku zapisu do pliku bardziej ztozonych informacji, np. list, stownikow, a nawet baz
danych stuzy biblioteka pickle. Modul pickle umozliwia marynowanie i przechowywanie
w pliku bardziej ztozonych danych. Przyktad marynowania danych zostanie pokazany Panstwu

podczas zaje€.

48

Fundusze Europejskie Dofinansowane przez :* * *: w{;g\I;I%ADDZTWA
dla Wielkopolski Unie Europejska . WIELKOPOLSKIEGO
@ przy.py
while True:

menu = int(input("1-dodaj, 2-pokaz, 3-usun, 4-zmien, 5-koniec"))

if menu ==
imie = input("Podaj imie : ")
nazwisko = input("Podaj nazwisko: ")
grupa = input("Podaj grupa: ")
plik=open("85.txt",6 "a")
plik.write(f"{imie}; {nazwisko};{grupalin")
plik.close()

elif menu ==
plik = open("85.txt", "r")
for i in plik:
iSplit=i.split(";")
print(f"Imie:{iSplit[0]} Nazwislo:{iSplit[1]} Grupa:{iSplit[2]}™)
plik.close()

elif menu == 3:
listaTmp =[]
plik = open("85.txt", "r")
nazwisko = input("Podaj nazwisko: ")
for i in plik:
iSplit = i.split(";")
if iSplit[1] '= nazwisko:
listaTmp.append(i)
plik.close()
plik = open("85.txt", "w")
plik.writelines(listaTmp)
plik.close()

Rys. 34. Program z obstugg plikoéw, czesc 1.

Zrodto: Opracowanie wiasne

49

Fundusze Europejskie Dofinansowane przez :* * *: w&g&%ADDZTWA
dla Wielkopolski Unie Europejska .yt WIELKOPOLSKIEGO
elif menu == 4:

listaTmp = []
plik = open("85.txt", "r")
nazwisko = input("Podaj nazwisko: ")
for i in plik:
isplit = i.split(";™)
if iSplit[1] !'= nazwisko:
listaTmp.append(i)
else:
noweImie = input("Podaj nowe imie: ")
noweNazwisko = input("Podaj nowe nazwisko: ")
listaTmp.append(f"{noweImie}; {noweNazwisko}; {iSplit[2]}")
plik.close()
plik = open("85.txt", "w")
plik.writelines(listaTmp)
plik.close()

elif menu == 5:
break

Rys. 35. Program z obstuga plikow, czes¢ 2.

Zrédto: Opracowanie wlasne

Pliki binarne

Pliki binarne to pliki, w ktorych dane zapisywane sa w postaci zer i jedynek (0/1), a nie
jako tekst czytelny dla cztowieka (jak np. pliki .txt czy .csv). Cztowiek nie jest w stanie
»przeczyta¢” takiego pliku w edytorze tekstu, ale program komputerowy potrafi odtworzy¢
z niego obiekt w pamieci. W uczeniu maszynowym model po treningu jest obiektem w pamigci
RAM, zawierajacym: wyuczone parametry, wspolczynniki, strukture modelu, informacje
o preprocessingu. Po zamknigciu programu model znika, jesli go nie zapiszemy. Korzystajac
z biblioteki pickle mozemy w tatwy sposob zapisa¢ obiekt (model) do pliku oraz go
w poOzniejszym czasie zatadowa¢ do programu. Zapis modelu do pliku za pomoca biblioteki
pickle prezentuje Rys. 36. Otwieramy plik (b — binarny, w — do zapisu) 1 w nim zapisujemy za
pomoca metody dump wytrenowany model. Z kolei Rys. 37. prezentuje w jaki sposéb mozna

odczyta¢ modle z pliku binarnego za pomoca biblioteki pickle.

50

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

**
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

import pickle

with open(“"model.pkl™, "wb") as file:
pickle.dump(model, file)

Rys. 36. Zapis modelu do pliku za pomocg biblioteki pickle.

Zrédto: Opracowanie whasne

with open("model.pkl”, "rb") as file:
loaded model = pickle.load(file)

Rys. 37. Odczyt modelu z pliku za pomocg biblioteki pickle.

Zrédto: Opracowanie wlasne

Teraz za pomocg metody load z biblioteki pickle mozemy otworzy¢ plik (b — binarny, r — do

odczytu) 1 wyczyta¢ model do obiektu o nazwie loaded_model, a nastepnie z niego korzystac.

Zadania (Python)
Zadanie 1

Utworz przyktadowy komentarz jednoliniowy 1 wielowierszowy (blokowy).

Zadanie 2

Utworz zmienne o dowolnej nazwie, ktérym przypiszesz wartosci: 80, 27.5, Kurs Python.

Zadanie 3
Napisz program, ktory wykona sume cen produktow dla konkretnego zamowienia.
Cennik:

e chleb (5,402t / 1 szt.),

e masto (6,50 zt/ 1 szt.),

e pierniki (13,09 / 1kg.),

e sok (4,5/1 litr).

Zamowienie: 2 szt. chleba + 3 szt. masta + 1,5 kg piernikoéw + 1 sok.

51

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

**
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

Zadanie 4
Samochdd na 100 km spala 5,2 1 paliwa. Ile spali paliwa po przejechaniu 479 km? Wykorzystaj

zmienne 1 operatory w jezyku Python w celu obliczenia zadania.

Zadanie 5
Napisz program, ktory prosi uzytkownika o podanie imienia i nastgpnie wypisze na ekran

powitanie po imieniu uzytkownika, np. ,, Witaj Pawel na programowaniu z Pythona”.

Zadanie 6
Napisz program, ktéry obliczy pole trojkata na podstawie danych podanych przez uzytkownika
z konsoli tj.: wysokos¢ (/) 1 dlugos$¢ podstawy tego trojkata (a). Uwzglednij fakt, ze wysokos$¢

1 dtugos$¢ podstawy moga by¢ liczbami niecatkowitymi. Wzor na obliczeni pola

PA = %ah

Zadanie 7
Napisz program obliczajacy $rednig z pigciu liczb podanych przez uzytkownika. Liczby moga

by¢ typu zmiennoprzecinkowego.

Zadanie 8

Napisz interaktywny sklep z trzema produktami:

Chleb — 6.50 zt

Sok —4.00 zt

Paczek — 5.50 zt

Uzytkownik bedzie pytany o ilo$¢ dla kazdej z ww. pozycji asortymentowe;j, ilos§¢ musi by¢
catkowita (inf). Wypisz podsumowanie zakupow, czyli co zostato kupione, ile sztuk i jaka

warto$¢. Wypisz, ile nalezy zaptaci¢ catkowicie za zlozone zamowienie.

Zadanie 9
Napisz program do nauki tabliczki mnozenia. Program ma wylosowa¢ dwie liczby z zakresu

(1-10), po czym ma zapyta¢ uzytkownika, jaki bedzie wynik mnozenia tych liczb. Uzytkownik

52

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

**
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

podaje swdj wynik. Natomiast po podaniu wyniku przez uzytkownika, program wyswietla swoj
wynik. Poki co nie sprawdzamy, czy wynik podany przez uzytkownika jest poprawny.
Np.

lle to jest 3 *7 ?

Odpowiedz uzytkownika: 21

Odpowiedz komputera: 21

Zadanie 10
Napisz program, ktory bedzie obliczal potege. Potega zostanie obliczona na podstawie

pobranych danych od uzytkownika tj. podstawa i wyktadnika (podstawa"” i),

Zadanie 11
Zaprojektuj program, ktoéry wczyta od uzytkownika dowolny tekst. Program za zadanie

wypisac:

e Ile prowadzono znakow,

e Ile jest spacji w wprowadzonym tekscie.

Np.: ,,Programowanie w Pythonie”
Liczba znakow: 24

Liczba spacji: 2

Zadanie 12
Napisz program, ktory 5 razy poprosi o podanie imienia. Podane imiona be¢da zapisywane do
listy. Wypisz dla wszystkich imion z listy ponizszy komunikat:

Czes$¢ <tutaj imig¢ z listy>

Zadanie 13
Napisz program, w ktorym zadeklarujesz dwie listy, ktore beda przechowywaty po 4 dowolne
liczby. Np.:

listal =[1, 3, 2, 5]

lista2 = [4, 5, 1, 8]

53

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

**
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

Program powinien wyswietli¢ sum¢ wszystkich liczb z obu list (29).

Zadanie 14
Napisz program, w ktérym uzytkownik podaje 7 dowolnych liczb catkowitych 1 dodaje je do
listy. Program ma za zadanie:

o wyswietli¢ wszystkie liczby,

e policzy¢ sume wszystkich liczb

e policzy¢ srednig

e odwroci¢ kolejnos¢ elementow w liscie.

Zadanie 15
Napisz program, ktéry 5 razy poprosi uzytkownika o wprowadzenie dowolnych liczb
catkowitych. Program za zadanie zliczy¢, ile wprowadzono liczb unikatowych. Pomocne moga

okazac si¢ zbiory.

Zadanie 16
Wykorzystujac poznane typy sekwencyjne zaprojektuj kod dla ponizszej funkcjonalnosci:
Utworz zmienne z wartosciami:

e zmiennal = "jeden”

e zmienna2 = "pi¢c”

e zmienna3= "siedem”

Oblicz sume¢ ww. zmiennych. Suma zmiennych, to: 13. W rozwigzaniu problemu pomocne

mogg okazac¢ sie stowniki.

Zadanie 17
Zaprojektuj program, ktéra dowolng liczbe 4-cyfrowg zamieni na
interpretacje stowna np.:

e 9112 # dziewig¢ jeden jeden dwa

e 5842 # pie¢ osiem cztery dwa

54

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

**
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska
W rozwigzaniu problemu pomocne mogg okaza¢ si¢ stowniki.

Zadanie 18
Napisz program do nauki tabliczki mnozenia. Program ma wylosowa¢ dwie liczby z zakresu
(1-10), po czym ma zapyta¢ uzytkownika, jaki bedzie wynik mnozenia tych liczb. Uzytkownik
podaje swdj wynik. Natomiast po podaniu wyniku przez uzytkownika, program wyswietla swoj
wynik. Program ma réwniez sprawdzi¢, czy wynik podany przez uzytkownika jest poprawny.
Np.

lle to jest 3 *7?

Odpowiedz uzytkownika: 23

Odpowiedz komputera: 21

Uzytkowniku poddates bledny wynik!

Zadanie 19
Napisz program, ktdry sprawdza, czy wprowadzona liczba jest liczba parzysta, czy nieparzysta.

Wykorzystaj instrukcje modulo, czyli reszte z dzielenia %.

Zadanie 20
Utworz 2 zmienne, przypisujac im dowolne - rozne wartosci liczbowe. Napisz program, ktory
wskaze najwicksza warto$¢. Rozszerz program dodajac dodatkowa zmienng (trzecia) i przypisz

jej dowolng wartos¢ r6zng od powyzszych, nastepnie wskaze najwicksza wartosc.

Zadanie 21
Utworz 3 zmienne i przypisz im dowolne wartosci liczbowe np.: a = 10 b =2 ¢ = 9. Wypisz

warto$ci zmiennych od najwiekszej do najmniejszej w konsoli.

Zadanie 22
Napisz program, ktory oblicza warto§¢ wspotczynnika BMI wg wzoru (waga / wzrost**2).
Wzrost podawany jest w metrach. Jezeli wynik jest w przedziale (18.5 — 24.9) to wypisuje

w konsoli ,, waga prawidlowa”, jezeli ponizej to ,,niedowaga”, jezeli powyzej to ,,nadwaga”.

55

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

**
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

* gk

Zadanie 23
Napisz program, ktory sposrod liczb 1-100 wyswietli tylko te, ktore sg podzielne przez 6.

Zadanie 24
Napisz program, ktory pobiera od uzytkownika np. 10 liczb i oblicza sumg tylko tych liczb,

ktore sg nieparzyste.

Zadanie 25
Utworz liste¢ 1 dodaj do niej w petli 8 imion. Nastgpnie, wypisz imiona z listy zgodnie z

ponizszym wzorem: Witaj <imig¢ z listy>.

Zadanie 26

Napisz wlasny mechanizm obliczania potegi (bez uzycia operatora potggowania **).
Uzytkownik podaje podstawe 1 wyktadnik potegi. W celu napisania powyzszego mechanizmu
wykorzystaj petle. Warto jeszcze przypomniec, ze wszystko co jest podniesione do potegi O jest

réwne 1, a wyktadnikiem potegi sg liczby wigksze badZ rowne 0.

Zadanie 27
Napisz program, ktory oblicza silnie. Uzytkownik podaje dowolng liczbe catkowita dodatnig,

a program zwraca warto$¢ silni z podanej liczby. Np. 5! =1 *2 * 3 * 4 * 5=120.

Zadanie 28

Napisz gre: komputer losuje liczbe z przedziatu 1 — 100. Uzytkownik ma za zadanie odgadnac,
co to za liczba poprzez podawanie kolejnych warto$ci. Jezeli podana liczba jest: wigksza od
wylosowanej - wy$swietlany jest komunikat ,,podates za duzg liczb¢”, mniejsza od wylosowanej
— wys$wietlony jest komunikat ,,podates za matg liczb¢”, ROwna wylosowanej — wyswietlony

jest komunikat ,,Gratulacje” 1 gra zostaje zakonczona.

56

SAMORZAD
WOJEWODZTWA

- . m
Fundusze Europejskie Dofinansowane przez Ll
WIELKOPOLSKIEGO

dla Wielkopolski Unie Europejska

* ok

Rozwiazania zadan

Zadanie 1

przyktad uzycia instrukcji print
print ("Witaj Swiecie!™)

wuan

Programowanie

W

Pytonie

Jjest

fajne"""

print ("Do pracy ...")

Zadanie 2
wiek = 80
cenaCukierkow = 27.5

kurs programowania = "Kurs Python."

Zadanie 3

cenaChleba = 5.40
cenaMasla = 6.50
cenaPierniki = 13.09

cenaSok = 4.5

zamowienie = 2*cenaChleba + 3*cenaMasla + 1.5*cenaPierniki + 1l*cenaSok
print (f"Zaméwienie: 2 szt. chleba + 3 szt. masta + 1,5 kg piernikdéw + 1 sok

ma wartoscé¢: {zamowienie} zi")

Zadanie 4

ile na 100 = 5.2

droga = 479

spalanie = (droga/100)*ile na 100

print (f"Po przejechaniu {droga} km samochdd spali {spalanie} litrdéw

paliwa.")
Zadanie 5
imie = input ("Podaj imie: ")

print (f"Witaj {imie} na programowaniu z Pythona.")

57

Fundusze Europejskie Dofinansowane przez P SAMORZAD
. . . . * * WOJEWODZTWA
dla Wielkopolski Unie Europejska .yt WIELKOPOLSKIEGO
Zadanie 6

print ("Program oblicza pole trdjkatal!")
h = float (input ("Podaj wyskos¢é trdjkata: "))
a = float (input ("Podaj diugos$¢ podstawy trdjkata: "))

pole = 0.5*a*h
print (f"Pole trdjkata o wykosci {h} 1 diugoséci podstawy {a} wynosi: {pole}
")

Zadanie 7

print ("Program oblicza $rednia z pieciu zadeklarownych liczb.")
11 =1
12 =2
13 = 3.
14 = 4
15 5

. . .
[o o o o

suma = 11 + 12 + 13 + 14 + 15
srednia = suma/5.0

print(f"érednia z liczb: {11}, {12}, {13}, {14}, {15}, to: {srednial")

Zadanie 8

print ("Sklep")

chleb = 6.50

sok = 4.00

paczek = 5.50

ile chlebow = int (input ("Ile sztuk chleba chcesz zaméwic? "))

ile sokow = int (input("Ile sztuk sokéw chcesz zamdbwicé? "))

ile paczkow = int (input("Ile paczkdéw chcesz zamdbwic? "))
wartosc_chleb = ile chlebow * chleb

wartosc_sok = ile sokow * sok

wartosc_paczkow = ile paczkow * paczek

print ("")

print (f"Zaméwites {ile chlebow} chlebdéw o wartosci: {wartosc chleb}")
print (f"Zaméwites {ile sokow} sokdw o wartosci: {wartosc sok}")

print (f"Zaméwites$ {ile paczkow} paczkdéw o wartosci: {wartosc paczkow}")
zamownienie = wartosc chleb + wartosc sok + wartosc_paczkow

print (f"Catkowita wartos$¢ zamdwienia, to: {zamownienie}")

58

Fundusze Europejskie Dofinansowane przez P SAMORZAD
. . . . * * WOJEWODZTWA
dla Wielkopolski Unie Europejska .yt WIELKOPOLSKIEGO
Zadanie 9

import random #biblioteka do liczb pseudolosowych

ll=random.randint (1,10) #losowanie liczby catkowitej z zakresu <1,10>
l12=random.randint (1,10)

wynik=11*12

liczba u=input (f"Ile to jest {11} * {12} 2")

print (f"Odpowiedz uzytkownika: {liczba u}l")
print (f"OdpowiedZz komputera: {wynik}")

Zadanie 10

print ("Potegowanie liczb.")
pod=float (input ("Podaj podstawe: "))
wyk=float (input ("Podaj wyktadnik: "))

wy=pod**wyk
print (f"Wynik wynosi: {wy}.")

