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Wprowadzenie 

Do nauki analizy danych i uczenia maszynowego można wykorzystać różne języki 

programowania, jednak w praktyce warto wybierać technologie, które są szeroko stosowane na 

rynku, posiadają bogate zaplecze materiałów edukacyjnych i przykładów, a jednocześnie 

charakteryzują się niskim progiem wejścia. Oznacza to, że już przy podstawowej wiedzy 

możliwe jest samodzielne wykonywanie analiz oraz budowanie pierwszych modeli. 

Językiem, który w największym stopniu spełnia te wymagania, jest Python. Jest to 

nowoczesny i uniwersalny język programowania o otwartym kodzie źródłowym, wspierający 

różne paradygmaty programowania, w tym podejście proceduralne, obiektowe oraz funkcyjne. 

Python należy obecnie do najczęściej wykorzystywanych języków programowania na świecie, 

a jego popularność w obszarze analizy danych i uczenia maszynowego wynika  

z bardzo rozbudowanego ekosystemu bibliotek oraz narzędzi analitycznych. 

Python jest językiem wieloplatformowym – oprogramowanie w nim napisane może 

działać na najczęściej używanych systemach operacyjnych, takich jak Windows, Linux oraz 

macOS, a także współpracować z innymi środowiskami i technologiami. Dzięki temu znajduje 

on zastosowanie zarówno w środowiskach akademickich, jak i w projektach komercyjnych. 

W kontekście analizy danych i uczenia maszynowego Python oferuje biblioteki 

umożliwiające: 

 efektywne przetwarzanie i analizę danych numerycznych i tabelarycznych  

(np. NumPy, Pandas), 

 wizualizację danych i wyników analiz (np. Matplotlib, Seaborn), 

 budowę, trenowanie oraz ocenę modeli uczenia maszynowego (np. scikit-learn), 

 tworzenie bardziej zaawansowanych modeli sztucznej inteligencji i uczenia 

głębokiego (np. TensorFlow, PyTorch). 

Choć Python jest głównym językiem wykorzystywanym w trakcie kursu, warto 

zaznaczyć, że w praktyce analitycznej często współpracuje on z innymi technologiami,  

w szczególności z językiem SQL, wykorzystywanym do pracy z bazami danych, oraz 

narzędziami statystycznymi i systemami raportowymi. 

Warto również zaznaczyć, że w analizie danych i uczeniu maszynowym 

wykorzystywane są także inne języki programowania, w szczególności R, który znajduje 

zastosowanie głównie w analizach statystycznych, badaniach naukowych oraz 

zaawansowanym wnioskowaniu statystycznym. W praktyce rynkowej Python i R często się 
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uzupełniają, jednak w ramach niniejszego kursu Python został wybrany jako język wiodący ze 

względu na swoją uniwersalność oraz szerokie zastosowanie w projektach analitycznych  

i komercyjnych. 

Ze względów organizacyjnych kurs koncentruje się na podstawowych, ale kluczowych 

zagadnieniach związanych z analizą danych i uczeniem maszynowym w języku Python. Zakres 

materiału został dobrany w taki sposób, aby umożliwić uczestnikom samodzielną pracę  

z danymi, wykonywanie analiz oraz budowę prostych modeli predykcyjnych. 

Skrypt należy traktować jako praktyczne wprowadzenie do świata analizy danych  

i uczenia maszynowego, z ograniczoną ilością teorii oraz dużą liczbą przykładów i ćwiczeń, 

które pozwalają stopniowo rozwijać umiejętności analityczne i programistyczne. 

Aby nauczyć się analizy danych i uczenia maszynowego, nie wystarczy tylko czytać 

– kluczowe jest samodzielne pisanie kodu, praca z danymi oraz wielokrotne 

eksperymentowanie z modelami. 

Skrypt został podzielony na dwa zasadnicze rozdziały, które odpowiadają kolejnym 

etapom nauki i stopniowo wprowadzają uczestnika w obszar analizy danych oraz uczenia 

maszynowego.  

Pierwszy rozdział stanowi wprowadzenie do języka Python. Jego celem jest zapoznanie 

uczestników z podstawami programowania, składnią języka oraz najważniejszymi 

konstrukcjami, które będą wykorzystywane w dalszej części kursu. Zakres materiału został 

dobrany w taki sposób, aby umożliwić swobodne posługiwanie się językiem Python jako 

narzędziem do pracy z danymi. 

Drugi rozdział poświęcony jest praktycznej drodze od analizy danych do uczenia 

maszynowego. W tej części uczestnicy uczą się, jak pozyskiwać, przetwarzać i analizować 

dane, jak je wizualizować oraz w jaki sposób budować i oceniać modele uczenia maszynowego. 

Rozdział ten koncentruje się na rzeczywistym procesie pracy analityka i specjalisty ML, 

obejmując pełny cykl pracy z danymi – od surowych danych do wniosków i predykcji. Taki 

podział skryptu pozwala na systematyczne rozwijanie kompetencji, łącząc naukę podstaw 

programowania z praktycznym zastosowaniem Pythona w analizie danych i uczeniu 

maszynowym. 
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Python 

Przygotowanie środowiska do pracy z analizą danych i uczeniem 

maszynowym 

Zanim rozpoczniemy naukę analizy danych i uczenia maszynowego oraz pisanie 

własnych programów, konieczne jest przygotowanie odpowiedniego środowiska pracy.  

W trakcie kursu wykorzystywane będą narzędzia umożliwiające zarówno klasyczne 

programowanie, jak i interaktywną analizę danych. 

 

1) Instalacja języka Python 

Pierwszym krokiem jest instalacja aktualnej wersji języka Python. Oficjalną wersję instalacyjną 

należy pobrać ze strony: https://www.python.org/downloads/. 

Podczas instalacji zaleca się zaznaczenie opcji Add Python to PATH, co umożliwi 

uruchamianie Pythona z poziomu wiersza poleceń oraz integrację z innymi narzędziami. Pliki 

z kodem programu w języku Python zapisywane są z rozszerzeniem .py  

(np. analiza_danych.py). 

 

2) PyCharm – środowisko IDE do programowania w Pythonie 

PyCharm (wersja Community) to rozbudowane środowisko programistyczne (IDE), 

szczególnie przydatne przy: 

 pisaniu większych programów i projektów, 

 tworzeniu aplikacji, 

 pracy z kodem w sposób uporządkowany i modułowy. 

PyCharm oferuje m.in.: 

 podpowiedzi składni i automatyczne uzupełnianie kodu, 

 wykrywanie błędów na etapie pisania programu, 

 zarządzanie bibliotekami i środowiskami wirtualnymi, 

 wygodne uruchamianie i debugowanie programów. 

Środowisko PyCharm można pobrać ze strony: https://www.jetbrains.com/pycharm/download/ 

Uruchomienie programu w PyCharm odbywa się: 

 za pomocą przycisku Run, 

 lub skrótu klawiszowego Shift + F10. 
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PyCharm jest szczególnie polecany do nauki podstaw programowania oraz pracy nad 

projektami, gdzie kod zapisany jest w plikach .py. 

 

3) Jupyter Notebook – interaktywna analiza danych 

Jupyter Notebook to narzędzie stworzone z myślą o analizie danych i uczeniu maszynowym. 

Umożliwia pracę w formie tzw. notebooków, które składają się z komórek zawierających: 

 kod Pythona, 

 tekst opisowy (Markdown), 

 wyniki obliczeń, 

 wykresy i wizualizacje. 

Jupyter Notebook jest szczególnie przydatny do: 

 eksploracyjnej analizy danych, 

 testowania fragmentów kodu, 

 prezentowania wyników analiz krok po kroku, 

 nauki i eksperymentowania z modelami ML. 

Kod w notebooku uruchamia się komórka po komórce, co pozwala na bieżąco obserwować 

wyniki działania programu. Jupyter pracuje na plikach .ipynb. 

Aby zainstalować Jupyter wystarczy w konsoli cmd wpisać polecenie: pip install jupyter. 

Jak uruchomić Jupyter Notebook: 

 za pomocą konsoli cmd przejść do folderu, gdzie znajdują się pliku projektu i wykonać 

polecenie: jupyter notebook, 

 lub w przypadku nowszego interfejsu należy w cmd wpisać: jupyter lab.  

 

4) Google Colab – Python i Jupyter w przeglądarce 

Google Colab (Colaboratory) to internetowa wersja środowiska Jupyter Notebook, działająca 

bez konieczności instalacji oprogramowania na komputerze. Colab pracuje na plikach .ipynb. 

Zalety Google Colab: 

 działa bezpośrednio w przeglądarce, 

 nie wymaga instalacji Pythona ani bibliotek, 

 umożliwia zapisywanie notebooków na Dysku Google, 

 pozwala korzystać z dodatkowych zasobów obliczeniowych (CPU/GPU). 

 



 

9 
 

Google Colab jest idealnym narzędziem: 

 na początek nauki, 

 do szybkiego testowania kodu, 

 do pracy na różnych komputerach, 

 do wspólnej pracy i udostępniania analiz. 

Dostęp do Google Colab: https://colab.research.google.com/. 

 

Kiedy używać którego narzędzia? 

 PyCharm – gdy tworzymy klasyczne programy i projekty w plikach .py, uczymy się 

struktury kodu i pracy programistycznej. 

 Jupyter Notebook – gdy analizujemy dane, tworzymy wykresy i eksperymentujemy  

z modelami. 

 Google Colab – gdy chcemy pracować bez instalacji lub szybko uruchomić analizę  

w przeglądarce. 

Tak przygotowane środowisko umożliwia płynne przejście od nauki programowania, przez 

analizę danych, aż po budowę modeli uczenia maszynowego. 

 

Komentarz  

Bardzo często podczas pisania programów komputerowych komentuje się pewne 

fragmenty kodu lub pewne linie w celu sprawdzenia innego kodu, gdy nie chcemy usuwać 

poprzedniej wersji lub chcemy wyjaśnić pewne zapisy w kodzie. Kod programu opatrzony 

komentarzem nie jest interpretowany przez kompilator. Stosowanie komentarzy w kodzie jest 

dobrą praktyką i ułatwia zrozumienie kody nawet po czasie lub przez innego programistę. 

Wyróżniamy komentarz jednoliniowy: jeżeli linie tekstu poprzedzimy znakiem # oraz 

komentarz blokowy, gdy tekst znajduje się w ””” ”””. Przykład użycia komentarza 

przedstawia Rys. 1.      
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Rys. 1. Komentarz jednoliniowy i blokowy w Pythonie. 

Źródło: Opracowanie Własne 

 

Zmienne 

Pierwszym ważnym elementem w programowaniu są zmienne, czyli nazwy (pudełka), 

które potrafią przechowywać wartości różnego typu. Operowanie na zmiennych to jedna  

z najważniejszych funkcjonalności, jakie oferują języki programowania. Krótko można 

napisać, że zmienna to po prostu nazwa, która wskazuje na jakąś wartość (przechowuje jakąś 

wartość). Język programowania Python posiada kilka wbudowanych typów danych dla 

zmiennych, takich jak: liczby całkowite, rzeczywiste itp. W Python podczas tworzenia 

(deklarowania) zmiennej nie musisz podawać jaki typ danych będziesz przechowywać  

w zmiennej. Po prostu podaje się nazwę zmiennej i przypisuje się jej wartość, np.  

liczba_km = 20.5. Znak równości (=) to operator przypisania. Na Rys. 2. zostały pokazane 

przykładowe deklaracje zmiennych. Wartości zmiennych mogę się zmieniać w czasie działania 

programu. 

 

 

Rys. 2. Deklaracja zmiennych w języku Python. 

Źródło: Opracowanie Własne 
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Klika zasad tworzenia zmiennych: 

 nazwy zmiennych mogą być dowolnie długie, 

 mogą zawierać zarówno litery, jak i liczby, ale nie mogą rozpoczynać się od liczby, 

 choć dozwolone jest użycie wielkich liter, w przypadku nazw zmiennych wygodne 

jest stosowanie wyłącznie małych liter, 

 w przypadku nazw złożonych zalecane jest stosowanie znaku podkreślenia _ lub 

metody camelCase (np. ile_osob_w_sklepie, liczbaOsob),  

 takie same nazwy, ale napisane małymi bądź wielkimi literami, oznaczają różne 

zmienne, 

 nazwy zmiennych nie mogą zawierać spacji,  

 zmiennym nie można nadawać nazw zastrzeżonych dla instrukcji języka Python  

(np. and, for, if, del, while, …itp.). 

 

Instrukcja print 

Instrukcja print pozwala wyświetlać na ekranie tekst lub wartości zmiennych.  

W ogólności można zapisać print(wartość), gdzie wartością może być tekst ”Programowanie 

w Python” lub wartość zmiennej. Przykład użycia instrukcji print przedstawia Rys. 3.  

W przykładzie zadeklarowano dwie zmienne, w pierwszej kolejności zostaje wyświetlony tekst 

”Programowanie w Python”, a następnie zostają wyświetlone wartości zmiennych zmienna  

i moje_imie. W instrukcji print tekst zasadniczo powinno się zapisywać w ” ”. 

 

 

 

Rys. 3. Instrukcja print (kod programu i wynik uruchomienia). 



 

12 
 

Źródło: Opracowanie Własne 

 

Instrukcja print po każdym wyświetleniu wartości (tekstu lub wartości zmiennych) 

przechodzi do nowej linii. Czasami jednak pożądane jest pozostać w bieżącej linii, wówczas 

znak nowej linii można zastąpić na inny znak, np. spację: print(wartość, end=" "). Rys. 4. 

przedstawia przykład zamiany znaku nowej linii na znak spacji w instrukcji print. Print może 

również wyświetlić wynik instrukcji (operacji) oraz kilka zmiennych na raz jak zostało to 

pokazane na Rys. 5. W tym przykładzie pokazany jest wynik odejmowania zmiennych oraz 

połączenie napisów z wartością zmiennej. Tych zmiennych w instrukcji print może być kilka, 

a nawet kilkanaście. Można również zastosować odpowiednie formatowanie wyświetlanych 

wartości zmiennych, jednak nie będzie to przedmiotem tego skryptu.    