Zadanie 11

tekst = input ("Wprowadz tekst: ")

ile znakow = len(tekst) #len () sprawdza diugosSc¢ napisu

ile spacji = tekst.count(" ") #tekst.count (" ") zlicza liczbe wystapien

spacji w napisie tekst
print (f"Liczba znakéw: {ile znakow}")

print (f"Liczba spacji: {ile spacji}")

Zadanie 12

lista=[] #przyktad bez petli

print ("Dodawanie do listy imion!")
lista.append (input ("Podaj 1 imie: "))
lista.append (input ("Podaj imie: "))

imie: "))

2
lista.append (input ("Podaj 3 imie: "))
lista.append (input ("Podaj 4

5

lista.append (input ("Podaj imie:"))
print ("Lista imion: ")

print (lista)

59

SAMORZAD
WOJEWODZTWA

- . m
Fundusze Europejskie Dofinansowane przez Ll
WIELKOPOLSKIEGO

dla Wielkopolski Unie Europejska

* oy x

print ("")

print (f"Czes$¢ {listal[0]}")
print (f"Czes$¢ {listall]l}l")
print (f"Czes$¢ {listal2]}")
print (f"Czes$¢ {listal[3]1}")
print (f"Czes$¢ {listal4]}")

Zadanie 13

#Program sumuje wszystkie liczby z obu list, wersja bez petli.
[1, 3, 2, 5]

lista2 = [4, 5, 1, 8]

listal

suma =
listal[0]+1listal[l]+1listal[2]+1listal[3]+1lista2[0]+1lista2[1l]+1lista2[2]+1lista
21[3]

print (f"Suma liczb to {suma}")

Zadanie 14
#Wersja programu z petla
lista=/[]
suma = 0
for i in range(1,8):
lista.append (int (input (f"Podaj {i} liczbe: ")))

suma = suma + i

print ()
print ("Elementy listy: ")
print (lista)

print ()
srednia=suma/len (lista)
print (f"Suma liczb to {suma}")

print (f"Srednia liczb to {srednia}")

print ()
print ("Elementy listy w odwrotnej kolejnosci: ™)
for i in range(6, -1, -1):

print (listal[i], end=", ")

60

ieki i S SAMORZAD
Fundt{sze EUFORejSkIe Dofman§owane przez o WOIEWADITWA
dla Wielkopolski Unie Europejska .yt WIELKOPOLSKIEGO
Zadanie 15

#Zbiory z zatozenia przechowuja unikatowe dane
#Wersja bez petli

zbior = set ()

zbior.add (int (input ("Podaj liczbe: ")))
zbior.add (int (input ("Podaj liczbe: ")))
zbior.add (int (input ("Podaj liczbe: ")))
zbior.add (int (input ("Podaj liczbe: ")))
zbior.add (int (input ("Podaj liczbe: ")))

ile = len(zbior) #ilos¢ elementéw zbioru = liczba unikatowych liczb

print (f"Unikatowych liczb jest {ile}")

Zadanie 16

zmiennal = "jeden"
zmienna2 = "pied"
zmienna3 = "siedem"

slownik={"jeden":1, "piec¢":5, "siedem":7}

suma=slownik[zmiennal] + slownik[zmienna2] + slownik[zmienna3]

print (£"Suma liczb: {suma} ")

Zadanie 17
SlOan_k = {"l":"jeden", "2":"dwa", "3":"trzy", "4":"C2tery", "5":"pieé",
"6":"Szeéé", "7":"Siedem", "8":"osiem", "9":"dziewieé"}

liczba = input ("Podaj liczbe 4 cyforowg :")

print (f"{slownik[liczba[0]]} {slownik[liczbal[l]l]l} {slownik[liczbal2]1]}
{slownik[liczba[3]]1}")

Zadanie 18

import random # biblioteka do generowania liczb pseudolosowych

ll=random.randint (1,10) # losowanie liczby z zakresu <1, 10>
12=random.randint (1, 10)

wynik=11*12

liczba g=int (input (f"Ile to jest {11} * {12} 2"))

61

Fundusze Europejskie Dofinansowane przez P SAMORZAD
. . . . * * WOJEWODZTWA
dla Wielkopolski Unie Europejska .yt WIELKOPOLSKIEGO

print (f"Odpowiedz uzytkownika: {liczba g}")
print (f"OdpowiedZz komputera: {wynik}")

if wynik == liczba g:
print ("Uzytkowniku podates$ prawidiowy wynik!")
else:

print ("Uzytkowniku podate$ biedny wynik!")

Zadanie 19
liczba = int (input ("Wprowadz liczbe: "))
if liczba % 2 == 0:

print ("Wprowadzona liczba jest parzysta!")
else:

print ("Wprowadzona liczba jest nieparzystal!")

Zadanie 20
wersja 2 zmienne
zml = 5.0
zm2 = 2.0
print (f"Warto$é¢ zml = {zml}, a zm2 = {zm2}")
if zml > zm2:
print (f"Zmienna pierwsza ma wiekszg wartos$é: {zml}!"™)
else:

print (f"Zmienna druga ma wieksza wartos$é: {zm2}!")

wersja 3 zmienne (zalozZenie zmienne sa rdéznel)
z1 = 2.0
z2 = 3.0
z3 = 10.0
print (f"Wartos$¢ zl = {zl}, z2 = {z2}, z3 = {z3}")
if z1 > z2:
if z1 > z3:
print ("Zmienna z1l najwiekszal!")
else:
print ("Zmienna z3 najwiekszal!")
elif z2 > z3:
print ("Zmienna z2 jest najwiekszal!")
else:

print ("Zmienna z3 jest najwieksza!")

62

Fundusze Europejskie Dofinansowane przez ks x* ':
dla Wielkopolski Unie Europejska . s*
Zadanie 21
#wersja bez wbudwanych funkcji
a = 10
b =2
c =9
if a > b and a >c:
print(a, end=" ")
if b > c:
print (b, c)
else:
print (c, b)
elif b > ¢ and b > c:
print (b, end=" ")
if a > c:
print(a, c)
else:
print(c, a)
elif ¢ > a and ¢ > b:
print (c, end=" ")
if a > b:
print (a, b)
else:
print (b, a)
Zadanie 22
waga = float (input ("Podaj swoja wage [kgl: "))
wzrost = float (input ("Podaj swd6j wzrost [m]: "))

bmi = waga/ (wzrost**2)
print (f"Twoje BMI: {bmi}")

print ()

if bmi >= 18.5 and bmi <=24.9:
print ("Waga prawidiowa!")
elif bmi <18.5:

print ("Niedowaga!")

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

63

* X x

Fundusze Europejskie Dofinansowane przez
dla Wielkopolski Unie Europejska

* ok

else:

print ("Nadwaga!")

Zadanie 23

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

print ("Program wys$wietla liczby podzielne przez 6 z zakresu od <1,100>. ")

for i in range (1,101):
if i%6 ==

print (i, end=", ")

Zadanie 24
suma = 0
for i in range(l, 11):

liczba = int (input (f"Podaj {i} liczbe: "))

if liczba % 2 == 1:
suma = suma + liczba

print (£"Suma liczb nieparzystych, to: {suma}")

Zadanie 25
imiona = []
for i in range (8):

imiona.append (input ("Podaj imie: "))

print ()

for 1 in imiona:

print (f"witaj {i}t."™)

Zadanie 26
podstawa = int (input ("Podaj podstawe: "))
wykladnik = int (input ("Podaj wykitadnik: "))

potega = 1

if wykladnik >= 0:
for i in range(wykladnik):
potega=potega*podstawa
print (f" {podstawa}”"{wykladnik}={potegal}l")

64

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

**
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

else:

print ("Nieprawidlowa wartos$é¢ wyktadnika!")

Zadanie 27
liczba = int (input ("Podaj z Jjakiej liczby chcesz obliczyé¢ silnie: "))
silnia =1

if liczba >= 0:
for i in range(l,liczba+l):
silnia=silnia*i
print (f"{liczba}! = {silnia}")
else:

print ("Wyznaczenie silni dotyczy liczb dodatnich oraz zera.")

Zadanie 28

import random

los = random.randint (1,100)

while True:

liczba = int (input ("Podaj wylosowana liczbe: "))

if liczba > 1los:

print ("Podate$ za duza liczbe.")
elif liczba < los:

print ("Podates$ za mata liczbe.")
elif liczba == los:

print ("Gratulacje!")

break

Analiza danych i uczenie maszynowe

Co to jest analiza danych i uczenie maszynowe?

Analiza danych to proces przeksztalcania surowych danych w informacje, wiedze
1 wnioski, ktore moga wspiera¢ podejmowanie decyzji. W praktyce nie polega ona wylacznie
na obliczeniach, ale na zrozumieniu danych, ich jakosci, struktury oraz zaleznosci, jakie migdzy
nimi wystepuja. W rzeczywistych projektach dane rzadko sa idealne. Zazwyczaj sa:

niekompletne, zawieraja bledy, pochodza z r6znych zrodet, zapisane w réznych formatach.

65

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

**
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

Dlatego analiza danych obejmuje kilka kluczowych etapow:
1. Pozyskiwanie danych (pliki CSV, Excel, bazy danych, API),
Czyszczenie danych (braki, duplikaty, btedy),

2
3. Eksploracj¢ danych (szukanie zaleznos$ci i wzorcow),
4. Wizualizacje danych,

5

Formutowanie wnioskéw i rekomendacji.

Przyktady analizy danych w praktyce:
e analiza sprzedazy w firmie (ktére produkty sprzedaja si¢ najlepiej),
e analiza danych klientéw (kto odchodzi, kto kupuje czgsciej),
e analiza wynikéw egzamin6éw lub ankiet,
e analiza ruchu na stronie internetowej,

¢ analiza danych finansowych.

Uczenie maszynowe (Machine Learning) jest naturalnym i logicznym rozszerzeniem
analizy danych, w ktorym celem nie jest juz jedynie opisanie i zrozumienie danych
historycznych, lecz budowa modeli zdolnych do generalizacji wiedzy i podejmowania decyz;ji
na podstawie nowych, wcze$niej niewidzianych danych. Modele uczenia maszynowego uczg
si¢ zaleznos$ci wystepujacych w danych na podstawie przyktadow, a nastepnie wykorzystuja
zdobyta wiedz¢ do przewidywania przysztych wartosci, klasyfikowania obiektow,
identyfikowania wzorcOw oraz wykrywania nietypowych obserwacji.

W przeciwienstwie do klasycznego programowania, w ktorym logika dziatania systemu
jest definiowana recznie w postaci sztywnych regut i instrukcji, w uczeniu maszynowym reguty
te powstajg automatycznie w procesie uczenia. Oznacza to, ze zamiast opisywac krok po kroku,
jak program ma podejmowaé decyzje, dostarczamy mu dane wejsciowe oraz oczekiwane
rezultaty, a algorytm samodzielnie wyznacza relacje pomigdzy zmiennymi. Takie podejscie
pozwala tworzy¢ rozwigzania, ktére sg elastyczne, odporne na zmienno$¢ danych i1 zdolne do
adaptacji w dynamicznych §rodowiskach.

Model uczenia maszynowego stanowi matematyczny opis zalezno$ci wystepujacych
w danych, zapisany w postaci parametrow, wag lub struktur decyzyjnych. Jako$¢ tego modelu

zalezy nie tylko od zastosowanego algorytmu, lecz w duzej mierze od jakosci danych, sposobu

66

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

* %
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

ich przygotowania oraz poprawnej oceny wynikow. W praktyce oznacza to, ze skuteczne
uczenie maszynowe wymaga potaczenia wiedzy z zakresu programowania, statystyki oraz
analizy danych, a sam proces budowy modelu jest iteracyjny 1 wymaga testowania roznych
podejsc.

Istotnym aspektem uczenia maszynowego jest roOwniez umiej¢tno$¢ oceny, na ile
wyuczony model radzi sobie z nowymi danymi. Modele, ktére zbyt doktadnie dopasowuja si¢
do danych treningowych, moga traci¢ zdolno$¢ generalizacji, natomiast zbyt proste modele nie
sg w stanie uchwycic¢ istotnych zaleznosci. Dlatego w praktycznych zastosowaniach uczenia
maszynowego réwnie wazne jak samo trenowanie modelu jest jego walidowanie, interpretacja
wynikow oraz $wiadome wykorzystanie w rzeczywistych systemach analitycznych
1 decyzyjnych. Dlatego proces uczenia maszynowego obejmuje kilka kluczowych etapow:

1. Zdefiniowanie problemu 1 celu modelu (co chcemy przewidywac lub klasyfikowac),

2. Przygotowanie danych do modelowania (selekcja cech, kodowanie zmiennych,
skalowanie),
Podziat danych na zbiory treningowe 1 testowe,
Dobdr i1 trenowanie modelu uczenia maszynowego,

Ocena jako$ci modelu oraz jego optymalizacja,

S

Wykorzystanie modelu do predykcji i podejmowania decyzji.

Przyktady zastosowan uczenia maszynowego w praktyce:
e przewidywanie cen nieruchomosci lub produktow,
e prognozowanie sprzedazy i popytu,
o klasyfikacja klientow (np. lojalny / zagrozony odej$ciem),
e wykrywanie naduzy¢ i anomalii w danych,

o systemy rekomendacyjne i personalizacja tresci.

Podzial technik uczenia maszynowego

Mozna wyrézni¢ wiele technik uczenia maszynowego oraz uczenia giebokiego, ktore
roznig si¢ zakresem zastosowan, stopniem ztozonos$ci oraz wymaganiami obliczeniowymi. Ze
wzgledu na ograniczenia czasowe szkolenia, w ramach niniejszego kursu omowione zostang
jedynie wybrane techniki, najczesciej wykorzystywane w praktycznych projektach analizy

danych i uczenia maszynowego. Podczas zaje¢ uczestnicy krok po kroku poznaja pelny proces

67

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

* %
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

pracy z danymi — od wczytania i przygotowania danych, przez ich analiz¢ i wizualizacj¢
w postaci licznych wykreséw, az po budowe, oceng i interpretacj¢ wynikdw modeli uczenia
maszynowego. Szczegdlny nacisk zostanie potozony na zrozumienie calego przeptywu pracy,
tak aby prezentowane rozwigzania mogty by¢ tatwo przenoszone na inne zbiory danych,
modyfikowane poprzez zmian¢ modelu lub jego parametrow oraz dostosowywane do wtasnych
potrzeb 1 probleméw analitycznych. Ponizej dokonamy podziglu technik uczenia

maszynowego.

1. Uczenie nadzorowane (Supervised Learning)

Uczenie nadzorowane jest najczeSciej stosowang i najbardziej intuicyjng technika
uczenia maszynowego, szczegolnie w projektach biznesowych 1 analitycznych. Jego istotg jest
uczenie modelu na danych, ktore zawierajg zar6wno zmienne wejsciowe, jak 1 znang poprawng
odpowiedz, nazywana zmienng docelowg lub etykieta. Model otrzymuje wigc przyktady typu:
,takie dane — taki wynik” i1 na ich podstawie uczy si¢ zaleznosci, ktore nastgpnie moze
wykorzysta¢ do przewidywania wynikéw dla nowych danych.