 

 

 

Rys. 4. Instrukcja print, zamiana znaku nowej linii na spację. 

Źródło: Opracowanie Własne 

 

 

 

Rys. 5. Wykorzystanie instrukcji print. 

Źródło: Opracowanie Własne 

 

W przypadku zmiennych tekstowych tzw. łańcuchów można dokonywać konkatenacji, 

czyli łączenia kilku zmiennych tekstowych w jeden. Operator + łączy dwa łańcuchy w jedną 

całość, tworząc nowy, dłuższy łańcuch jak zostało to pokazane na Rys. 6. 
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Rys. 6. Konkatenacja łańcuchów. 

Źródło: Opracowanie Własne 

 

Bardzo często zdążają się sytuacje, że w jednej instrukcji print trzeba wyświetlić 

zmienne różnych typów, wówczas bardzo pomocna jest notacja f-string, która w łatwy sposób 

pozwala wyświetlić zmienne różnego typu w połączeniu z tekstem. Przykład notacji f-string 

przedstawia Rys. 7. Stosując powyższą notację przed cudzysłów zawierający tekst wstawia się 

literę f, czyli f”tekst”, a poszczególne zmienne w tekście umieszcza się w nawiasach 

klamrowych {}, taki zapis w prosty sposób pozwala wyświetlić w instrukcji print zmienne 

różnych typów. Modyfikacji wartości zmiennej wykonujemy podobnie, jak byśmy 

przypisywali wartość do zmiennej z tą różnicą, że musimy podać nazwę istniejącej już 

zmiennej, aby ją zmodyfikować. Możemy również zmiennej przypisać wartość innej zmiennej, 

czy też nadpisać wartość innej zmiennej. 

 

nazwaStarejZmiennej = nowaWartośćStarejZmiennej 

 

 

 

Rys. 7. Notacja f-string, czyli wyświetlanie zmiennych różnych typów w połączeniu z tekstem 

Źródło: Opracowanie Własne 

 

Przykład modyfikacji zmiennej i przypisanie zmiennej wartości innej zmiennej przedstawia 

Rys. 8. 
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Rys. 8. Zmiana wartości zmiennych 

Źródło: Opracowanie Własne 

 

Na ekranie zobaczymy wartości 12, 18, 18, ponieważ na początku zmienna a miała wartość  

12, następnie wartość zmiennej a została zmodyfikowana na wartość 18. Zmienna b miała 

wartość 100, jednak w linii siódmej do b została przypisana wartość zmiennej a, czyli 18.  

 

Podstawowe typy zmiennych 

Jak już zostało wspomniane język programowania Python nie wymaga podawania typu 

zmiennej podczas jej deklaracji, jednak możemy wskazać podstawowe typy zmiennych  

w zależności od przechowywanych przez nie wartości, tj.: liczby (int, float), tekst (str) i typ 

logiczny (bool). W języku tym za pomocą instrukcji type można sprawdzić typ zamiennej lub 

wartości 

 

type(nazwaZmiennej). 

 

Rys. 9. prezentuje, jak sprawdzić typ zmiennej lub wartości. Int to zmienne typu całkowitego 

(pozwalają przechowywać liczby całkowite), float to zmienne typu zmiennoprzecinkowego 

(pozwalają przechowywać liczby rzeczywiste,  w których rozdziela się część całkowitą  

od dziesiętnej za pomocą kropki .). Nic nie stoi na przeszkodzie, by zmienną przekonwertować 

 z typu rzeczywistego na całkowity i odwrotnie. Możemy również liczbę wprowadzoną  

w postaci napisu przekonwertować na zmienną typu całkowitego lub rzeczywistego, więcej na 

ten temat będzie poruszone podasz wprowadzania wartości z klawiatury (konsoli). Funkcja int() 
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konwertuje zmienną do tupu całkowitego, natomiast funkcja float() do typu rzeczywistego. 

Przykładowe konwersje zmiennych przedstawia Rys. 10.    

 

 

Rys. 9. Sprawdzenie typu zmiennej i wartości 

Źródło: Opracowanie Własne 

 

Zmienna d na początku ma wartość 3.4, jednak po konwersji do typu całkowitego ma wartość 

3. Z kolei zmienna e to wartość zmiennej b przekonwertowana do typu rzeczywistego, czyli 

2.0. Wartość zmiennej f, to wartość 1.5, gdyż napis został przekonwertowany do wartości 

rzeczywistej, a linia 11 spowoduje wyświetlenia wartości 4.5 w konsoli. Język Python bardzo 

dobrze radzi sobie z konwersją różnych typów zmiennych.    

 

 

Rys. 10. Konwersja zmiennych 

Źródło: Opracowanie Własne 
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Zmienne tekstowe (str) 

Typ str reprezentuje w Pythonie wszelkiego rodzaju teksty/napisy. Tekst możemy 

umieścić pomiędzy znakami pojedynczego (' ') lub podwójnego (" ") cudzysłowu – efekt będzie 

dokładnie taki sam, np. imie = "Paweł", jezyk = ‘Python’. Zadeklarowaliśmy dwie zmienne 

tekstowe. Również wartości zmiennych typu całkowitego lub rzeczywistego można 

konwertować do wartości tekstowej za pomocą funkcji str(), jak zostało to pokazane na  

Rys. 11. W linii drugiej wiek został skonwertowany do napisu. 

 

 

Rys. 11. Konwersja zmiennej liczbowej do tekstowej 

Źródło: Opracowanie Własne 

 

Zmienne logiczne (bool) 

Wartości logiczne reprezentują logiczną prawdę lub fałsz. W języku programowania 

Python istnieją predefiniowane nazwy odpowiednio True dla logicznej prawdy (1) i False dla 

logicznego fałszu (0): 

 

p = True      # deklaracja wartości logicznej "prawda"  

f = False      # deklaracja wartości logicznej "fałsz". 

 

W celu przekształcenia dowolnej wartości na wartość logiczną można wykorzystać funkcję 

wbudowaną bool(). Dla przykładu:  

 

a = 1  

b = 0 

bool(a)       # True 

bool(b)       # False. 

 

Konwersja wartości zmiennej a zwróci True, czyli prawdę, a zmiennej b zwróci False, czyli 

fałsz. 
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Operatory arytmetyczne 

Żadne obliczenia w programie nie byłyby możliwe, gdyby nie operatory arytmetyczne. 

Wyróżniamy następujące operatory arytmetyczne (+, -, *, /, %, **).  