Proces uczenia polega na stopniowym dopasowywaniu parametrow modelu w taki
sposob, aby minimalizowa¢ btad pomie¢dzy przewidywaniami modelu a rzeczywistymi
warto$ciami. Kluczowa cechg uczenia nadzorowanego jest mozliwo$¢ obiektywnej oceny
jakosci modelu, poniewaz dla danych testowych znamy poprawne odpowiedzi i mozemy
sprawdzi¢, jak dobrze model generalizuje wiedzg.

Uczenie nadzorowane dzieli si¢ na dwa gléwne typy problemoéw: regresje oraz
klasyfikacje. W regresji model przewiduje wartosci liczbowe, natomiast w klasyfikacji
przypisuje obiekty do okreslonych klas. Technika ta jest szczegolnie dobrze dopasowana do
sytuacji, w ktorych dysponujemy duzg liczbg historycznych danych oraz jasno zdefiniowanym
celem predykc;ji.

Przyktady problemow rozwigzywanych za pomoca uczenia nadzorowanego:
e przewidywanie cen mieszkan na podstawie ich cech,

e prognozowanie sprzedazy w kolejnych miesigcach,

o klasyfikacja klientow jako lojalnych lub zagrozonych odejsciem,

e wykrywanie spamu w wiadomos$ciach e-mail,

e ocena ryzyka kredytowego klienta.

68

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

* %
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

2. Uczenie nienadzorowane (Unsupervised Learning)

Uczenie nienadzorowane jest technika, w ktorej model pracuje na danych
pozbawionych etykiet, czyli takich, dla ktorych nie znamy poprawnych odpowiedzi. Celem nie
jest tutaj przewidywanie konkretnej wartosci, lecz odkrywanie struktury, wzorcow
1 zalezno$ci ukrytych w danych. Model samodzielnie analizuje dane i probuje znalez¢ w nich
naturalne grupy, podobienstwa lub nietypowe obserwacje.

Technika ta jest szczegodlnie uzyteczna na etapie eksploracji danych, gdy nie mamy
jeszcze jasno okreslonego celu predykcyjnego lub gdy chcemy lepiej zrozumie¢ charakter
analizowanego zbioru danych. Uczenie nienadzorowane cz¢sto stanowi punkt wyjscia do
dalszych analiz lub do budowy modeli nadzorowanych, np. poprzez segmentacj¢ danych.
Jednym z najwigkszych wyzwan uczenia nienadzorowanego jest interpretacja wynikow,
poniewaz brak etykiet uniemozliwia klasyczng ocene jakosci modelu. Wymaga to wigkszego
zaangazowania analityka oraz dobrej znajomosci kontekstu biznesowego lub problemowego.

Przyktady problemoéw rozwigzywanych za pomocg uczenia nienadzorowanego:

e segmentacja klientow na podstawie ich zachowan zakupowych,
e grupowanie produktow o podobnych cechach,

e wykrywanie anomalii i nietypowych transakcji,

o analiza zachowan uzytkownikdéw na stronie internetowe;j,

e redukcja wymiarowosci 1 wizualizacja ztozonych danych.

3. Uczenie przez wzmacnianie (Reinforcement Learning)

Uczenie przez wzmacnianie jest technika, ktdra znaczaco rézni si¢ od pozostatych
podejs¢. W tym przypadku model, nazywany agentem, uczy si¢ poprzez interakcje ze
srodowiskiem, podejmujac kolejne decyzje i obserwujagc ich konsekwencje. Zamiast zbioru
danych wejsciowych z etykietami, agent otrzymuje sygnat zwrotny w postaci nagrody lub kary,
na podstawie ktorego modyfikuje swoje zachowanie. Celem uczenia przez wzmacnianie jest
znalezienie takiej strategii dziatania, ktéra maksymalizuje sume¢ nagrod w dlugim okresie.
Proces uczenia jest iteracyjny i czesto wymaga wielu prob oraz symulacji, co sprawia, ze
technika ta jest bardziej ztozona obliczeniowo i koncepcyjnie niz uczenie nadzorowane

1 nienadzorowane.

69

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

**
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

Uczenie przez wzmacnianie znajduje zastosowanie gtownie tam, gdzie decyzje sa
sekwencyjne, a ich skutki ujawniajg si¢ w czasie. Cho¢ rzadziej spotykane w klasycznych
kursach analizy danych, stanowi wazny element nowoczesnej sztucznej inteligencji.

Przyktady probleméw rozwigzywanych za pomocg uczenia przez wzmacnianie:

e systemy sterowania i robotyka,

o gry komputerowe i planszowe,

e optymalizacja tras i harmonogramow,

e systemy rekomendacyjne uczace si¢ na biezacych interakcjach,

e zarzadzanie zasobami i procesami w czasie rzeczywistym.

4. Uczenie polnadzorowane (Semi-supervised Learning)
Uczenie pdinadzorowane taczy elementy uczenia nadzorowanego i nienadzorowanego.
W tym podejsciu tylko cze$¢ danych posiada etykiety, a pozostata czgs$¢ jest nieoznaczona.
Technika ta jest szczeg6lnie przydatna w sytuacjach, gdy pozyskanie etykiet jest kosztowne,
czasochtonne lub wymaga wiedzy eksperckiej. Model wykorzystuje niewielkg liczbe
oznaczonych przykitadow, aby nauczy¢ si¢ podstawowych zalezno$ci, a nastepnie wspomaga
si¢ duza iloscig danych nieoznaczonych w celu poprawy jakosci predykcji. Takie podejscie
czgsto pozwala uzyskac lepsze wyniki niz klasyczne uczenie nadzorowane przy ograniczonej
liczbie etykiet.
Przyktady problemoéw rozwigzywanych za pomocg uczenia pétnadzorowanego:
e analiza danych medycznych,
o Kklasyfikacja dokumentow i tekstow,
e rozpoznawanie obrazow,
o systemy rekomendacyjne oparte na ograniczonej liczbie ocen,

e przetwarzanie danych pochodzacych z Internetu.

Kazda z technik uczenia maszynowego odpowiada innemu typowi problemoéw i1 innemu
charakterowi danych. W praktyce analitycznej kluczowe jest nie tylko poznanie algorytmow,
lecz przede wszystkim umiejetno$¢ doboru wilasciwej techniki do konkretnego problemu.
W ramach kursu uczestnicy poznaja te podejscia w praktyce, uczac sig¢, jak $wiadomie

wykorzystywac je w analizie danych i projektach uczenia maszynowego.

70

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

* %
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

Biblioteki i narz¢dzia w Pythonie

Praktyczna analiza danych 1 uczenie maszynowe w Pythonie opierajg si¢ na
wykorzystaniu sprawdzonych narzedzi oraz bibliotek, ktére wspieraja kazdy etap pracy
z danymi — od ich wczytania, przez przygotowanie i analizg, az po budowe oraz ocen¢ modeli
uczenia maszynowego. Wspolczesne projekty analityczne rzadko polegaja na pisaniu
rozwigzan od podstaw. Zamiast tego korzysta si¢ z rozbudowanego ekosystemu bibliotek, ktore
znaczaco przyspieszaja pracg, zwigkszaja czytelnos¢ kodu oraz pozwalajg skupi¢ si¢ na
rozwigzywaniu probleméw, a nie na implementacji niskopoziomowych mechanizméow.

W ramach niniejszego kursu gléwnym srodowiskiem pracy bedzie Google Colab,
a podstawowymi formatami danych beda pliki CSV oraz Excel (XLSX). Takie podejscie
odzwierciedla realia pracy analityka danych oraz specjalisty uczenia maszynowego, gdzie dane
bardzo czgsto pochodza z plikéw eksportowanych z systemow biznesowych, baz danych lub

narzedzi raportowych.

v' Srodowisko pracy: Google Colab

Google Colab to srodowisko analityczne dziatajace w przegladarce internetowej, oparte
na technologii Jupyter Notebook. Umozliwia ono pisanie i uruchamianie kodu Pythona bez
koniecznosci instalowania oprogramowania na komputerze lokalnym. Jest to szczegdlnie
istotne w kontek$cie szkolen praktycznych, poniewaz eliminuje problemy zwigzane
z konfiguracja §rodowiska oraz r6znicami systemowymi pomi¢dzy uczestnikami.

Colab oferuje gotowe srodowisko z zainstalowanym Pythonem oraz najwazniejszymi
bibliotekami do analizy danych 1 uczenia maszynowego. Notebooki pozwalaja na
wykonywanie kodu krok po kroku, obserwowanie wynikow posrednich, tworzenie wykresow
oraz dokumentowanie analizy za pomocg komentarzy tekstowych. Taki sposob pracy sprzyja
nauce, eksperymentowaniu oraz lepszemu zrozumieniu przetwarzanych danych i dzialania
modeli.

W praktyce Google Colab petni rolg interaktywnego laboratorium, w ktérym mozliwe
jest szybkie testowanie réznych rozwigzan, modyfikowanie kodu oraz natychmiastowa

obserwacja efektow w postaci tabel, wykresow 1 wynikow predykcji.

71

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

* %
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

v" Format danych: CSV i Excel

Podstawowym zrodtem danych w kursie beda pliki w formatach CSV oraz XLSX. Sa
to jedne z najczesciej spotykanych formatéw danych w analizie danych, wykorzystywane
zarowno w srodowiskach biznesowych, jak 1 naukowych. Pliki CSV charakteryzujg si¢ prosta
strukturg 1 duza uniwersalnos$cig, natomiast pliki Excel sa powszechnie uzywane do
raportowania, zestawien oraz r¢gcznej obrobki danych.

W kontekscie analizy danych kluczowe jest umiejetne wczytywanie tych plikow do
srodowiska Python oraz ich dalsze przetwarzanie. Dane zapisane w plikach czesto zawieraja
braki, niespojnosci, rézne typy danych lub nadmiarowe informacje, ktore wymagaja

oczyszczenia i odpowiedniego przygotowania przed dalsza analizg i modelowaniem.

v" Pandas — fundament pracy z danymi
Podstawowa biblioteka wykorzystywana do pracy z danymi tabelarycznymi jest
Pandas. Umozliwia ona wczytywanie danych z plikow CSV i Excel, ich przechowywanie
w strukturach danych takich jak DataFrame oraz wykonywanie operacji analitycznych
1 transformacji danych.
Pandas pozwala m.in. na:
o selekcje i filtrowanie danych,
e obstuge brakujacych wartosci,
e sortowanie i grupowanie danych,
e laczenie danych z r6znych zrédet,
e tworzenie nowych cech na podstawie istniejacych danych.
W praktycznych projektach analizy danych to wtasnie Pandas zajmuje najwigkszg cze$¢
pracy analityka. Odpowiednie przygotowanie danych w tej bibliotece ma bezposredni wplyw

na jakos$¢ dalszych analiz oraz skuteczno$¢ modeli uczenia maszynowego.

v" NumPy — obliczenia numeryczne
NumPy jest bibliotekg wspierajaca obliczenia numeryczne oraz operacje na
wielowymiarowych tablicach danych. Cho¢ czgsto dziata ,,w tle” i1 nie jest bezposrednio
widoczna dla uzytkownika, stanowi fundament wielu innych bibliotek analitycznych i uczenia

maszynowego.

72

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

* %
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

W kontekscie kursu NumPy bedzie wykorzystywana do operacji matematycznych,
pracy z macierzami oraz efektywnego przetwarzania danych liczbowych. Jej znaczenie ro$nie

wraz z wielkoscig zbiorow danych oraz ztozonoscig obliczen.

v Wizualizacja danych: Matplotlib i Seaborn

Wizualizacja danych jest nieodlacznym elementem analizy danych oraz uczenia
maszynowego. Pozwala ona lepiej zrozumie¢ struktur¢ danych, rozktady zmiennych,
zaleznosci pomiedzy cechami oraz jako$¢ dziatania modeli.

Do tworzenia wykresow wykorzystywane beda biblioteki Matplotlib oraz Seaborn.
Matplotlib zapewnia pelng kontrole nad wygladem wykresow, natomiast Seaborn upraszcza
tworzenie estetycznych i czytelnych wizualizacji statystycznych. W trakcie kursu wykresy beda
wykorzystywane zar6wno na etapie eksploracji danych, jak i do interpretacji wynikow modeli

uczenia maszynowego.

v’ Scikit-learn — uczenie maszynowe w praktyce
Kluczowa biblioteka kursu w obszarze uczenia maszynowego jest scikit-learn. Jest to

biblioteka zaprojektowana z mys$la o praktycznym zastosowaniu algorytmow uczenia
maszynowego, oferujaca spdjny 1 intuicyjny interfejs do trenowania, testowania oraz oceny
modeli. Scikit-learn umozliwia:

e budowe modeli regresji i klasyfikacji,

o realizacj¢ algorytmow uczenia nienadzorowanego,

e przygotowanie danych do modelowania (skalowanie, kodowanie),

e podziat danych na zbiory treningowe i testowe,

e ocen¢ jakos$ci modeli za pomocg réznych metryk,

e tworzenie pipeline’oéw taczacych przetwarzanie danych i modelowanie.

Biblioteka ta doskonale nadaje si¢ do nauki uczenia maszynowego, poniewaz pozwala
skupi¢ si¢ na logice problemu i interpretacji wynikow, a nie na implementacji algorytméw od
podstaw. Jednocze$nie rozwigzania oparte na scikit-learn sg powszechnie stosowane w
projektach komercyjnych i analitycznych.

Podczas kursu uczestnicy bedg stopniowo przechodzi¢ przez pelny proces analizy

danych 1 uczenia maszynowego, wykorzystujagc opisane narzedzia w sposob spojny

73

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

* %
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

1 praktyczny. Praca bedzie odbywac si¢ na rzeczywistych zbiorach danych, a kazdy etap — od
wczytania plikow CSV 1 Excel, przez analize 1 wizualizacj¢, az po budowe i ocen¢ modeli —
bedzie realizowany w Google Colab z uzyciem bibliotek Pythona. Prezentowane rozwigzania
beda mialy charakter uniwersalny, tak aby mogly by¢ tatwo przenoszone na inne dane,
modyfikowane poprzez zmian¢ modelu lub parametrow oraz dostosowywane do wiasnych

potrzeb analitycznych.

Ogolny algorytm analizy danych i uczenia maszynowego

Krok 1. Przygotowanie Srodowiska i instalacja bibliotek

Pierwszym etapem jest przygotowanie Srodowiska pracy tak, aby kazdy uczestnik miat
mozliwos$¢ uruchomienia tego samego kodu 1 uzyskania porownywalnych wynikow. W kursach
praktycznych bardzo wygodnym rozwigzaniem jest Google Colab, poniewaz eliminuje
problemy instalacyjne i pozwala od razu przej$¢ do pracy z danymi. Nalezy upewni¢ sig, ze
podstawowe biblioteki sa dostgpne, a w razie potrzeby doinstalowac je w notebooku. Warto od
razu ustali¢ standard pracy: jedna komdrka na importy, jedna na ustawienia (np. losowos¢),
a nastgpnie logiczne sekcje notebooka. Dobra praktyka jest tez zapisywanie wersji bibliotek
(np. w komentarzu), aby w przysztosci tatwiej byto odtworzy¢ wyniki. Jesli projekt ma
charakter zespotowy, warto juz na starcie zadba¢ o czytelne nazewnictwo plikéw, folderéw

1 notebookow.

Krok 2. Zdefiniowanie celu analizy i problemu ML

Zanim wczytasz dane, musisz jasno okresli¢, co jest celem projektu. W analizie danych
celem moze by¢ znalezienie zaleznosci, odpowiedz na pytanie biznesowe lub wyciagniecie
wnioskow z danych historycznych. W uczeniu maszynowym celem jest zwykle predykcja
(regresja) albo klasyfikacja (np. 0/1), ewentualnie grupowanie (clustering) lub wykrywanie
anomalii. Na tym etapie warto nazwa¢ zmienng docelowa, opisa¢ co oznacza ,,dobry wynik”
oraz jakie btedy sg kosztowne (np. falszywie negatywne w medycynie). Ten krok wptywa na
dobor metryk, algorytmu oraz sposobu przygotowania danych. Dobrze tez wskaza¢, jakiego
typu dane spodziewasz si¢ zobaczy¢ (liczbowe, kategoryczne, daty) i jakie moga wystepowac

ograniczenia (np. brak etykiet, mata liczba obserwacji).

74

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

* %
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

Krok 3. Pozyskanie danych i wezytanie do Pythona (CSV/XLSX)

Kolejnym etapem jest pozyskanie danych i wczytanie ich do srodowiska analitycznego,
najczesciej do obiektu DataFrame w Pandas. W praktyce kursowej bardzo czgsto pracuje si¢ na
plikach CSV 1 Excel, wigc kluczowe jest poprawne ustawienie separatorow, kodowania oraz
interpretacji typow danych. Juz na tym etapie trzeba zwroci¢ uwage, czy nagtéwki kolumn sa
poprawne, czy nie ma ,,pustych” kolumn, oraz czy dane nie zostaty Zzle wczytane jako tekst
zamiast liczb. Warto tez sprawdzi¢ rozmiar zbioru danych, liczbe kolumn oraz pierwsze
rekordy, aby upewni¢ si¢, ze struktura jest zgodna z oczekiwaniami. Dobrg praktyka jest
natychmiastowe zapisanie krotkiej informacji o zrédle danych oraz krotkiego opisu, co zawiera

zbior.

Krok 4. Szybki przeglad danych (sanity check)

Zanim rozpoczniesz jakiekolwiek przeksztalcenia, wykonuje si¢ tzw. sanity check, czyli
podstawowg kontrole jako$ci danych. Obejmuje to sprawdzenie typow danych, brakéw danych,
duplikatow, nietypowych wartosci oraz podstawowych statystyk opisowych. Ten krok bardzo
czgsto pozwala wykry¢ problemy na wczesnym etapie, np. kolumny z warto$ciami ,,0”, ktore
w rzeczywistosci oznaczaja brak pomiaru, albo bledne jednostki. W praktyce, im szybciej
wykryjesz problem z danymi, tym mniej czasu stracisz pdzniej na ,,naprawianie’” modelu, ktory
tak naprawd¢ uczy si¢ na btednych danych. To takze etap, na ktérym warto zidentyfikowac
potencjalng zmienng docelowa oraz wstepnie oceni¢, czy klasy sa zbalansowane

(w klasyfikacji).

Krok 5. Czyszczenie danych i przygotowanie jakoSciowe

Czyszczenie danych to etap, w ktérym usuwamy lub korygujemy elementy, ktore
moglyby zaburzy¢ analiz¢ i modelowanie. Typowe dziatania to uzupetnianie lub usuwanie
brakoéw danych, usuwanie duplikatow, poprawa typdéw danych (np. zamiana tekstu na liczby),
standaryzacja nazw kategorii oraz obsluga wartosci odstajacych. Bardzo wazne jest, aby
decyzje o czyszczeniu byly uzasadnione, a nie przypadkowe, poniewaz kazda taka decyzja
wplywa na wynik modelu. W projektach szkoleniowych warto dopisywaé komentarze:
dlaczego dana kolumna jest usuwana, dlaczego braki sg uzupetliane mediang albo czemu
wartosci ,,0” zamieniono na NaN. Ten krok jest czgsto najdluzszy w catym procesie, ale ma

najwickszy wptyw na jako$¢ koncowego rozwigzania.

75

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

* %
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

Krok 6. Eksploracyjna analiza danych (EDA)

EDA (ang. Exploratory Data Analysis) to etap, w ktérym staramy si¢ zrozumie¢ dane:
jak wygladaja rozklady zmiennych, jakie sg zalezno$ci miedzy cechami, oraz co rézni
poszczegbdlne grupy obserwacji. W praktyce wykonuje si¢ zaréwno analize liczbowa
(statystyki, korelacje), jak 1 wizualng (histogramy, boxploty, wykresy zaleznosci). W EDA
czesto wykrywa si¢ problemy, ktore wezesniej nie byty widoczne, np. silng sko$nos¢ rozktadu,
nielogiczne wartosci albo kolumny silnie skorelowane. Dla projektow ML EDA jest tez
momentem, w ktorym mozna wstgpnie oceni¢, ktore cechy prawdopodobnie beda
informatywne, a ktore moga wnosi¢ szum. Na koncu EDA warto sformutowac¢ kilka wnioskow,

ktore beda prowadzi¢ do decyzji o preprocessingu i modelowaniu.

Krok 7. Przygotowanie danych do modelowania (feature engineering +
preprocessing)

Gdy dane s3 juz zrozumiane i oczyszczone, przechodzi si¢ do przygotowania ich
w formie ,zjadliwej” dla algorytmu. Obejmuje to wybor cech, kodowanie zmiennych
kategorycznych (np. one-hot encoding), skalowanie cech liczbowych oraz ewentualne
transformacje (np. logarytmowanie). W tym kroku mozna tez tworzy¢ nowe cechy, np. réznice,
ilorazy, agregaty czy flagi logiczne, jesli ma to sens w konteks$cie problemu. Wazne jest, aby
preprocessing byt wykonywany w sposdb powtarzalny, najlepiej poprzez pipeline, aby podczas
predykcji na nowych danych wykona¢ dokladnie te same kroki. W praktyce ML jest to
fundament poprawnego wdrozenia modelu — bez spdjnego preprocessingu model czgsto ,,dziata

tylko w notebooku”.

Krok 8. Podzial danych na zbiory treningowe i testowe

Zanim zaczniemy trenowa¢ model, dane nalezy podzieli¢ na zbior treningowy i testowy.
Zbior treningowy stuzy do uczenia modelu, a testowy do sprawdzenia, jak model radzi sobie
na danych, ktorych nie widzial wczesniej. Taki podziat jest niezbedny do oceny generalizacji
1 ograniczenia ryzyka ,,0szukania si¢”, ze model dziata dobrze, gdy w rzeczywistosci jedynie
zapamigtat dane treningowe. W zaleznosci od problemu stosuje si¢ tez walidacj¢ krzyzowa,
szczegoOlnie gdy zbior danych jest maty. W klasyfikacji czgsto dba si¢ o zachowanie proporcji

klas w podziale (stratyfikacja), aby wyniki byty wiarygodne.

76

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

* %
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

Krok 9. Wybor modelu bazowego i trening pierwszej wersji

Nastepnie buduje si¢ pierwszy, prosty model bazowy, ktory stanowi punkt odniesienia.
W praktyce cz¢sto zaczyna si¢ od modeli interpretowalnych, takich jak regresja logistyczna lub
proste drzewa, aby zrozumie¢ problem 1 uzyskac pierwsze wyniki. Na tym etapie kluczowe jest
poprawne dopasowanie modelu do rodzaju problemu (regresja vs klasyfikacja) i uzycie
wlasciwych danych wej$ciowych. Pierwszy model nie musi by¢ najlepszy — jego celem jest
sprawdzenie, czy pipeline dziata oraz uzyskanie wstepnej oceny trudnosci problemu. To
rowniez moment, w ktorym ujawniaja si¢ typowe problemy, np. niezbalansowane klasy lub

zbyt duza liczba cech w stosunku do liczby obserwac;ji.

Krok 10. Ewaluacja modelu i dobor metryk

Ocena modelu powinna by¢ dopasowana do problemu. Dla klasyfikacji czgsto liczy si¢
nie tylko accuracy, ale rowniez precision, recall, Fl1-score oraz macierz pomytek, bo rdézne
btedy moga mie¢ rozny koszt. Dla regresji stosuje si¢ m.in. MAE, MSE, RMSE lub R?
a interpretacja zalezy od jednostek 1 skali danych. Wazne jest, aby na podstawie metryk
odpowiedzie¢ na pytanie: czy model jest wystarczajaco dobry dla celu projektu i co doktadnie
oznacza ,,dobry”. W projektach szkoleniowych warto uczy¢ kursantéw interpretacji: np. wysoki
accuracy przy niezbalansowanych klasach moze by¢ ztudny, bo model moze ,,zgadywac¢” klasg
dominujaca. Ewaluacja to rowniez etap, w ktorym analizuje si¢ btedy: na jakich przypadkach

model si¢ myli i dlaczego.

Krok 11. Poprawa modelu: tuning, inne algorytmy, balans klas

Po uzyskaniu wynikow modelu bazowego przechodzi si¢ do ulepszania rozwigzania.
Moze to oznacza¢ dobdr lepszego algorytmu, dostrojenie hiperparametréw, zmiang
preprocessingu, usuniecie nieistotnych cech lub dodanie nowych. W klasyfikacji czestym
problemem jest niezbalansowanie klas, wigc stosuje si¢ metody takie jak wagi klas,
undersampling/oversampling lub techniki pokroju SMOTE. W tym kroku kluczowe jest
zachowanie metodologii: kazda zmian¢ nalezy oceni¢ w porownywalny sposob na danych
testowych lub w walidacji, aby nie dopasowac si¢ przypadkowo do jednego podziatu danych.
To etap, ktory uczy najbardziej praktycznego myslenia: poprawa modelu to zwykle seria

kontrolowanych eksperymentow.

77

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

* %
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

Krok 12. Interpretacja wynikow i wnioski

Dobry projekt ML nie konczy si¢ na liczbie w metryce. Trzeba jeszcze zinterpretowac,
co wynik oznacza i czy model jest uzyteczny w kontekscie problemu. W praktyce analizuje si¢
rowniez znaczenie cech, wplyw preprocessingu oraz stabilno$¢ wynikéw. Jesli model ma
wspiera¢ decyzje, warto jasno opisaé, jakie decyzje moga zosta¢ podjete na podstawie jego
predykcji 1 jakie ryzyka si¢ z tym wigza. To tez moment na wskazanie ograniczen: np. mata
liczba danych, brak istotnych zmiennych, mozliwe bledy pomiarowe. Wnioski powinny by¢

sformutowane tak, aby osoba nietechniczna mogta zrozumie¢, co model robi i jak dobrze dziata.

Krok 13. Zapis modelu i przygotowanie do uzycia na nowych danych

W praktyce model powinien by¢ zapisany do pliku (najczesciej binarnego), aby nie
trenowa¢ go od nowa i mdéc wykorzysta¢ go na nowych danych. Dobrg praktyka jest
zapisywanie nie tylko samego modelu, ale calego pipeline’u (preprocessing + model), aby
zapewni¢ spdjnos¢ dziatania w przysztosci. Na tym etapie warto tez przygotowac przyktadowa
funkcje ,,predict”, ktora pokazuje, jak wczyta¢ model i wykona¢ predykcje dla nowego rekordu
danych. To jest bardzo wazny element dydaktyczny, bo pokazuje, ze ML to nie tylko trening,

ale rowniez praktyczne wykorzystanie modelu.

W przedstawionych trzynastu krokach zaprezentowana zostata kompletna procedura
tworzenia modelu uczenia maszynowego — od pracy z surowymi danymi, poprzez analizg
1 przygotowanie danych, az do budowy, oceny oraz wykorzystania modelu. Nalezy podkresli¢,
ze kazdy problem analityczny jest inny i w praktyce sposob postepowania moze si¢ rdéznié
w zaleznos$ci od charakteru danych, celu analizy oraz dostepnych zasobow. Niemniej jednak,
niezaleznie od specyfiki projektu, proces analizy danych i1 uczenia maszynowego zazwyczaj
przebiega w przyblizeniu wedlug zaprezentowanego schematu, ktory stanowi uniwersalny
i sprawdzony punkt odniesienia w pracy analityka danych oraz specjalisty uczenia

maszynowego.

Dobor technik uczenia maszynowego do rodzaju problemu i danych

Jednym z kluczowych etapdéw pracy z uczeniem maszynowym jest $wiadomy dobor
techniki modelowania, ktéry wynika nie z mody na konkretny algorytm, lecz z charakteru

problemu, struktury danych oraz celu analizy. W praktyce analityk danych bardzo rzadko

78

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

**
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

zaczyna prac¢ od pytania ,,jaki algorytm jest najlepszy”, a znacznie cze¢$ciej od pytania ,,jakie
sa moje dane i czego tak naprawdg¢ od nich oczekuje”.

W niniejszym rozdziale przedstawiono najwazniejsze techniki uczenia maszynowego
W sposob opisowy i kontekstowy, tak aby uczestnik szkolenia mégt zrozumieé nie tylko jak

dany algorytm dziata, ale przede wszystkim, kiedy i dlaczego warto go zastosowac.

v" Regresja liniowa

Regresja liniowa jest jednym z najstarszych i najprostszych modeli statystycznych,
a jednocze$nie stanowi punkt odniesienia dla niemal wszystkich problemdéw regresyjnych. Jej
istota polega na modelowaniu zalezno$ci pomi¢dzy zmienng docelowa, a zestawem cech
wejsciowych w postaci liniowej kombinacji tych cech. Model prébuje znalez¢ takie
wspodlczynniki, aby mozliwie najlepiej opisa¢ trend wystepujacy w danych.

W praktyce regresja liniowa bardzo rzadko jest modelem koncowym, ale petni
niezwykle istotng rol¢ poznawczg. Pozwala szybko sprawdzi¢, czy w danych istnieje
jakakolwiek zalezno$¢ pomiedzy cechami a zmienng docelowa, a takze umozliwia interpretacje
wplywu poszczegolnych cech na wynik. Dzieki temu analityk moze zrozumie¢ kierunek i site
zalezno$ci, zanim przejdzie do bardziej ztozonych technik.

Regresja liniowa najlepiej sprawdza si¢ w sytuacjach, gdy dane sa wzglednie czyste,
relacje pomiedzy zmiennymi sg w przyblizeniu liniowe, a celem projektu jest nie tylko
predykcja, lecz réwniez wyjasnienie zjawiska. W projektach biznesowych bywa czgsto
wykorzystywana jako model wyjasniajacy, nawet jesli jego skuteczno$¢ predykcyjna jest nizsza

niz w przypadku modeli zespotowych.

v" Ridge, Lasso i ElasticNet
W rzeczywistych zbiorach danych bardzo czgsto spotyka si¢ sytuacje¢, w ktorej liczba
cech jest duza, a pomigdzy nimi wystepuja silne zaleznosci. W takich przypadkach klasyczna
regresja liniowa staje si¢ niestabilna, a wyuczone wspotczynniki moga mie¢ nieintuicyjne
wartosci. Wlasnie w tym miejscu pojawiajg si¢ techniki regularyzacji, takie jak Ridge, Lasso
oraz ElasticNet. Modele te zachowuja ide¢ regresji liniowej, ale wprowadzaja dodatkowe
ograniczenie, ktore ,.karze” zbyt duze warto$ci wspotczynnikdw. W praktyce oznacza to, ze

model staje si¢ bardziej odporny na szum, lepiej generalizuje oraz jest mniej podatny na

79

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

**
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

przeuczenie. Szczegdlnie istotna jest regresja Lasso, ktéra ma zdolno$¢ do zerowania
wspotczynnikdw, co prowadzi do automatycznej selekcji cech.

Techniki regularyzacji sa czgsto stosowane w problemach, gdzie dane s3
wysokowymiarowe, liczba obserwacji jest ograniczona, a interpretowalno$¢ nadal ma
znaczenie. Stanowig one naturalny krok po regresji liniowej w projektach, ktore wymagaja

wigkszej stabilno$ci modelu.

v" Regresja logistyczna

Regresja logistyczna, mimo swojej nazwy, jest jedna z najwazniejszych technik
klasyfikacji, szczegdlnie binarnej. Jej celem nie jest bezposrednie przypisanie klasy, lecz
oszacowanie prawdopodobienstwa przynalezno$ci do danej klasy. Dzigki temu model ten
bardzo dobrze wpisuje si¢ w projekty decyzyjne, w ktéorych wazne jest nie tylko ,,co”, ale
réwniez ,,z jaka pewnos$cia”. W praktyce regresja logistyczna jest niezwykle popularna
w projektach biznesowych, finansowych i1 medycznych, poniewaz zapewnia kompromis
pomiedzy skuteczno$cig a interpretowalnoscig. Wspotczynniki modelu mozna analizowaé
podobnie jak w regresji liniowej, co pozwala zrozumie¢, ktore cechy zwiekszajg lub
zmniejszaja prawdopodobienstwo wystapienia danego zdarzenia.