 

Dodawanie +    (2 + 4) 

Odejmowanie -   (11 - 5) 

Mnożenie *    (2 * 4) 

Dzielenie /    (6 / 2) 

Modulo – reszta z dzielenia %  (10 % 3) 

Potęgowanie **   (2 ** 2) 

 

Na Rys. 12. przedstawiono użycie podstawowych operatorów arytmetycznych (+, -, * i /). Póki 

co, kod programu nie został zabezpieczony na ewentualność dzielnie przez 0, czyli żeby liczba2 

była różna od zera. Takie zabezpieczenie zrobimy po wprowadzeniu instrukcji warunkowej if  

i operatorów relacji. Warto już zaznaczyć, że w linii 2 i 3 kodu do liczb liczba1 i liczba2 została 

przypisana wartość wczytana z klawiatury, które zostały skonwertowane do typu liczbowego 

zmiennoprzecinkowego float, o czym będzie mowa w dalszej części rozdziału (interaktywny 

program).  

 

  

Rys. 12. Operatory arytmetyczne (+, -, *, /) 

Źródło: Opracowanie Własne 

 

Operatory relacji 

Dostępne operatory relacji, które wykorzystuje się w instrukcji warunkowej if oraz 

pętlach są zebrane poniżej. Wynikiem porównania jest wartość logiczna True dla prawdy lub 
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False dla fałszu. Przykłady użycia operatorów relacji zostaną pokazane po wprowadzeniu 

wspomnianej wyżej instrukcji if.   

 

> większy niż  

< mniejszy niż 

== równy względem 

>= większy lub równy względem 

<= mniejszy lub równy względem 

!= różny względem 

 

Operatory logiczne 

W języku programowania Python wykorzystuje się również operatory logiczne, 

podobnie jak operatory relacji najczęściej w połączeniu z instrukcją warunkową if oraz  

w pętlach. Operator AND, to w logice „i” (koniunkcja), natomiast OR, to w logice „lub” 

(alternatywa), z kolei NOT, to zaprzeczenie (negacja). Gdy zanegujemy prawdę True  

to otrzymamy fałsz, czyli False i na odwrót. Logiczne „lub” zwraca prawdę, gdy przynajmniej 

jeden z warunków jest prawdziwy, w przeciwnym razie zwraca fałsz. Z kolei logiczne  

„i” zwraca prawdę w przypadku, gdy wszystkie warunki są prawdziwe, w przeciwnym razie 

zwraca fałsz. 

 

AND 

OR 

NOT 

 

Interaktywny program 

Interaktywny program, to program, w którym użytkownik ma możliwość wprowadzania 

danych w konsoli w czasie rzeczywistym. Python udostępnia wbudowaną funkcję input, która 

umożliwia wprowadzenie danych przez użytkownika. Po wywołaniu funkcji input w konsoli 

pokazuje się kursor oczekiwania na wprowadzenie ciągu znaków. Po wprowadzaniu wartości 

(ciągu znaków) użytkownik zatwierdza wprowadzoną wartość klawiszem Enter. 

Wprowadzony ciąg znaków z klawiatury musi zostać przypisany do jakieś zmiennej. Warto 

zaznaczyć bardzo ważną rzecz: jeżeli nawet wczytamy znaki będące liczbą, to należy pamiętać, 
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że to nie jest liczba, tylko ciąg znaków (string), który należy przekonwertować do wartości 

liczbowej.     

 

imie = input("Wprowadź imię: ") 

 

Po wywołaniu funkcji input na ekranie pokazuje się napis „Wprowadź imię”: oraz kursor 

oczekiwania na wprowadzenie ciągu znaków. Użytkownik wprowadza imię (ciąg znaków), 

który zatwierdza klawiszem Enter, wprowadzony ciąg znaków zostaje przypisany do zmiennej 

imie (string jest zwracany poprzez funkcję input i przypisany do zmiennej imie). Poniżej 

podobnie wprowadzany jest ciąg znaków wiek, który ma być docelowo wartością liczbową, 

dlatego dodatkowo jest konwertowany do typu int, czyli wartości liczbowej całkowitej. Gdy 

chcemy dokonać konwersji ciągu znaków do wartości zmiennoprzecinkowej używamy funkcji 

float.        

 

wiek= int(input("Wprowadź swój wiek: ")) 

 

Omawiane wyżej dwa przykłady zostały pokazane Rys. 13. 

 
 

 

 

 
 

Rys. 13. Interaktywny program, czyli wprowadzanie ciągów znaków z konsoli. 

Źródło: Opracowanie Własne 

 
Typy sekwencyjne 

Sekwencyjne typy danych służą do zapamiętywania wielu wartości w pojedynczej 

zmiennej, w odróżnieniu od typów prostych, takich jak int, float, które w pojedynczej zmiennej 

mogą zachować tylko jedną wartość. 
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Typ napisowy  

Tak naprawdę napisy są sekwencjami znaków. Każdy typ sekwencyjny pozwala na 

dostęp do każdego swojego elementu z osobna. Aby uzyskać dostęp do znaku na określonej 

pozycji podajemy nazwę zmiennej oraz indeks (numer porządkowy liczony od lewej, zero 

oznacza pierwszy znak napisu) w nawiasach kwadratowych: 

 

imie = ”Paweł” 

 
 

0 1 2 3 4 

P a w e ł 

 

imie[1]                 # ‘a’ 

print(imie[4])     # wyświetli znak ł na ekranie konsoli. 

 

Należy zapamiętać, że znaki (elementy) są numerowane od 0, czyli powyższy napis imie składa 

się z 5 elementów numerowanych od 0 do 4. Można również numerować elementy liczbami 

ujemnymi, jednak celowo nie wprowadzam tego sposobu indeksowania, by nie zmniejszać 

czytelności indeksowania typów sekwencyjnych. Aby poznać długość napisu (liczbę 

elementów), posługujemy się funkcją len: 

 

len(imie)           # 5, numerowane od 0 do 4. 

 

Przykład odwołania się do pojedynczych znaków napisu oraz długość napisu prezentuje Rys. 

14. 

 

     

Rys. 14. Typ napisowy (odwołalnie do pojedynczych znaków, długość napisu). 

Źródło: Opracowanie Własne 
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Dla typu napisowego istnieje szereg przydanych metod, które bardzo ułatwiają pracę 

programiście, poniżej zostały zaprezentowane przykładowe metody. Jeżeli nasza zmienna 

napisowa to imie = ”Pawel”, to możemy dla niej uruchomić pewne metody: 

 

imie.capitalize() - zmienia pierwszą literę na dużą 

imie.count(Pa) - zlicza wystąpienie podciągu Pa w napisie imie 

imie.isdigit() - sprawdza czy wszystkie znaki są cyframi 

imie.islower() - sprawdza czy wszystkie litery są małe 

imie.isupper() - sprawdza czy wszystkie litery są duże 

imie.replace(old, new) - zastępuje stary podciąg nowym 

imie.strip() - usuwa początkowe i końcowe białe znaki. 