Regresja logistyczna bardzo czgsto peini role modelu referencyjnego, do ktoérego
poréwnuje si¢ bardziej ztozone algorytmy. Nawet je§li zostaje pozniej zastgpiona przez

Random Forest, czy boosting, jej wyniki stanowig wazny punkt odniesienia.

v Naive Bayes

Modele Naive Bayes opierajg si¢ na probabilistycznym podejsciu do klasyfikacji
1 zaktadajg niezalezno$¢ cech wzglgdem siebie. Cho¢ zatozenie to rzadko jest spelnione
w rzeczywistych danych, w praktyce modele te potrafia dziata¢ zaskakujaco dobrze,
szczegblnie w analizie tekstu i1 danych wysokowymiarowych. Technika ta jest czgsto
pierwszym wyborem w problemach takich jak klasyfikacja dokumentow, filtrowanie spamu
czy analiza opinii. Jego sitg jest szybko$¢ dziatania oraz zdolno$¢ do pracy na bardzo duzej
liczbie cech, gdzie inne algorytmy miatyby trudnosci obliczeniowe.

W projektach szkoleniowych Naive Bayes jest doskonatym przykladem algorytmu,
ktory pokazuje, ze prosty model oparty na silnych zatozeniach moze by¢ bardzo skuteczny, jesli

jest dobrze dopasowany do problemu.

80

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

**
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

v k-Nearest Neighbors

Algorytm k-najblizszych sgsiadow opiera si¢ na intuicyjnej idei podobienstwa
obserwacji. Zamiast budowa¢ jawny model, algorytm przechowuje dane treningowe
1 podejmuje decyzje na podstawie tego, jakie etykiety maja najbardziej podobne obserwacje.
Technika k-NN bardzo dobrze pokazuje, jak wazne w uczeniu maszynowym jest
przygotowanie danych, w szczegolnosci skalowanie cech. Bez odpowiedniego preprocessingu
algorytm ten traci sens, poniewaz odlegto$ci pomiedzy obserwacjami przestajg by¢ miarodajne.

W praktyce k-NN stosowany jest gtéwnie do problemow o niewielkiej lub §redniej skali,
czesto w celach edukacyjnych lub eksploracyjnych, gdzie jego prostota i intuicyjno$¢ sa duza
zaleta.

v" Support Vector Machines

SVM to technika, ktéra koncentruje si¢ na wyznaczeniu granicy decyzyjnej
o maksymalnym marginesiec pomig¢dzy klasami. W swojej istocie jest to algorytm
geometryczny, ktory bardzo dobrze radzi sobie w przestrzeniach wysokowymiarowych. Dzieki
zastosowaniu funkcji jadra SVM potrafi modelowaé zlozone, nieliniowe zaleznosci bez
jawnego zwigkszania liczby cech. W praktyce algorytm ten bywa stosowany w problemach,
gdzie dane sg trudne do separacji, a jako$¢ klasyfikacji jest kluczowa.

Jednoczesnie SVM wymaga duzej uwagi przy doborze parametrow 1 jest mniej
skalowalny niz modele zespotowe, co sprawia, ze w bardzo duzych projektach bywa

zastgpowany innymi technikami.

v' Drzewa decyzyjne

Drzewa decyzyjne budujg model w postaci sekwencji logicznych regut. Kazdy wezet
drzewa odpowiada decyzji opartej na wartosci jednej z cech, a §ciezka od korzenia do liscia
reprezentuje pelny proces decyzyjny. Ich najwigksza warto$cig jest interpretowalno$¢ — model
mozna przedstawi¢ w formie logicznych regul zrozumiatych nawet dla oso6b nietechnicznych.
Z tego powodu drzewa decyzyjne sg czesto wykorzystywane w projektach, gdzie
transparentno$¢ modelu jest rownie wazna jak jego skuteczno$¢. W praktyce pojedyncze
drzewo rzadko jest modelem koncowym, poniewaz tatwo ulega przeuczeniu. Stanowi jednak

fundament dla potezniejszych technik zespotowych.

81

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

* %
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

v" Random Forest

Random Forest jest jedng z najczesciej stosowanych technik uczenia maszynowego
w pracy z danymi tablicowymi. Laczy wiele drzew decyzyjnych w jeden model, ktérego
predykcja jest wynikiem agregacji decyzji poszczegolnych drzew. W praktyce Random Forest
jest czesto pierwszym ,,powaznym’ modelem, po ktdry siega analityk. Dziala dobrze bez
skomplikowanego preprocessingu, radzi sobie z nieliniowo$ciami, a jednocze$nie jest

stosunkowo odporny na szum i overfitting.

v Extra Trees — losowos¢ jako sposéb na generalizacje
Extra Trees sa rozwinigciem idei Random Forest, w ktorym proces budowy drzew jest
jeszcze bardziej losowy. Dzigki temu model uczy si¢ bardziej zréznicowanych regut, co czgsto
prowadzi do lepszej generalizacji kosztem interpretowalnosci. W praktyce Extra Trees sg
szczegoOlnie uzyteczne w problemach z duza liczba cech oraz w sytuacjach, gdy dane sa

zaszumione.

v Boosting

Boosting to rodzina technik, w ktorych modele budowane sa sekwencyjnie, a kazdy
kolejny skupia si¢ na poprawianiu bledéw poprzedniego. Algorytmy takie jak Gradient
Boosting, XGBoost czy LightGBM nalezg do najskuteczniejszych technik w pracy z danymi
tablicowymi. W praktyce boosting jest cz¢sto wybierany w projektach, gdzie maksymalna
skuteczno$¢ predykcji ma kluczowe znaczenie, a ztozono$¢ modelu jest akceptowalna. Sg to
algorytmy wymagajace do$wiadczenia, ale oferujace bardzo duza kontrol¢ nad procesem
uczenia.

Dobor techniki uczenia maszynowego nie jest decyzja jednorazows, lecz procesem
iteracyjnym, w ktorym analityk stopniowo dopasowuje model do danych i celu projektu.
Rozdziat ten ma stanowi¢ mape¢ myslenia, do ktorej uczestnik kursu bedzie wracat przy kazdym
nowym problemie analitycznym. Pewnego rodzaju podsumowaniem powyzszego opisu jest
Rys. 38., ktory przedstawia wybor techniki uczenia maszynowego w zaleznosci od problemu
i skutecznosci techniki. Z kolei rysunek Rys. 39. obrazuje ogdlny podziat technik uczenia
maszynowego ze wzgledu na kategorig, Rys. 40. dokonuje podziatu ML ze wzgledu na problem

1 dane, do ktorych ma zosta¢ wykorzystany.

82

dla Wielkopolski

Fundusze Europejskie Dofinansowane przez il ‘

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

Unie Europejska

WYBOR TECHNIKI UCZENIA MASZYNOWEGO

Jaki masz problem?

Zmienna docelowa numeryczna Zmienna docelowa kategoryczna

/

Regresja Liniowa
Ridge / Lasso

Drzewa Regressyjne

Random Forest

Gradient Boosting

Rys. 38.

Kategoria

Regresja

Klasyfikacja liniowa

Klasyfikacja nieliniowa

Modele drzewiaste

Modele zespotowe (bagging)

Modele zespotowe (boosting)

Metody probabilistyczne

Modele oparte na sgsiedztwie

Redukcja wymiarowosci

Klasteryzacja

Anomalie

il

Proste Dane ZloZzone Dane Duza Liczba Cech

Regresja Logistyczna SVM (RBF) Gradient Extra Trees

Boosting
% -
AdaBoost

Wybér technik uczenia maszynowego

Zrédto: Opracowanie wlasne

Techniki

Regresja liniowa, Ridge, Lasso, ElasticNet
Regresja logistyczna, Linear SVM

SVM (RBF), k-NN

Drzewa decyzyjne

Random Forest, Extra Trees

AdaBoost, Gradient Boosting, XGBoost, LightGBM
Naive Bayes

k-NN

PCA

k-means, DBSCAN, Hierarchical Clustering

Isolation Forest, One-Class SVM

Rys. 39. Ogoélny podziat technik uczenia maszynowego

Zrédto: Opracowanie wlasne

83

SAMORZAD

Fundt{sze Europgjskie Dofinan§owane przez :*) ': | O N WA

dla Wielkopolski Unie Europejska A WIELKOPOLSKIEGO
Problem Dane Rekomendowane techniki
Regresja, mate dane liniowe Linear / Ridge / Lasso
Regresja, nieliniowa Srednie/duze Random Forest, XGBoost
Klasyfikacja binarna interpretacja Logistic Regression
Klasyfikacja ztozona nieliniowa RF, Extra Trees
Maks. skutecznosc tablicowe XGBoost, LightGBM
Tekst sparse Naive Bayes, SVM
Segmentacja brak etykiet k-means, DBSCAN
Anomalie rzadkie zdarzenia Isolation Forest

Rys. 40. Podzial technik uczenia maszynowego ze wzgledu na problem (dane).

Zrédto: Opracowanie wlasne

Nalezy pamigta¢, ze nie istnieje jeden najlepszy algorytm. Istnieje algorytm najlepie;j
dopasowany do danych 1 celu. W praktyce zaczynamy od prostych modeli, nastepnie

analizujemy btedy, zwigkszamy ztozono$¢ 1 poréwnujemy wyniki.

Pozyskiwanie danych do analizy danych i uczenia maszynowego

Kazdy projekt analizy danych i uczenia maszynowego rozpoczyna si¢ od danych. Bez
danych nie ma ani analizy, ani modeli, ani wnioskow. W praktyce bardzo czgsto to pozyskanie
odpowiednich danych stanowi najwigksze wyzwanie, a nie sam wybor algorytmu, czy
implementacja modelu. Dane moga pochodzi¢ z wielu zrodet, mie¢ r6zng jakos¢, format
i poziom kompletnosci, a ich charakter w duzej mierze determinuje dalsze etapy pracy
analitycznej. Warto podkresli¢, ze w rzeczywistych projektach bardzo rzadko spotyka si¢
»gotowe” zbiory danych, ktére mozna bezposrednio wykorzysta¢ w modelu. Dlatego juz na
etapie nauki nalezy oswajac si¢ z danymi surowymi. Dane do analizy i uczenia maszynowego

moga pochodzi¢ zaréwno z otwartych repozytoridw, jak i z systemoéw biznesowych, baz

84

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

**
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

danych, API czy plikdw raportowych. Bardzo dobrym zZrdédlem danych na start jest portal
Kaggle: https://www kaggle.com/

v Portal Kaggle
Kaggle jest jednym z najpopularniejszych zrodet danych w spolecznosci data science
1 uczenia maszynowego. Platforma ta udostgpnia ogromng liczbe zbioréw danych z rdznych
dziedzin, takich jak finanse, medycyna, marketing, sport, edukacja czy nauki spoteczne. Dane
dostgpne na Kaggle sa czesto dobrze opisane, zawieraja dokumentacj¢ oraz przyktadowe
notebooki, co czyni je idealnym materiatem do nauki. W praktyce Kaggle jest doskonalym
miejscem do:
e nauki pracy z danymi tablicowymi (CSV, Excel),
e ¢wiczenia technik czyszczenia danych,
e testowania roznych modeli ML na tym samym problemie,
e budowania projektow do portfolio.
Warto jednak pamigtac, ze dane z Kaggle bywaja czesciowo ,,przygotowane”, dlatego

nie zawsze w petni oddajg problemy spotykane w projektach komercyjnych.

v Repozytoria danych akademickich i publicznych
Wiele instytucji naukowych oraz organizacji publicznych udostepnia dane w ramach
otwartych inicjatyw. Zbiory te czesto majg wysoki poziom wiarygodnosci 1 sg wykorzystywane
w badaniach naukowych.
Do najczesciej spotykanych zrodet naleza:
e dane statystyczne publikowane przez urzedy panstwowe,
e zbiory danych demograficznych i ekonomicznych,
e dane $rodowiskowe, klimatyczne i geograficzne,
o dane edukacyjne i spoteczne.
Tego typu dane doskonale nadajg si¢ do projektéw analizy danych, raportowania oraz
budowy modeli predykcyjnych opartych na danych rzeczywistych. Ich dodatkowa zaleta jest
mozliwo$¢ taczenia wielu zrodet w jeden zbiodr, co pozwala ¢wiczy¢ bardziej zaawansowane

scenariusze analityczne.

85

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

**
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

v Dane z plikéw: CSV i Excel
Jednym z najczestszych zrodet danych w praktyce analitycznej sg pliki w formatach
CSV oraz Excel. Dane takie pochodza zazwyczaj z systemOw biznesowych, narze¢dzi
raportowych, eksportdw z baz danych lub recznie przygotowanych zestawien.
Praca z plikami CSV i Excel jest szczeg6lnie istotna, poniewaz:
e s3to formaty powszechnie stosowane w firmach,
e dane czesto zawierajg btedy, braki i niespojnosci,
e wymagajg interpretacji struktury i znaczenia kolumn.
W projektach szkoleniowych pliki te idealnie nadaja si¢ do nauki wczytywania danych,
eksploracji, czyszczenia oraz przygotowania do modelowania. Uczestnicy uczg si¢ rOwniez, ze

sama obecnos$¢ danych w pliku nie oznacza jeszcze, ze dane sg gotowe do analizy.

v Dane z baz danych
W rzeczywistych projektach bardzo czesto dane nie sg przechowywane w plikach, lecz
w bazach danych. Mogga to by¢ relacyjne bazy danych (np. systemy transakcyjne) lub hurtownie
danych. Cho¢ na kursach podstawowych nie zawsze pracuje si¢ bezposrednio z bazami, warto
uswiadamia¢ uczestnikow, ze w praktyce analityk bardzo czg¢sto pobiera dane za pomoca
zapytan.
Dane z baz danych:
e s3 zwykle duze i znormalizowane,
e wymagaja agregacji i Iaczenia wielu tabel,
e czesto zawierajg dane historyczne.
Umiejetnos¢ pracy z danymi pochodzacymi z baz jest niezwykle cenna 1 stanowi

naturalne rozszerzenie kompetencji analitycznych.

v Dane pobierane przez API
Coraz wiecej danych udostepnianych jest za posrednictwem interfejsow API. Pozwala
to na automatyczne pobieranie aktualnych danych, np. pogodowych, finansowych,
spoteczno$ciowych czy logistycznych. Dane z API:
e czesto sg w formacie JSON,
e wymagaja przetwarzania do postaci tabelaryczne;,

e pozwalajg tworzy¢ dynamiczne projekty ML.

86

SAMORZAD
WOJEWODZTWA
WIELKOPOLSKIEGO

* %
* 4 %

Fundusze Europejskie Dofinansowane przez S
dla Wielkopolski Unie Europejska

W kontekscie uczenia maszynowego API umozliwiajg prac¢ z danymi zmieniajgcymi

si¢ w czasie oraz symulowanie scenariuszy zblizonych do produkcyjnych.

v" Dane generowane sztucznie (syntetyczne)
W projektach edukacyjnych i testowych czesto wykorzystuje si¢ dane syntetyczne,
generowane programowo. Pozwalajg one:
e kontrolowa¢ strukture danych,
o symulowac¢ okreslone zaleznosci,
o testowa¢ zachowanie algorytméow.
Dane syntetyczne sg szczegdlnie przydatne do nauki dziatania algorytmoéw oraz do
demonstracji probleméw takich jak overfitting, niezbalansowane klasy czy wpltyw szumu na

model.

v Dane wlasne i dane z rzeczywistych projektéw
Najlepszym materiatem do nauki sg cz¢sto dane wiasne lub dane pochodzace z realnych
problemow. Moga to by¢:
e dane sprzedazowe,
e dane ankietowe,
e dane pomiarowe,
e dane operacyjne.
Praca z takimi danymi uczy nie tylko technik analizy i ML, ale réwniez rozumienia

kontekstu biznesowego oraz interpretacji wynikow w praktyce.