 

Warto zaznaczyć, że uruchomienie metody dla zmiennej znakowej odbywa się przez podanie 

nazwy zmiennej, następnie znaku kroki (.) i nazwy metody. Wynika to z programowania 

obiektowego, które poznacie Państwo na szkoleniu. 

 

nazwa_zmiennej.nazwa_metody 

 

Listy 

Najpopularniejszym i najczęściej stosowanym typem zmiennych zawierającym więcej 

niż jedną wartość są listy (od angielskiego „list”), czasami nazywane też tablicami. Lista to 

uporządkowany zbiór różnych elementów. Najczęściej wewnątrz listy stosuje się jeden typ 

zmiennych, ale nic nie stoi na przeszkodzie, aby w jednej liście umieścić wartości zupełnie 

różnych typów (Python na to pozwala, jednak język C/C++ już nie). Zmienne tworzymy, 

zapisując pomiędzy nawiasami kwadratowymi („[” i „]”) elementy, które chcemy, aby nasza 

lista przetrzymywała. Poniżej została zadeklarowana lista1 złożona z 5 elementów 

numerowanych od 0 do 4 zawierająca zmienne różnego typu. 

    
 

lista1 = [5, 1.28, ”Programowanie”, ”Python”, -2.36] 

 

indeks 0 1 2 3 4 

wartość 5 1.28 Programowanie Python -2.36 
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Jak już zostało to wspominane, listy najczęściej są złożone z elementów tego samego typu. 

Poniżej została zaimplementowana lista złożona z liczb całkowity oraz pusta lista, która nie 

zawiera na ten moment żadnego elementu. 

 
 

lista1 = [0, 2, 4, 6, 8] 

lista2 = [] 

 
 

lista1 przechowuje 5 elementów, które zostały umieszczone w nawiasach kwadratowych[]. 

Można wyświetlić wszystkie elementy listy lub pojedynczy element. Można również dokonać 

zmiany wartości elementu w liście. 

 

print(lista1)          # [0, 2, 4, 6, 8] 

print(lista1[2])     # 4 

lista1[2] = 5          # element o indeksie 2 będzie miał wartość 5 

print(lista1)          # [0, 2, 5, 6, 8] 

 
 

Indeksowanie list jest identyczne jak indeksowanie typu napisowego i zaczyna się od 0. 

Również w innych językach programowania np. C/C++ tablice indeksuje się od 0. Nasza lista1 

składa się z 5 elementów indeksowanych od 0 do 4, gdzie pierwszy element to 0, a ostatni (4) 

wartość 8. Nie ma indeksu o wartości 5! Jest to bardzo ważne przy pracy z listami, by nie wyjść 

poza zakres listy.    

 
 

 Dodawanie elementu do listy 

Aby dodać element do listy, używamy funkcji append, której jako parametr podajemy 

wartość, jaką chcemy dodać do naszej listy, np. 

 
 

print(lista1)                    # [0, 2, 5, 6, 8] 
 

lista1.append(10)          # dodanie elementu 10 do listy 

print(lista1)                # [0, 2, 5, 6, 8, 10]. 
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Czyli do wyżej omawianej lista1 został dodany kolejny element o wartości 10. Element ten 

został dodany na koniec listy.  

 
 

 Usunięcie elementu po indeksie 

Aby usunąć jakiś element z listy, należy użyć instrukcji del od angielskiego słowa „delete”, 

czyli właśnie usuwać. Instrukcja del usunie element z listy o określonym indeksie. Należy 

zwrócić szczególną uwagę na indeks elementu, którego chcemy usunąć, by nie odwoływać się 

do elementu, który nie istnieje.   

 

lista2 = [7, 2, 4, 6, 1]      # [7, 2, 4, 6, 1] 

del lista2[2]                     # usuniecie elementu z listy o indeksie 2 

print(lista2)                     # [7, 2, 6, 1] 

 

Powyżej został utworzona nowa lista2 złożona z 5 elementów indeksowana od 0 do 4. 

Następnie został usunięty element o indeksie numer 2, czyli element 4, po czym zostały 

wyświetlone elementy listy. Warto zwrócić uwagę, że po takim działaniu nasza lista uległa 

skróceniu, a więc i numeracja indeksów uległa zmianie. W tej chwili ostatni element tablicy 

ma numer 3. Użycie indeksu o wartości 4 spowoduje błąd w programie. 

 
 

 

 Dodanie elementu w dowolne miejsce 

Jeśli chcemy dodać element w konkretne miejsce na liście, musimy znać numer elementu 

(indeks), przed który chcemy wstawić nową wartość. Dodanie elementu do listy na konkretnej 

pozycji wykonuje się przez funkcję insert, która przyjmuje dwa parametry. Pierwszy parametr 

funkcji insert to indeks miejsca, przed które chcemy wstawić nowy element, a drugi to element, 

który chcemy dodać do naszej listy.   

 

lista2.insert(2, 4)  # dodanie elementu do listy o wartości 4 na pozycji 2 

print(lista2)           # [7, 2, 4, 6, 1] 

 

 Sprawdzenie czy element występuje na liście 

W celu sprawdzenia czy dany element występuje w liście, stosujemy polecenie: 
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lista3 = [0, 2, 4, 6, 8]     # [0, 2, 4, 6, 8] 

print(2 in lista3)             # Wyświetli True, bo element 2 jest na liście. 

 

Podobnie jak do typu napisowego istnieje kilka przydatnych metod do obsługi list, przykładowe 

poniżej:            

list(s) konwertuje sekwencję s na listę 

s.append(x) dodaje nowy element x na końcu listy s 

s.count(x) zlicza wystąpienie x w liście s 

s.index(x) zwraca najmniejszy indeks i, gdzie s[i] == x 

s.pop(i) zwraca i-ty element z listy i usuwa go z listy s  

s.remove(x) odnajduje wartość x i usuwa go z listy s 

s.reverse() odwraca w miejscu kolejność elementów listy s. 

 
 

Przykładowe operacje na liście zostały zebrane na Rys. 15. 

 

 

Rys. 15. Przykładowe operacje na listach. 

Źródło: Opracowanie Własne 

 

Krotki 

Innym typem zmiennych, który może przetrzymywać więcej niż jedną wartość, są tak 

zwane krotki. Krotki są bardzo podobne do list z jedną bardzo ważną różnicą – dane  

w krotkach są niezmienne. Czyli raz utworzona krotka już do końca ma takie elementy, jakie 

zostały podane przy jej implementacji. Krotki deklaruje się tak samo jak listy, tylko zamiast 

nawiasów kwadratowych używa się zwykłych ().W przypadku krotek, tak samo jak i w listach, 
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możemy wyświetlać pojedyncze elementy za pomocą instrukcji print lub wszystkie, również 

indeksujemy je od zera. 

 

krotka1 = (1, 3, 5, 7, 9)  

print(krotka1)                            # (1, 3, 5, 7, 9) 

print(krotka1[1])                       # wyświetlamy element 1 czyli 3 

  

Krotki są bardzo przydatnym typem danych wszędzie tam, gdzie kolejność elementów ma 

znaczenie, a bardzo nie chcemy, żeby program mógł zmieniać zawartość naszej zmiennej. 

Zastosowanie krotki może mieć miejsce w zdefiniowaniu parametrów konfiguracyjnych 

naszego programu np.: połączenie z bazą danych, login do bazy, hasło itp. Przykład 

wyświetlenia elementów krotki pokazany jest na Rys. 16. 

 

 

 

Rys. 16. Wyświetlanie elementów krotki. 

Źródło: Opracowanie Własne 

 

Zbiory 

Trzecim typem zmiennych mogących posiadać więcej niż jedną wartość są zbiory, 

posiadają one pewną bardzo ciekawą właściwość, która może być bardzo pomocna przy 

rozwiązywaniu niektórych problemów: jej elementy nie mogą się powtarzać. Dodatkową 

cechą zbiorów jest to, że są nieuporządkowane, a co za tym idzie nie możemy wyświetlać 

dowolnego ich elementu w taki sposób jak w przypadku list, czy krotek. Można za to dodawać 

i usuwać elementy ze zbiorów. Zbiory tworzymy za pomocą nawiasów klamrowych {}. 

 

zbior1 = {2, 4, 6, 8, 10}        # tworzymy zbiór elementów 

print(zbior1)                          # {2, 4, 6, 8, 10} 

zbior1.add(1)                        # dodajemy do zbior1 wartość 1 

zbior1.add(3) )                     # dodajemy do zbior1 wartość 3 
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print(zbior1)                         # {1, 2, 3,  4, 6, 8, 10} 

zbior.remove(10)                 # usuwamy ze zbioru wartość 10 

print(zbior)                          # {1, 2, 3,  4, 6, 8} 

zbior2 = set()                       # tworzymy zbiór pusty  

zbior2= {5, 3, 1}                  # przypisujemy lamenty do zbioru  

 

Za pomocą metody add można dodać elementy do zbioru, z kolei za pomocą remove można 

usunąć element ze zbioru. Funkcja len (np. len(zbior2)) zwróci liczbę elementów w zbiorze.  

 

Słowniki 

Ostatnim z typów danych mogących posiadać więcej niż jedną wartość są słowniki. 

Słowniki są zupełnie innym typem danych od dotychczas opisywanych. Pierwszy element jest 

nazywany kluczem, a drugi wartością. Jednemu elementowi (kluczowi), jest przypisana jakaś 

wartość. Warto zauważyć, że kolejność elementów w słownikach nie ma znaczenia, ponieważ 

dane w nich i tak wyszukuje się po kluczu. Słowniki można modyfikować, czyli można do nich 

dodawać nowe elementy i usuwać już istniejące. Jedyna zasada to taka, że klucze nie mogą się 

powtarzać. W słowniku wszystko może być kluczem, tak samo jak i wszystko może być 

wartością. Możliwe są zatem takie przykładowe konstrukcje: 

 

 na_slowa = {1:'jeden', 2:'dwa', 3:'trzy', 4:'cztery', 5:'pięć'} 

print(na_slowa)          # {1:'jeden', 2:'dwa', 3:'trzy', 4:'cztery', 5:'pięć'} 

 

na_cyfry = {'jeden':1, 'dwa':2, 'trzy':3, 'cztery':4, 'pięć':5}  

print(na_cyfry)           # {'jeden':1, 'dwa':2, 'trzy':3, 'cztery':4, 'pięć':5} 

 

Powyższe konstrukcje pozwalaj zamieniać napisy na liczby i odwrotnie. Słowniki, tak samo 

jak zbiory, tworzymy przy użyciu nawiasów klamrowych. Pierwszy element to klucz, drugi to 

wartość. Klucz jest oddzielony od wartości dwukropkiem (:), a poszczególne pary klucz-

wartość przecinakami (,). 

 

print(na_slowa[3])               # wyświetli 'trzy' 

print(na_cyfry['trzy'])          # wyświetli 3 
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Aby dodać nowy element do słownika, po prostu wpisujemy w nawiasy kwadratowe klucz, 

którego chcemy użyć i przypisujemy mu wartość: 

 

na_slowa[6]=' sześć'              # dodanie do słownika pary o kluczu 6 i wartości 'sześć' 

print(na_slowa)                      # {1: 'jeden', 2: 'dwa', 3: 'trzy', 4: 'cztery', 5: 'pięć', 6: 'sześć'} 

 

Usuwanie elementów ze słownika wygląda podobnie jak w przypadku list, ale zamiast indeksu 

elementu podajemy klucz, który chcemy usunąć wykorzystując metodę pop. 

 

na_slowa.pop(3)         # usunięcie elementu ze słownika na_slowa o kluczu 3  

print(na_slowa)          # {1: 'jeden', 2: 'dwa', 4: 'cztery', 5: 'pięć'} 

na_cyfry.pop('trzy')    # usunięcie elementu ze słownika na_cyfry o kluczu ‘trzy’ 

print(na_cyfry)           # {'cztery': 4, 'dwa': 2, 'jeden': 1, 'pięć': 5} 

 

Instrukcje warunkowe if 

Praktycznie prawie w każdym programie są podejmowane pewne decyzje, są pewne 

warunki, które wpływają na pracę programu. Do podejmowania decyzji w programowaniu 

służy instrukcja warunkowa if, czyli z języka angielskiego „jeśli”. Fragment kodu programu 

wykona się tylko wtedy, gdy będzie spełniony warunek (warunek będzie prawdziwy, czyli 

będzie miał wartość logiczną True). Sytuacji takich jest bardzo dużo, np. dzielnie zostanie 

wykonane tylko wtedy, gdy dzielnik będzie różny od zera. Instrukcja if posiada również 

opcjonalną, dodatkową część w postaci instrukcji else, czyli „w przeciwnym wypadku”. 

Dodatkowa cześć else nie jest obowiązkowa, ale bardzo często jest przydatna, gdy chcemy,  

by program sprawdził jakiś warunek i wykonał jakiś kod, jeśli warunek jest prawdziwy lub 

wykonał inny kawałek kodu, jeśli warunek był nieprawdziwy (fałszywy). Użycie instrukcji  

if – else wygląda w Pythonie następująco:   

 
 

if (wyrażenie warunkowe): 

instrukcja 1 

instrukcja 2 

... 
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else: 

instrukcja 1 

instrukcja 2 

... 

 

W części „wyrażenie warunkowe” wpisujemy, to co chcemy, aby nasz program sprawdził (czyli 

stawiamy pewien warunek). Wyrażenie warunkowe może być zapisane w nawiasach, jednak 

nie jest to wymagane. Po części wyrażenie warunkowe musimy wpisać dwukropek, co oznacza, 

że dalej występują instrukcje, które mają być wykonane, jeśli warunek jest prawdziwy. Warto 

zaznaczyć, że instrukcji może być dowolna ilość, ale wszystkie instrukcje muszą być wcięte 

względem instrukcji if. W ten sposób Python rozpoznaje które instrukcje ma wykonać po 

sprawdzeniu prawdziwości wyrażenia. Tak samo po instrukcji else musimy wstawić 

dwukropek, a instrukcje muszą być wcięte. Np. w języku programowania C/C++ wcięcia to 

tylko dobra praktyka programisty, a operacje (instrukcje) blokuje się za pomocą klamer{}. 