Pozyskiwanie danych jest pierwszym 1 jednym z najwazniejszych etapow analizy
danych oraz uczenia maszynowego. Zrodto danych, ich jako§¢ oraz sposob pozyskania maja
bezposredni wptyw na dalsze etapy pracy — od analizy eksploracyjnej, przez przygotowanie
danych, az po skuteczno$¢ modeli. W ramach kursu uczestnicy beda pracowac gtownie na
danych pochodzacych z plikow CSV 1 Excel oraz z publicznych repozytoridw, uczac si¢
jednoczes$nie, jak samodzielnie wyszukiwa¢ 1 ocenia¢ dane do wilasnych projektow

analitycznych i uczenia maszynowego.

87

SAMORZAD
WOJEWODZTWA

. . . *
Fundusze Europejskie Dofinansowane przez Ll
WIELKOPOLSKIEGO

dla Wielkopolski Unie Europejska

* oy x

Przyklad analizy danych — studium przypadku krok po kroku

Analiza danych (EDA — Exploratory Data Analysis) to pierwszy i1 najwazniejszy etap
pracy z danymi. Zanim zbudujemy model uczenia maszynowego, musimy zrozumiec¢, co jest
w zbiorze: jakie mamy kolumny, jakie sg wartosci, czy sg braki danych, czy dane sa poprawnie
wczytane, oraz jak wyglada zmienna docelowa (czyli to, co chcemy przewidywac). W praktyce
EDA odpowiada na pytania: ,,czy dane sq dobre?”, , czy sq bledy?”, ,,co wyroznia osoby
z klasq 1 od klasy 0?”.

W tym studium przypadku analizujemy dane BRFSS 2015 zwigzane ze zdrowiem oraz
cukrzyca — dane pochodza ze wspominanego wczesniej portalu Kaggle. Zmienna
Diabetes_binary opisuje, czy dana osoba ma cukrzyce (1) czy nie (0). W analizie wykonamy:
wczytanie danych, podstawowa kontrole jakosci (braki, duplikaty), statystyki (Srednie,
mediany, odchylenia), rozktady cech (histogramy), poréwnania cech mig¢dzy klasami
(np. cukrzyca vs brak), wykresy dla zmiennych binarnych (np. czy kto$§ pali), wizualizacj¢
korelacji oraz prostg sekcje wnioskéw. To bedzie wzorzec, jak robi si¢ analize¢ danych

w Pythonie krok po kroku.

#

0) IMPORTY I USTAWIENIA (zawsze na poczatku notebooka)

#

import pandas as pd # biblioteka do pracy z tabelami (DataFrame)

import numpy as np # biblioteka do obliczen matematycznych

import matplotlib.pyplot as plt # biblioteka do tworzenia wykresow

import seaborn as sns # biblioteka do tadniejszych wykresédw statystycznych

from pathlib import Path # wygodna praca ze $ciezkami plikéw

pd.set option("display.max columns", 200) # pokazuj duzo kolumn w tabelach
pd.set option("display.width", 140) # ustaw szerokos$¢ wyswietlania tabel

sns.set theme (style="whitegrid") # ustaw przyjemny styl wykresoéow

RANDOM STATE = 42 # state ziarno losowosci (dla powtarzalnosci)

SAMPLE N = 8000 # prébka do ciezszych wykresdw (zeby nie liczy¢ na 250k

wierszy)

88

Fundusze Europejskie Dofinansowane przez :* * *: w{;g\I;I%ADDZTWA
dla Wielkopolski Unie Europejska . WIELKOPOLSKIEGO
#
1) WCZYTANIE DANYCH
#

FILE PATH = Path("diabetes binary health indicators BRFSS2015 (3) (1)
(1) .csv") # nazwa pliku danych

df = pd.read csv(FILE PATH) # wczytaj plik CSV do DataFrame

print ("Wymiary danych (wiersze, kolumny):", df.shape) # pokaz rozmiar
danych

df.head (10) # pokaz pierwsze 10 wierszy (szybki podglad)

#
2) SPRAWDZENIE STRUKTURY DANYCH (typy, kolumny, podstawy)

#

print ("\nNazwy kolumn:\n", list(df.columns)) # wypisz nazwy kolumn
df.info() # pokaz typy danych i liczbe niepustych wartos$ci w kolumnach

df.describe() .T # pokaz podstawowe statystyki liczbowe (transponowane)

#
3) BRAKI DANYCH I DUPLIKATY (kontrola jakosci)

#

missing count = df.isna().sum() # policz braki danych w kazdej kolumnie
missing percent = (missing count / len(df)) * 100 +# policz procent brakédw

w kazdej kolumnie

missing summary = pd.DataFrame({ # zbuduj tabele podsumowania brakéw
"missing count": missing count, # liczba brakdw
"missing percent": missing percent # procent brakoéw

}) .sort values("missing count", ascending=False) # posortuj od najwieckszej

liczby brakéow

print ("\nBraki danych (top 10 kolumn) :") # opis

&9

Fundusze Europejskie Dofinansowane przez :* * *: w{;g&Zg\DDZTWA
dla Wielkopolski Unie Europejska . WIELKOPOLSKIEGO
display (missing summary.head(10)) # pokaz 10 kolumn z najwieksza liczba
brakéow
duplicates n = df.duplicated() .sum() # policz liczbe zduplikowanych
wierszy
print ("\nLiczba duplikatéw wierszy:", duplicates n) # wydwietl wynik

Uwaga: w EDA zwykle nie usuwamy nic od razu, tylko najpierw rozumiemy

dane. # komentarz dydaktyczny

#
4) ZMIENNA DOCELOWA (co chcemy analizowaé¢ / przewidywad)

#

target col = "Diabetes binary" # nazwa zmiennej docelowej (0 = brak, 1 =
cukrzyca)
target counts = df[target col].value counts(dropna=False) # policz liczbe

przypadkédw w klasach
target percent = df[target col].value counts (normalize=True) * 100 #

policz procent klas

print ("\nRozklad klas (licznoéci):\n", target counts) # pokaz licznosci
print ("\nRozktad klas (procent):\n", target percent.round(2)) # pokaz
procenty

plt.figure(figsize=(6, 4)) # ustaw rozmiar wykresu

sns.countplot (data=df, x=target col) # wykres licznosci klas

plt.title("Rozktad klasy docelowej: cukrzyca (1) vs brak (0)") # tytul
plt.xlabel ("Diabetes binary") # podpis osi X

plt.ylabel ("Liczba obserwacji") # podpis osi Y

plt.show() # pokaz wykres

#

5) PODZIAYX KOLUMN NA GRUPY (zeby analizowac¢ madrze)

#

90

SAMORZAD
WOJEWODZTWA

WIELKOPOLSKIEGO

Fundusze Europejskie Dofinansowane przez il
dla Wielkopolski Unie Europejska

* oy x

wuan

W tych danych wiekszo$¢ kolumn jest binarna (0/1).
Sa tez kolumny porzadkowe (np. Age, GenHlth, Education, Income),

oraz liczbowe (np. BMI, MentHlth, PhysHlth).

Ten podziat pomaga dobrac¢ odpowiedni wykres i sposdb analizy.

wuan

binary cols = [# kolumny binarne (0/1)

"HighBP", "HighChol", "CholCheck", "Smoker", "Stroke",
"HeartDiseaseorAttack",

"PhysActivity", "Fruits", "Veggies", "HvyAlcoholConsump",
"AnyHealthcare",

"NoDocbcCost", "DiffWalk", "Sex"

] # koniec listy binarnej

ordinal cols = ["GenHlth", "Age", "Education", "Income"] # kolumny
porzadkowe (liczby oznaczaja kategorie)
numeric_cols = ["BMI", "MentHlth", "PhysHlth"] # kolumny liczbowe (ciagte

lub dyskretne)

all used = set(binary cols + ordinal cols + numeric cols + [target col]) #
zbidr wszystkich uzytych kolumn
unused cols = [c for ¢ in df.columns if c not in all used] # kolumny

nieuwzglednione w podziale

print ("\nKolumny nieuwzglednione w podziale (sprawdz czy chcesz je

dodac) :", unused cols) # pokaz ewentualne braki

#

6) MIARY STATYSTYCZNE ($rednia, mediana, odchylenie, kwartyle, IQR)

#

91

SAMORZAD
WOJEWODZTWA

. . . *
Fundusze Europejskie Dofinansowane przez #
WIELKOPOLSKIEGO

dla Wielkopolski Unie Europejska

wuan

Miary statystyczne pomagaja opisaé¢ dane liczbowo:
- $rednia 1 mediana méwig o "typowej" wartosci,
- odchylenie standardowe méwi, jak bardzo dane sa rozproszone,

- kwartyle i IQR pomagaja rozumiel¢ rozktad bez wrazliwo$ci na skrajnosci.

desc num = df[numeric cols].describe().T # podstawowe statystyki (count,
mean, std, min, Q1, 02, (03, max)

desc num["median"] = df[numeric cols].median() # dodaj mediane

desc num["skew"] = df[numeric cols].skew() # dodaj skosnosc

desc_num["kurtosis"] = df[numeric cols].kurtosis() # dodaj kurtoze

gl df [numeric_cols].quantile(0.25) # pierwszy kwartyl

a3 df [numeric cols].quantile (0.75) # trzeci kwartyl

igr = g3 - gl # rozstep miedzykwartylowy

desc num["Q1"] gl # dodaj 01

desc num["Q3"] g3 # dodaj 03

desc_num["IQR"] = igr # dodaj IOQOR

print ("\nStatystyki dla kolumn liczbowych:") # opis

display (desc_num) # pokaz tabele

#

7) ROZKELADY ZMIENNYCH LICZBOWYCH (histogram + KDE)

#

for col in numeric cols: # przejdz po kazdej kolumnie liczbowej

plt.figure(figsize=(7, 4)) # ustaw rozmiar wykresu

sns.histplot (df[col], bins=40, kde=True) # histogram z linia KDE
plt.title (f"Rozktad zmiennej: {col}l") # tytut

plt.xlabel (col) # podpis osi X

plt.ylabel ("Liczba obserwacji") # podpis osi Y

plt.show() # pokaz wykres

92

Fundusze Europejskie Dofinansowane przez & SAMORZAD
dla Wielkopolski Unig Europejska S, . -~ | W&’L%?gf;mm
#
8) OUTLIERY (wartos$ci odstajace) - boxploty dla liczb
#
for col in numeric cols: # iteruj po kolumnach liczbowych
plt.figure(figsize=(7, 2.5)) # rozmiar wykresu
sns.boxplot (x=df[col]) # boxplot pokazuje mediane, kwartyle 1 wartosci
odstajace
plt.title(f"Wartosci odstajace (boxplot): {col}"™) # tytul
plt.xlabel (col) # podpis osi
plt.show() # pokaz wykres
#
9) POROWNANIE LICZBOWYCH CECH DLA KLAS (0 vs 1)
#

wuan

Tutaj sprawdzamy: czy np. BMI rézni sie miedzy osobami z cukrzyca i bez
cukrzycy?

To jest kluczowy element EDA pod ML: "co odrdznia klasy?"

for col in numeric cols: # iteruj po cechach liczbowych
plt.figure(figsize=(7, 4)) # rozmiar wykresu

sns.boxplot (data=df, x=target col, y=col) # boxplot w podziale na

klasy 0/1
plt.title(f"{col} w podziale na klasy (Diabetes binary)") # tytui
plt.xlabel ("Diabetes binary (0O=brak, l=cukrzyca)") # opis osi X

plt.ylabel (col) # opis osi Y

plt.show() # pokaz wykres
Dodatkowe zestawienie liczbowe ($rednie w klasach) # komentarz
dydaktyczny
means by class = df.groupby(target col) [numeric cols].mean() # policz

$rednie cech liczbowych w klasach

93

Fundusze Europejskie Dofinansowane przez :* * *: w&g&Zg\DDZTWA
dla Wielkopolski Unie Europejska . WIELKOPOLSKIEGO
std by class = df.groupby(target col) [numeric cols].std() # policz
odchylenia w klasach
print ("\nSrednie cech liczbowych w klasach:") # opis
display (means by class) # pokaz Srednie
print ("\nOdchylenia standardowe cech liczbowych w klasach:") # opis

display(std by class) # pokaz odchylenia

#
10) ZMIENNE BINARNE (0/1) - rozktad i zwiazek z cukrzyca
#

Dla zmiennych 0/1 najlepszy Jjest:
- countplot (ile jest 0 1 1),
- wykres udziatu (procent),

- pordwnanie z targetem (np. odsetek cukrzycy w grupie 0 vs 1).

wuan

for col in binary cols: # przejdz po kazdej zmiennej binarnej
plt.figure(figsize=(7, 4)) # rozmiar wykresu
sns.countplot (data=df, x=col, hue=target col) # rozkitad 0/1 i
jednoczesénie klasy docelowej
plt.title(f"{col} vs Diabetes binary (licznosci)") # tytul
plt.xlabel (col) # o$ X

plt.ylabel ("Liczba obserwacji") # o0$ Y
plt.legend(title="Diabetes binary") # legenda
plt.show() # pokaz wykres

Tabela: jaki procent cukrzycy Jjest w grupie 0 i1 1 dla kazdej cechy
binarnej # komentarz dydaktyczny

binary target rates = {} # siownik na wyniki

94

Fundusze Europejskie Dofinansowane przez :* * *: w&g&Zg\DDZTWA
dla Wielkopolski Unig Europejska . WIELKOPOLSKIEGO
for col in binary cols: # iteruj po cechach binarnych

rate = df.groupby(col) [target col].mean() * 100 # Srednia z 0/1 daje
odsetek (w %)

binary target rates[col] = rate # zapisz do siownika

binary target rates df = pd.DataFrame (binary target rates).T # zamien
stownik na tabele
binary target rates df.columns = ["% cukrzycy gdy cecha=0", "% cukrzycy gdy

cecha=1"] # nadaj nazwy kolumn

print ("\nOdsetek cukrzycy w grupach 0/1 dla zmiennych binarnych:") # opis
display(binary target rates df.sort values("% cukrzycy gdy cecha=1",

ascending=False)) # pokaz posortowane

#

11) ZMIENNE PORZADKOWE - rozkltady i zwigzek z targetem

#

for col in ordinal cols: # iteruj po zmiennych porzadkowych
plt.figure(figsize=(7, 4)) # rozmiar
sns.countplot (data=df, x=col, hue=target col) # rozkiad kategorii i

podziat na target
plt.title(f"{col} vs Diabetes binary (licznosci)") # tytul

plt.xlabel (col) # o$ X

plt.ylabel ("Liczba obserwacji") # o0$ Y
plt.legend(title="Diabetes binary") # legenda
plt.show() # pokaz

Sredni odsetek cukrzycy w zaleznoé$ci od kategorii porzadkowej
komentarz dydaktyczny
for col in ordinal cols: # iteruj po zmiennych porzadkowych
rate by level = df.groupby(col) [target col].mean() * 100 # odsetek
cukrzycy na poziomach
print (f"\nOdsetek cukrzycy (%) w zaleznos$ci od {col}:") # opis

display(rate by level) # pokaz

95

SAMORZAD
WOJEWODZTWA

. . . *
Fundusze Europejskie Dofinansowane przez #
WIELKOPOLSKIEGO

dla Wielkopolski Unie Europejska

#
12) KORELACJE (heatmapa + lista najmocniejszych)

#

Korelacja pokazuje, jak silnie zmienne sa ze soba powiazane liniowo.
Warto pamietac¢: korelacja nie oznacza przyczynowos$ci.

To jednak $wietny szybki podglad zaleznosci w danych.

wuan

corr = df.corr(numeric only=True) # policz macierz korelacji (tylko
liczby)

plt.figure (figsize=(12, 9)) # rozmiar wykresu

sns.heatmap (corr, cmap="coolwarm", center=0, square=True) # heatmapa

korelacji
plt.title("Macierz korelacji (heatmapa)") # tytul

plt.show() # pokaz

Najmocniejsze korelacje ze zmienng docelowa # komentarz dydaktyczny
corr with target = corr[target col].sort values (ascending=False) # sortuj
korelacje z targetem

print ("\nKorelacje z targetem (od najwiekszej):") # opis

display(corr with target) # pokaz

#

13) PAIRPLOT (opcjonalnie) - na prdébce danych (bo peiny zbidr jest duzy)
#

Pairplot jest bardzo fajny, ale kosztowny obliczeniowo.