Działanie instrukcji if - else odzwierciedla Rys. 17. 

 

 

Rys. 17. Instrukcja warunkowa if - else. 

Źródło: Opracowanie własne 

 

Poniżej prosty przykład użycia instrukcji if (Rys. 18.). Program wczytuję liczbę  

z konsoli i konwertuje ją do typu całkowitego. Następnie sprawdzany jest warunek, jeśli 
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wprowadzona liczba jest większa od 10, wówczas w konsoli wyświetla się komunikat 'Wpisałeś 

cyfrę większą niż dziesięć', gdy jednak mniejsza lub równa 10, to nic się nie dzieje. Kolejną 

instrukcją jest instrukcja print wyświetlająca komunikat 'Koniec programu' niezależnie od tego, 

czy warunek był prawdziwy, czy fałszywy.   

 

 

Rys. 18. Przykład użycia instrukcji warunkowej if. 

Źródło: Opracowanie własne 

 

Na Rys. 19. została pokazana zmodyfikowana wersja programu z Rys. 18. Modyfikacja 

polegała na dodaniu dodatkowej cześć else, która wykona się, gdy warunek jest nieprawdziwy, 

tzn., gdy wprowadzona cyfra jest mniejsza od 10. Program ma jeszcze jeden defekt, 

nieprawidłowo się zachowa, gdy wprowadzimy cyfrę równą 10.  W celu usunięcia ww. defektu 

musimy dodać jeszcze jedną instrukcję if, jak zostało to pokazane na Rys. 20. 

 

 

Rys. 19. Przykład użycia instrukcji warunkowej if - else. 

Źródło: Opracowanie własne 

 

Jak widać z Rys. 20. można zagnieżdżać instrukcje warunkowe, czyli w instrukcji warunkowej 

umieścić kolejną instrukcję. Linie 5 i 6 kodu z Rys. 20. można połączyć w jedną linie. Zamiast 

pisać else:, a następnie if(), można od razu zapisać elif, jak zostało to pokazane na Rys. 21. 
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Rys. 20. Przykład użycia zagnieżdżonej instrukcji warunkowej if - else. 

Źródło: Opracowanie własne 

 

 

Rys. 21. Przykład użycia instrukcji elif. 

Źródło: Opracowanie własne 

 

Pętla for 

Poznanie instrukcji iteracyjnych (pętli) pozwala programiście rozwiązywać trudniejsze 

zadnia, problemy. Obok instrukcji warunkowej, znajomość pętli jest konieczna do pisania 

programów. Pisząc programy, bardzo często zdarzy się, że będziemy chcieli wykonać jakieś 

zadanie (instrukcję) więcej niż jeden raz. Korzystając z pętli możemy określoną operację 

(instrukcję) wykonywać z góry określoną ilość razy, np. 1000, 20000, 3 miliony lub tak długo, 

jak warunek jest prawdziwy. Idę działania instrukcji iteracyjnych (pętli) przedstawia Rys. 22.        

Pierwszą pętle jako sobie omówimy, jest pętla for. Pętla ta ma kilka postaci. Jako 

pierwszą opiszemy pętle for z zakresem range. Pętla ta ma następująco postać: 

 

for i in range(101): 

<instrukcje> 
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Rys. 22. Idea działania pętli. 

Źródło: Opracowanie własne 

 

W tej konstrukcji, funkcja range przyjmuje parametr i zwraca kolejno cyfry z zakresu  

<0; wartość), czyli w naszym wypadku <0; 101). Pisząc prościej pętla wykona się 101 razy,  

a w każdym obiegu pętli parametr (zmienna) i będzie przyjmować odpowiednio wartości:  

0, 1, 2, 3, 4, …, 100. Warto zwrócić uwagę, jakie wartość przyjmie parametr i. Znak mniejszości 

< oznacza, że zaczynamy od 0 włącznie i kończymy na 101 (czyli wartości zapisanej  

w nawiasie) ale bez tej wartości, bowiem jest nawias otwarty ). Po podaniu wartości funkcji 

range() stawia się :, a następnie wypisuje się instrukcje, które mają być wykonane w pętli. 

Wszystkie instrukcje, które mają być wykonywane w pętli musza być wcięte w stosunku do 

instrukcji for, podobnie jak to było w przypadki instrukcji if. Funkcja range może przyjmować 

następujące postacie: 

 

 bez zakresu początkowego                    range(10)   # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 

 z zakresem początkowym i końcowy     range(1,10)      # [1, 2, 3, 4, 5, 6, 7, 8, 9], 

 z zakresem początkowym, końcowym i krokiem   range(1,10,2)   # [1, 3, 5, 7, 9]. 
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Rys. 23. Przykład użycia pętli for in range. 

Źródło: Opracowanie własne 

 

W ogólności składnia pętli for jest następująca: 

 

for <nazwa_zmiennej> in <obiekt> : 

 instrukcja1 

instrukcja2 

instrukcja3 

 

Zamiast <nazwa_zmiennej> wstawiamy dowolną nazwę, która będzie wykorzystywana  

do przechowywania kolejnych elementów pobieranych z <obiekt>. Pętle for dla przykładu 

możemy wykorzystać do wypisania wszystkich elementów z listy. Pętla wykona się tyle razy, 

ile elementów jest na liście. Przykład użycia pętli for do odczytu wszystkich elementów listy 

przedstawia Rys. 24. 

 

 

Rys. 24. Przykład użycia pętli for z elementami listy. 

Źródło: Opracowanie własne 

 

W tym przykładzie pętla for pobiera kolejne elementy z listy, „wrzuca” je do zmiennej  

zm i następnie przechodzi do wykonywania instrukcji, które jak zawsze są wypisane  
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po dwukropku i we wcięciu. W tym konkretnym przypadku jest to instrukcja print, która 

wyświetla poszczególne elementy z listy. 

Zdarzają się sytuację, że oprócz wyświetlenia elementów listy potrzebujemy wyświetlić 

indeksy poszczególnych elementów. W takiej sytuacji stosujemy pętle for w postaci enumerate:  

 
 

for indeks, wartość in enumerate(lista):  

print(indeks, wartość) 

 

 

Rys. 25. Pętla for dla list (wyświetlenie indeksów i wartości elementów listy. 

Źródło: Opracowanie własne 

 

Warto przypomnieć, że listy numeruje się od 0. Przykład jak odczytywać indeksy i wartości 

poszczególnych elementów listy za pomocą instrukcji for pokazany jest na Rys. 25. Podobnie 

pętlę for można wykorzystać do pracy ze słownikami.  