Dlatego robimy go na losowej prdébce danych.

wuan

df sample = df.sample(n=min (SAMPLE N, len(df)),

random_ state=RANDOM STATE) # wez probke danych

96

Fundusze Europejskie Dofinansowane przez P SAMORZAD
. . . . * * WOJEWODZTWA
dla Wielkopolski Unie Europejska et WIELKOPOLSKIEGO
sns.pairplot (df sample[[target col] + numeric cols], hue=target col,
diag kind="hist") # pairplot na cechach liczbowych
plt.show() # pokaz

#

14) PODSUMOWANIE EDA - wnioski (szablon do uzupeilnienia)

#

LARIRI]

W tym miejscu (w skrypcie) warto dopisa¢ 5-10 zdan wnioskédw, np.:
- czy klasy sa zbalansowane?

- ktoére cechy najbardziej rdéznig sie miedzy 0 i 17

- czy sa outliery w BMI / PhysHlth / MentHlth?

- jakie cechy maja najwyzsza korelacje z targetem?

- jakie problemy jako$ci danych zauwazylismy?

LARIRI]

Przyklad budowy modelu uczenia maszynowego — regresja logistyczna krok

po kroku

W niniejszym podrozdziale przedstawiony zostat kompletny, praktyczny przyktad
budowy modelu uczenia maszynowego w jezyku Python, z wykorzystaniem regresji
logistycznej. Celem tego przykiladu nie jest uzyskanie najlepszego mozliwego modelu
predykcyjnego, lecz zrozumienie catego procesu tworzenia modelu ML, od przygotowanych
wczesniej danych az do uzycia wytrenowanego modelu do predykcji dla nowych przypadkow.
Regresja logistyczna zostala wybrana jako pierwszy model, poniewaz jest stosunkowo prosta,
dobrze interpretowalna i1 czgsto wykorzystywana jako punkt odniesienia w projektach
analitycznych.

W ramach przyktadu pokazano wszystkie kluczowe etapy pracy z modelem uczenia
maszynowego. Dane zostaly podzielone na zbiory treningowe i testowe, z zachowaniem
proporcji klas, aby zapewni¢ rzetelng ocen¢ jakosci modelu. Nastgpnie zastosowano
balansowanie klas metoda SMOTE, co pozwala lepiej radzi¢ sobie z problemem

niezbalansowanych danych, typowym dla zagadnien medycznych. Kolejnym krokiem byto

97

SAMORZAD
WOJEWODZTWA

. . . *
Fundusze Europejskie Dofinansowane przez Ll
WIELKOPOLSKIEGO

dla Wielkopolski Unie Europejska

* oy x

skalowanie cech, ktore jest istotne w przypadku regresji logistycznej i wptywa na stabilnos¢
procesu uczenia.

W podrozdziale zaprezentowano rowniez ocen¢ jakosci modelu przy uzyciu
najwazniejszych metryk klasyfikacji, takich jak accuracy, precision, recall oraz Fl-score,
a takze wizualizacje w postaci macierzy pomylek oraz krzywych ROC i Precision—Recall.
Szczego6lng uwage poswigcono swiadomemu wyborowi progu decyzyjnego, pokazujac, ze
domyslna warto$¢ 0.5 nie zawsze jest najlepszym rozwigzaniem, zwlaszcza w problemach
zwigzanych ze zdrowiem.

Na koncu przedstawiono praktyczny aspekt wykorzystania modelu: zapis
wytrenowanego modelu do pliku, jego ponowne wczytanie oraz uzycie do predykcji dla danych
wprowadzonych przez uzytkownika. Dzigki temu przyktad ten stanowi pelne studium
przypadku uczenia maszynowego, pokazujace, jak teoria i narzedzia Pythona przektadajg si¢

na rzeczywisty proces budowy i uzycia modelu.

=

WZORCOWY PROJEKT ML (Regresja Logistyczna) - DIABETES BRFSS 2015

1) Wczytaé¢ dane (CSV)

2) Przygotowac¢ X i y

3) Podzieli¢ dane na train i test

Zbalansowa¢ tylko TRAIN (SMOTE)

5) Zeskalowac¢ dane (StandardScaler)

6) Wytrenowa¢ LogisticRegression

7) Sprawdzi¢ metryki i zrobié¢ wykresy (CM, ROC, PR)
8) Zapisa¢ model do pliku i wczytaé¢ go z powrotem

9) Zapytac¢ uzytkownika o parametry i zdiagnozowac¢ cukrzyce

R T e T
N

0) INSTALACJE (tylko w Colabie, jes$li brakuje pakietu)

98

Fundusze Europejskie Dofinansowane przez :* * *: w&g&Zg\DDZTWA

dla Wielkopolski Unie EUI‘OpejSkq ***** WIELKOPOLSKIEGO
Jes$li w Colabie nie masz imbalanced-learn, odkomentuj te linie.
komentarz

!'pip -q install imbalanced-learn # inst

(balansowanie)
1) IMPORTY

alacja biblioteki do SMOTE

import pandas as pd # praca z danymi tabelarycznymi (DataFrame)

import numpy as np # obliczenia numeryczne

import matplotlib.pyplot as plt

import seaborn as sns

wykresy

wykresy statystyczne

from pathlib import Path # $ciezki do plikoéw

from

sklearn

train/test

from

from

sklearn.

sklearn

logistycznej

from
from
from
from
from
from
from
from

from

sklearn.
sklearn.
sklearn.
sklearn.
sklearn.
sklearn.
sklearn.
sklearn.

sklearn.

recall

from

sklearn.

.model selection import train test split

preprocessing import StandardScaler # skalowanie cech

metrics
metrics
metrics
metrics
metrics
metrics
metrics
metrics

metrics

metrics

import
import
import
import
import
import
import
import

import

import

from imblearn.over sampling

accuracy_ score

.linear model import LogisticRegression # model regresji

accuracy

precision score # precision

recall score
fl score # F1
confusion matr

classification

recall

ix # macierz pomytek

_report # raport klasyfikacji

roc_curve # punkty krzywej ROC

roc_auc_score

precision reca

average precis

import SMOTE

AUC

11 curve # krzywa precision-

ion score # AP (pole pod PR)

SMOTE do balansowania klas

podzial danych na

99

Fundusze Europejskie Dofinansowane przez :* * *: w{;g&Zg\DDZTWA
dla Wielkopolski Unie Europejska . WIELKOPOLSKIEGO

import pickle # zapis/wczytanie modelu jako plik binarny

sns.set theme (style="whitegrid") # ladny styl wykresow

2) WCZYTANIE DANYCH

FILE PATH = Path("diabetes binary health indicators BRFSS2015 (3) (1)
(1) .csv") # Sciezka do pliku CSV

df = pd.read csv(FILE PATH) +# wczytaj dane z CSV do DataFrame

print ("Wymiary danych (wiersze, kolumny) :", df.shape) # szybka informacja

o rozmiarze danych

print ("Pierwsze 3 wiersze danych:") # opis
display(df.head(3)) # podglad danych

3) MINIMALNA KONTROLA JAKOSCI (bez powtarzania peinej EDA)

W EDA sprawdzalis$my dane doktadniej.

Tutaj robimy tylko krétka kontrole, zeby modelowanie byio bezpieczne:
- czy sa braki danych?

- czy target ma tylko 0/1?

- czy typy sa liczbowe?

print ("\nBraki danych w catym zbiorze (suma):", df.isna().sum().sum()) #
suma brakéw w catym zbiorze
print ("Unikalne wartosci w Diabetes binary:",

df ["Diabetes binary"].unique()) # sprawdz klasy 0/1

100

Fundusze Europejskie Dofinansowane przez :* * *: w&g&Zg\DDZTWA
dla Wielkopolski Unie Europejska . WIELKOPOLSKIEGO

4) WYBOR ZMIENNEJ DOCELOWEJ I CECH

target col = "Diabetes binary" # nazwa kolumny, ktdéra chcemy przewidywac
(0/1)
X = df.drop(columns=[target col]) # X = cechy (wszystko oprdcz targetu)
y = df[target col] # y = target (0/1)
feature names = list(X.columns) # zapamietaj nazwy cech (wazne do eksportu
i pdzniejszego uzycia)
print ("\nLiczba cech (kolumn wejéciowych):", X.shape[l]) # ile cech mamy w
modelu
print ("Nazwy cech:", feature names) # pokaz nazwy cech

5) PODZIAL NA TRAIN / TEST

wuan

To jest kluczowa zasada:
- model uczy sie tylko na TRAIN

- ocena Jjakosci jest na TEST (danych niewidzianych)

Uzywamy stratify=y, aby proporcije klas byty podobne w train 1 test.

wuan

X train, X test, y train, y test = train test split(# wykonaj podziat
X, # cechy
y, # target
test size=0.2, # 20% danych na test
random_ state=42, # powtarzalnosc¢

stratify=y # zachowaj proporcje klas

101

Fundusze Europejskie Dofinansowane przez & SAMORZAD

dla Wielkopolski Unie Europejska . m{%‘;gﬂr{é‘co
)
print ("\nRozmiary zbiordw:") # opis

print ("X train:", X train.shape, "X test:", X test.shape) # pokaz wymiary

print ("y train:", train.shape, "y test:", y test.shape) # pokaz wymiary
_ y_ p _ _

6) BALANSOWANIE KLAS (SMOTE) - TYLKO NA TRAIN

Dane sa niezbalansowane (zwykle wiecej osbéb bez cukrzycy niz z cukrzyca).
SMOTE tworzy ,syntetyczne” przykltady klasy mniejszo$ciowej.
UWAGA: SMOTE robimy TYLKO na TRAIN, bo inacze]j ,przeciekamy” informacja do

testu.

smote = SMOTE (random_ state=42) # utwdérz obiekt SMOTE
X train res, y train res = smote.fit resample(X train, y train) #

zbalansuj train

print ("\nRozktad klas przed SMOTE (train):") # opis

print (y train.value counts()) # ile byto klas w train

print ("\nRozktad klas po SMOTE (train):") # opis

print (pd.Series(y train res).value counts()) # ile jest klas po SMOTE

7) SKALOWANIE DANYCH (StandardScaler)

wuan

Regresja logistyczna dziata lepie]j, gdy cechy maja podobna skale.

StandardScaler robi:

102

Fundusze Europejskie Dofinansowane przez :* * *: w&g&Zg\DDZTWA
dla Wielkopolski Unie Europejska . WIELKOPOLSKIEGO
- odejmuje $rednig
- dzieli przez odchylenie standardowe
BARDZO WAZNE:
- scaler FIT na TRAIN (po SMOTE)
- scaler TRANSFORM na TRAIN i TEST
mmoan
scaler = StandardScaler () # utwdérz scaler
X train scaled = scaler.fit transform(X train res) # dopasuj scaler do
train i1 przeskaluj train
X test scaled = scaler.transform(X test) # przeskaluj test tym samym
scalerem (bez fit!)
print ("\nWymiary po skalowaniu:") # opis
print ("X train scaled:", X train scaled.shape) # wymiary train

print ("X test scaled:", X test scaled.shape) # wymiary test

8) TRENING MODELU: REGRESJA LOGISTYCZNA

mmon
Regresja logistyczna:
- uczy sie zaleznoéci miedzy cechami a klasag 0/1

- zwraca tez prawdopodobienstwo (predict proba)

Ustawiamy max iter=1000, aby model miat czas ,dojs¢ do rozwiazania”.

wuan

model = LogisticRegression(max iter=1000, random state=42) # utwdérz model
model.fit (X train scaled, y train res) # naucz model na zbalansowanym
train

103

Fundusze Europejskie Dofinansowane przez :” *: w&g&Zg\DDZTWA
dla Wielkopolski Unie Europejska . WIELKOPOLSKIEGO

9) PREDYKCJA (TEST) + PRAWDOPODOBIENSTWA

y_pred = model.predict (X test scaled) # przewidywana klasa (0/1)
y_proba = model.predict proba (X test scaled)[:, 1] # prawdopodobienstwo

klasy 1 (cukrzyca)

10) METRYKI JAKOSCI MODELU

wuan

W medycznych przyktadach szczegdlnie wazny bywa recall (czuiosé):

- ile prawdziwych przypadkdéw cukrzycy wykrylismy?

Ale pokazujemy peten pakiet metryk:
- accuracy, precision, recall, f1l
- confusion matrix

- classification report

wuan

acc = accuracy score(y test, y pred) # accuracy
prec = precision score(y_ test, y pred, zero division=0) # precision
rec = recall score(y_test, y pred, zero division=0) # recall

fl1 = f1 score(y_ test, y pred, zero division=0) # fl

print ("\n=== METRYKI (na zbiorze testowym) ===") # nagtodwek
print (f"Accuracy : {acc:.4f}") # accuracy

print (f"Precision: {prec:.4f}") # precision

print (f"Recall : {rec:.4f}") # recall

print (f"Fl-score : {fl:.4f}") # f1l

print ("\n=== RAPORT KLASYFIKACJI ===") # nagtdéwek

104

Fundusze Europejskie Dofinansowane przez :* * ‘: w&g&%ADDZTWA
dla Wielkopolski Unie Europejska . WIELKOPOLSKIEGO
print (classification report(y test, y pred, digits=4)) # raport
klasyfikacji

11) MACIERZ POMYLEK + HEATMAPA

cm = confusion matrix(y test, y pred) # policz macierz pomyiek

plt.figure(figsize=(7, 5)) # rozmiar wykresu
sns.heatmap(# heatmapa
cm, # macierz
annot=True, # pokaz liczby
fmt="d", # format liczb (integer)
cmap="Blues", # kolory

xticklabels=["brak cukrzycy (0)", "cukrzyca (1)"], # etykiety osi X

yticklabels=["brak cukrzycy (0)", "cukrzyca (1)"] # etykiety osi Y
)
plt.title("Macierz pomytek (Confusion Matrix)") # tytul
plt.xlabel ("Klasa przewidziana") # o$ X
plt.ylabel ("Klasa rzeczywista") # o$ Y

plt.show() # pokaz wykres

12) KRZYWA ROC + AUC

auc = roc_auc_score(y test, y proba) # policz AUC

fpr, tpr, thresholds = roc _curve(y test, y proba) # punkty ROC

plt.figure (figsize=(7, 5)) # rozmiar

plt.plot (fpr, tpr, lw=2, label=f"ROC (AUC = {auc:.4f})") # krzywa ROC
plt.plot ([0, 1], [0, 1], linestyle="--", 1lw=2, label="Losowy
klasyfikator") # przekatna

105

Fundt!sze Europ'ejskie Dofinan§owane przez :* * ‘: | w&g&%ADDZTWA
dla Wielkopolski Unie Europejska . WIELKOPOLSKIEGO
plt.title ("Krzywa ROC") # tytul
plt.xlabel ("False Positive Rate (FPR)") # o0$ X
plt.ylabel ("True Positive Rate (TPR)") # o0$ Y
plt.legend() # legenda
plt.show() # pokaz

13) KRZYWA PRECISION-RECALL + AVERAGE PRECISION (AP)

precision, recall, pr thresholds = precision recall curve(y_ test,

y_proba) # policz PR curve

ap = average precision score(y test, y proba) # pole pod krzywa PR
plt.figure (figsize=(7, 5)) # rozmiar

plt.plot(recall, precision, lw=2, label=f"PR curve (AP = {ap:.4f})") #
wykres PR

plt.title ("Krzywa Precision-Recall") # tytul

plt.xlabel ("Recall™) # o0s$ X

plt.ylabel ("Precision") # o0$ Y

plt.legend() # legenda

plt.show() # pokaz

14) ROZKLAD PRAWDOPODOBIENSTW (czy model rozréznia klasy?)

plt.figure (figsize=(8, 5)) # rozmiar

sns.histplot (y probaly test == 0], bins=40, kde=True, label="Brak cukrzycy
(0)™) # rozktad proba dla klasy 0

sns.histplot (y probaly test == 1], bins=40, kde=True, label="Cukrzyca

(1)") # rozklad proba dla klasy 1
plt.title ("Rozktad przewidywanego prawdopodobienstwa klasy 1") # tytul

plt.xlabel ("P(y=1) = prawdopodobienstwo cukrzycy") # os$ X

106

Fundusze Europejskie Dofinansowane przez & SAMORZAD
dla Wielkopolski Unie Europejska . m{%‘?,gf;mco
plt.ylabel ("Liczba przypadkdéw") # os Y
plt.legend() # legenda
plt.show() # pokaz

15) ZAPIS MODELU DO PLIKU (eksport)

W praktyce nie zapisujemy tylko samego modelu.

Musimy zapisac¢ tez:

- scaler (bo bez niego nowe dane beda w innej skali)

- liste cech i ich kolejnos$¢ (zeby uzytkownik podawat dane w tej samej

kolejnosci)

wuan

artifact = { # tworzymy ,paczke” do zapisu

"model": model, # wytrenowany model

"scaler": scaler, # dopasowany scaler
"feature names": feature names # kolejnos¢ cech
}
MODEL FILE = "logreg diabetes model.pkl" # nazwa pliku binarnego

with open (MODEL FILE, "wb") as f: # otwérz plik do zapisu binarnego

pickle.dump (artifact, f) # zapisz paczke do pliku

print ("\nModel zapisany do pliku:", MODEL FILE) # potwierdzenie

16) WCZYTANIE MODELU (import) - test, czy wszystko dziata

with open (MODEL FILE, "rb") as f: # otwdrz plik binarny do odczytu

107

Fundusze Europejskie Dofinansowane przez :* * *: w&g&Zg\DDZTWA
dla Wielkopolski Unie Europejska . WIELKOPOLSKIEGO

loaded artifact = pickle.load(f) # wczytaj paczke

loaded model = loaded artifact["model"] # wyciagnij model

loaded scaler = loaded artifact["scaler"] # wyciagnij scaler

loaded feature names = loaded artifact["feature names"] # wyciagnij liste
cech

Krotki test: predykcja na pierwszych 5 rekordach testu # komentarz

test scaled again = loaded scaler.transform(X test) # przeskaluj test tak
jak wczesdniej

test pred again = loaded model.predict (test scaled again[:5]) # przewidz

klasy dla 5 pierwszych

print ("\nTest po imporcie (pierwsze 5 predykcji):", test pred again) #

pokaz wynik

17) ,DIAGNOZA” - zapyta]j uzytkownika o cechy i przewidZ cukrzyce

wuan

To jest prosty ,interfejs tekstowy”.

Uzytkownik wpisuje wartosci cech (tak jak w danych), a my:
1) tworzymy wiersz danych w odpowiedniej kolejnosci

2) skalujemy go scalerem

3) liczymy predykcje i1 prawdopodobienstwo

WAZNE: To jest przykiad edukacyjny, nie narzedzie medyczne.

wuan

def ask float(name, hint): # funkcja pomocnicza do wczytywania liczb
value = float (input (f"{name} ({hint}): ™)) # pobierz wartos$é od
uzytkownika

return value # zwrdé wartosé

108

Fundusze Europejskie Dofinansowane przez :* * *: w{;g&Zg\DDZTWA
dla Wielkopolski Unig Europejska . WIELKOPOLSKIEGO
print ("\n=== WPROWADZ DANE PACJENTA (jak w zbiorze) ===") # nagiowek
user data = {} # stownik na dane od uzytkownika
Kazda linia ponize]j pyta o jedna ceche. # komentarz
user data["HighBP"] = ask float ("HighBP", "0 lub 1 (wysokie cisnienie)") #

HighBP

user data["HighChol"] = ask float("HighChol", "0 lub 1 (wysoki
cholesterol)") # HighChol

user data["CholCheck"] = ask float ("CholCheck", "0 lub 1 (badanie

cholesterolu)") # CholCheck

user data["BMI"] ask float ("BMI", "np. 18-50 (wskaznik BMI)") # BMI

user datal["Smoker"] = ask float("Smoker", "0 lub 1 (czy palit >=100

papieroséw)") # Smoker

user datal["Stroke"] = ask float("Stroke", "0 lub 1 (czy miai udar)") #
Stroke

user data["HeartDiseaseorAttack"] = ask float ("HeartDiseaseorAttack"”, "0
lub 1 (choroba serca/zawal)") # HeartDiseaseorAttack

user data["PhysActivity"] = ask float ("PhysActivity", "0 lub 1 (aktywnos¢

fizyczna)") # PhysActivity

user data["Fruits"] = ask float("Fruits", "0 lub 1 (czy Jje owoce)") #
Fruits

user data["Veggies"] = ask float("Veggies", "0 lub 1 (czy je warzywa)") #
Veggies

user data["HvyAlcoholConsump"] = ask float ("HvyAlcoholConsump", "0 lub 1
(duze spozycie alkoholu)") # HvyAlcoholConsump

user data["AnyHealthcare"] = ask float("AnyHealthcare", "0 lub 1
(ubezpieczenie/opieka)") # AnyHealthcare

user data["NoDocbcCost"] = ask float ("NoDocbcCost", "0 lub 1 (czy koszt

blokowat wizyte)") # NoDocbcCost
user data["GenHlth"] = ask float ("GenHlth", "1-5 (ogdélny stan zdrowia)") #
GenHlth

user data["MentHlth"] ask float ("MentHl1th", "0-30 (dni gorszego zdrowia

psych.)") # MentHlth

user data["PhysHlth"] ask float ("PhysH1th", "0-30 (dni gorszego zdrowia

fiz.)") # PhysHlth

109

SAMORZAD
WOJEWODZTWA

. . . *
Fundusze Europejskie Dofinansowane przez #
WIELKOPOLSKIEGO

dla Wielkopolski Unie Europejska

user data["DiffWalk"] = ask float ("DiffWalk", "O lub 1 (trudnos¢ w
chodzeniu)") # DiffwWalk

user data["Sex"] = ask float("Sex", "0 lub 1 (pie¢ jak w danych)") # Sex

user data["Age"] ask float ("Age", "1-13 (przedziaty wieku jak w

danych)") # Age

user data["Education"] = ask float ("Education", "1-6 (poziom edukacji)") #
Education

user data["Income"] = ask float("Income", "1-8 (przedziaty dochodu)") #
Income

Zbuduj DataFrame z jednym wierszem, w poprawnej kolejnosci cech.
komentarz

user df = pd.DataFrame ([user data], columns=loaded feature names) # jedna

obserwacja jako DataFrame

Skaluj dane tak jak trenowalis$my model. # komentarz

user scaled = loaded scaler.transform(user df) # przeskaluj dane
uzytkownika

PrzewidZ klase i1 prawdopodobienstwo. # komentarz

user pred = loaded model.predict (user_ scaled) [0] # przewidywana klasa
(0/1)
user prob = loaded model.predict proba (user scaled) [0, 1] #

prawdopodobienstwo klasy 1

print ("\n=== WYNIK MODELU ===") # nagtdwek

print ("Predykcja (O=brak cukrzycy, l=cukrzyca):", int (user pred)) # pokaz
klase

print (f"Prawdopodobienstwo cukrzycy (klasa 1): {user prob:.4f}") # pokaz

prawdopodobienstwo

Dodatkowy komunikat dla czytelnosci

if user pred == 1: # Jjesli model przewiduje cukrzyce

print ("Model sugeruje: WYSOKIE RYZYKO (klasa 1).") # komunikat
else: # Jje$li model przewiduje brak cukrzycy

print ("Model sugeruje: NISKIE RYZYKO (klasa 0).") # komunikat

110

Fundusze Europejskie Dofinansowane przez :** *: w&g&Zg\DDZTWA
dla Wielkopolski Unie Europejska .yt WIELKOPOLSKIEGO
#
18) ZMIANA PROGU DECYZYJNEGO (threshold)
#

Domy$lnie klasyfikator przewiduje klase 1, gdy prawdopodobienstwo >= 0.50.
W praktyce (zwiaszcza w medycynie) czesto chcemy:
- zwiekszy¢ recall (wykry¢ wiecej chorych),

kosztem precision (wiecej falszywych alarmdéw) .
Dlatego uczymy sie wybiera¢ prdég (threshold) Swiadomie.

18.1) Obliczamy precision i recall dla réznych progdw

precisions, recalls, thr = precision recall curve(y test, y proba) #
policz PR dla wielu progdw
thr safe = np.append(thr, 1.0) # dodaj prdég 1.0, zeby diugosci tablic

pasowaty (thr jest o 1 krobtsze)

18.2) Wykres: precision i recall w zaleznos$ci od progu

plt.figure(figsize=(8, 5)) # rozmiar wykresu

plt.plot (thr safe, precisions, label="Precision") # precision vs threshold
plt.plot (thr safe, recalls, label="Recall") # recall vs threshold
plt.title("Precision i Recall w zaleznos$ci od progu (threshold)") # tytul
plt.xlabel ("Threshold (prég decyzji)") # o0$ X

plt.ylabel ("Wartos¢ metryki") # o0$ Y

plt.legend() # legenda

plt.show() # pokaz wykres

111

Fundusze Europejskie Dofinansowane przez :* * *: w&g&Zg\DDZTWA
dla Wielkopolski Unie Europejska . WIELKOPOLSKIEGO

18.3) Prosty wybdér progu: maksymalizacja F1

Wybbr progu mozna robié¢ na wiele sposobdw.
Najprostszy i bardzo edukacyjny wariant:

- wybieramy threshold, ktéry daje najwyzszy Fl na zbiorze testowym.

Uwaga dydaktyczna:
W idealnym $wiecie prdég wybieramy na walidacji, a test zostawiamy ,na
koniec”.

Tutaj robimy to prosto, zeby zrozumieé¢ idee.

fl scores = (2 * precisions * recalls) / (precisions + recalls + le-12) #
oblicz F1 dla kazdego punktu (bez dzielenia przez zero)
best idx = np.argmax(fl scores) # indeks najlepszego Fl

best threshold = thr safe[best idx] # prdg odpowiadajacy najlepszemu F1

print ("\n=== WYBOR PROGU (na podstawie najlepszego F1l) ===") # nagioéwek
print ("Najlepszy threshold:", round(float (best threshold), 4)) # pokaz
proég

print ("F1 dla tego progu:", round(float (fl scores[best idx]), 4)) # pokaz
Fl

18.4) Predykcja z nowym progiem + metryki

y pred thr = (y proba >= best threshold) .astype(int) # zamien

prawdopodobienstwa na klasy uzywajac nowego progu

acc_thr = accuracy score(y test, y pred thr) # accuracy dla progu

112

icki i SR SAMORZAD
Fundt!sze Europ'ejskle Doflnan§owane przez T WO EWA T TWA
dla Wielkopolski Unig Europejska . WIELKOPOLSKIEGO
prec _thr = precision score(y test, y pred thr, zero division=0) #
precision dla progu
rec _thr = recall score(y test, y pred thr, zero division=0) # recall dla

progu
fl thr = fl score(y test, y pred thr, zero division=0) # fl1 dla progu

print ("\n=== METRYKI DLA NOWEGO PROGU ===") # nagtodwek

print (f"Accuracy : {acc_thr:.4f}") # accuracy

print (f"Precision: {prec thr:.4f}") # precision

print (f"Recall : {rec _thr:.4f}") # recall

print (f"Fl-score : {fl thr:.4f}") # fl

print ("\n=== RAPORT KLASYFIKACJI DLA NOWEGO PROGU ===") # nagtdéwek
print(classification report(y test, y pred thr, digits=4)) # raport

18.5) Confusion Matrix dla nowego progu

cm_thr = confusion matrix(y test, y pred thr) # macierz pomylek dla progu
plt.figure (figsize=(7, 5)) # rozmiar
sns.heatmap(# heatmapa
cm_thr, # macierz
annot=True, # liczby
fmt="d", # int
cmap="Greens", # kolor
xticklabels=["brak cukrzycy (0)", "cukrzyca (1)"], # etykiety X
yticklabels=["brak cukrzycy (0)", "cukrzyca (1)"] # etykiety Y
)
plt.title("Macierz pomytek (nowy threshold)") # tytul
plt.xlabel ("Klasa przewidziana") # o$ X
plt.ylabel ("Klasa rzeczywista") # o$ Y
plt.show() # pokaz wykres

113

E el I I

Literatura:
Python:

1. Lutz M., Python. Wprowadzenie, wyd. 6, Helion, 2025.

2. Matthes E., Python. Instrukcje dla programisty, wyd. III, Helion, Gliwice, 2023.

3. Lubanovic B., Introducing Python, wyd. 3, O'Reilly Media, 2025.

4. Lubanovic B., Python. Nowoczesne programowanie w prostych krokach, wyd. 2,

Helion, 2020.

5. Sweigart A., Automate the Boring Stuff with Python, wyd. 3, No Starch Press, 2025.

6. Sarbicki G., Python. Kurs dla nauczycieli i studentéw, wyd. 2, Helion, 2022.

7. Jasniewski T., Python. Zbiér zadan z rozwigzaniami, Helion, 2024.

Analiza danych, uczenie maszynowe, uczenie gle¢bokie:

1.

Russell S., Norvig P., Sztuczna inteligencja. Nowe spojrzenie. Wydanie IV. Tom 1,
Helion, 2023.

Russell S., Norvig P., Sztuczna inteligencja. Nowe spojrzenie. Wydanie IV. Tom 2,
Helion, 2023.

Géron A., Uczenie maszynowe z uzyciem Scikit-Learn, Keras 1 TensorFlow. Wydanie
III, Helion, 2023.

Tabor J., Smieja M., Struski L., Spurek P., Wotczyk M., Gilgbokie uczenie.
Wprowadzenie, Helion, 2022.

Lakshmanan V., Robinson S., Munn M., Wzorce projektowe uczenia maszynowego.
Rozwigzania typowych problemoéw dotyczacych przygotowania danych, konstruowania
modeli i MLOps, Helion, 2021.

Ameisen E., Uczenie maszynowe w aplikacjach. Projektowanie, budowa 1 wdrazanie,
Helion, 2021.

Patel A. A., Praktyczne uczenie nienadzorowane przy uzyciu jezyka Python, Promise,
2020.

Muraszkiewicz M., Nowak R. (red.), Sztuczna inteligencja dla inzynieréw: metody
ogoblne, Oficyna Wydawnicza Politechniki Warszawskiej, 2022.

Muraszkiewicz M., Nowak R., Sztuczna inteligencja dla inzynierow. Istotne obszary i

zastosowania, Oficyna Wydawnicza Politechniki Warszawskiej, 2023.

114

Z

10.

11.

12.

13.

14.

15.

16.

Fundusze Europejskie Dofinansowane przez P SAMORZAD
. . . . * * WOJEWODZTWA
dla Wielkopolski Unie Europejska et WIELKOPOLSKIEGO

Moroney L., Sztuczna inteligencja i uczenie maszynowe dla programistow: praktyczny
przewodnik po sztucznej inteligencji, Helion, 2021.

Howard J., Gugger S., Deep learning dla programistow: budowanie aplikacji Al za
pomocag fastai i PyTorch, Helion, 2021.

Atienza R., Deep learning z TensorFlow 2 i Keras dla zaawansowanych. Sieci GAN i
VAE, deep RL, uczenie nienadzorowane, wykrywanie i segmentacja obiektéw i nie
tylko. Wydanie II, Helion, 2022.

Tunstall L., von Werra L., Wolf T., Przetwarzanie j¢zyka naturalnego z wykorzystaniem
transformeréw. Budowanie aplikacji jezykowych za pomoca bibliotek Hugging Face,
Helion, 2024.

Gallatin K., Albon C., Uczenie maszynowe w Pythonie. Receptury. Od przygotowania
danych do deep learningu. Wydanie II, Helion, 2024.

Osowski S., Szmurto R., Matematyczne modele uczenia maszynowego w jezykach
MATLAB i PYTHON, Oficyna Wydawnicza Politechniki Warszawskiej, 2024.

Grus J., Data science od podstaw. Analiza danych w Pythonie. Wydanie 11, Helion,
2020.

115