 
 

for key in slownik: 

 <instrukcje> 

 

Pętla for również pozwala wykonać operacje na słownikach, zawracając jego klucz (key) .Gdy 

znamy klucz do słownika, to możemy wyświetlić wartość pod wskazanym kluczem. Przykład 

wykorzystania pętli for do pracy ze słownikami została pokazany na Rys. 26. 

 

  

Rys. 26. Przykład użycia pętli for dla słowników. 

Źródło: Opracowanie własne 
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Pętle można zagnieżdżać (czyli w pętli może umieszczać kolejne pętle) i łączyć z innymi 

instrukcjami, np. instrukcją warunkową if, jak zostało to pokazane Rys. 27. 

 

 

Rys. 27. Przykład połączenia pętli for i instrukcji warunkowej if. 

Źródło: Opracowanie własne 

 

Powyższy przykład wyświetla elementy listy, jednak tylko te, które są większe od 5.  

 

Pętla while 

Pęta for wykonuje się z góry określona liczbę razy albo dla wszystkich elementów  

z listy, słownika, jednak jesteśmy wstanie określić, ile razy ta pętla się wykona.  

W programowaniu są jednak takie sytuacje, że nie wiem z góry, ile razy mają się wykonać 

instrukcje w pętli, wówczas możemy wykorzystać pętle while, która będzie się wykonywać tak 

długo, jak warunek w niej będzie prawdziwy. Pętla while, czyli „dopóki” tak samo jak 

instrukcja if sprawdza pewien warunek oraz ma podane instrukcje do wykonania. Różnica 

pomiędzy instrukcją if a while jest taka, że instrukcja if wykona operacje w niej zawarte jedne 

raz, gdy warunek jest prawdziwy, a pętla while tak długa jak warunek będzie prawdziwy. Czyli 

pętla while sprawdza warunek, wykonuje instrukcje, znowu sprawdza warunek, znowu 

wykonuje instrukcje i robi to tak długo, dopóki warunek jest prawdziwy. Jeśli warunek będzie 

fałszywy (nieprawdziwy) instrukcje nie zostaną wykonane ani razu, a program przejdzie do 

dalszej części programu. Szkielet pętli while wygląda następująco: 

 

while (warunek):  

instrukcje 1 

instrukcje 2 

 
 

Warto znowu przypomnieć, że instrukcje, które mają być zawarte w pętli muszą być wcięte  

w stosunku do słowa kluczowego while. Przykład użycia pętli while jest pokazany na Rys. 28. 
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Rys. 28. Przykład wykorzystania pętli while. 

Źródło: Opracowanie własne 

 

Na początku zmienna a ma wartość 5, ona posłuży do sterowania pętlą, która będzie się 

wykonywała tak długo, jak wartość zmiennej będzie większa niż 0. Mamy zwarte dwie 

instrukcje w pętli: wyświetlamy wartość zmiennej i zmniejszamy wartość zmiennej  

o 1. Omawiając pętle while warto wspomnieć o dwóch instrukcjach: continue i break.  

Instrukcja continue – pomija wykonanie instrukcji i powoduje przejście do kolejnej iteracji 

(obrotu pętli), z kolei instrukcja break – powoduje przerwanie wykonywanie całej pętli.  

Powyższe instrukcje można stosować zarówno z pętlą for, jak i while. Rys. 29. pokazuje jak 

działa instrukcja continue, w tym przypadku na ekranie konsoli zostaną wyświetlone liczby  

0 i 2 z listy liczby. Pozostałe liczby nie zostaną wyświetlone, gdyż operacja continue przerywa 

obieg pętli, gdy liczba x będzie mniejsza od 0.     

 

 

Rys. 29. Przykład wykorzystania instrukcji continue. 

Źródło: Opracowanie własne 

 

Na Rys. 30. pokazany jest przykład użycia instrukcji break, która w tym konkretnym przypadku 

spowoduje, że w konsoli zostaną wyświetlone jedynie liczby -2 i -1, gdyż break przerywa 

działanie całej pętli, gdy x przyjmie wartość równą 0. 
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Rys. 30. Przykład wykorzystania instrukcji break. 

Źródło: Opracowanie własne 

 

Funkcje w Pythonie 

Do tej pory korzystaliśmy tylko z gotowych funkcji (tak na naprawdę metod, ale o tym 

później), których Python dostarcza olbrzymią ilość. W tym miejscu jednak nauczymy się 

tworzyć własne funkcje. Jest to bardzo proste i jednocześnie bardzo przyśpiesza tworzenie 

nowych programów, ponieważ raz napisany kod można bardzo łatwo i szybko wykorzystać 

ponownie. Nową funkcję deklarujemy używając słowa kluczowego def od podania jej nazwy 

oraz parametrów, jakie funkcja będzie pobierać, jeśli w ogóle jakieś ma pobierać: 

 

def <nazwa funkcji>(): 

 instrukcje 1 

 instrukcje 2 

 

Jeżeli funkcja ma zwraca wartość, to wówczas będzie miała postać: 

 

def <nazwa funkcji>(): 

 instrukcje 1 

 instrukcje 2 

 return wartość 

 

Poniżej mamy przykład funkcji suma, która dodaje dwie liczby. Argumentami funkcji są 

właśnie sumowane liczby (x, y). Funkcja nic nie zwraca, a jedynie wyświetla wynik sumowania 

liczb. 
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def suma(x, y): 

z = x + y 

print(z)  

 

Tą samom funkcję można również napisać w taki sposób, by zamiast wyświetlania sumy liczb 

zwracała wynik. 

   

def suma(x, y): 

 z = x + y 

 return z 

 

Należy jednak pamiętać, że jeżeli funkcja zwraca wartość, to należy ją przypisać do jakieś 

zmiennej. Poniżej przykład wywołania funkcji zwracające wartość: 

 

a = 3 

b = 2 

c = suma(a, b) 

print(c)       

 

Funkcja w tym konkretny przypadku zwraca wartość 5, gdyż sumuje dwie liczby zapisane  

w zmiennych a i b (3, 2). Do zmiennej c zostanie przypisana wartość zwracana przez funkcję, 

a funkcja print na ekranie wyświetli wartość 5.  Funkcję, wywołujemy tak samo jak każdą inną, 

czyli używając jej nazwy, a w nawiasy wpisując parametry. Parametrami funkcji mogą być 

zarówno zmienne, jak i stałe. W większości przypadków funkcja zwraca jeden wynik, jednak 

należy pamiętać, że w Pythonie funkcja może zwrócić ich wiele jednocześnie. Zostało to 

pokazane na przykładzie poniżej.    

 

def licz(x, y): 

 z = x - y 

 m = x ** y 

 r = x + y 

 return z, m, r 
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Poniżej wywołanie funkcji z argumentami: 

 

wynik = licz(10, 5) 

 print(wynik[0], wynik[1], wynik[2]) 

 

Wywołanie funkcji wymaga podania wartości dla wszystkich parametrów - jeżeli nie podamy 

wartości dla wszystkich parametrów formalnych, wystąpi błąd. Możemy tego uniknąć, podając 

domyślne wartości argumentów- więcej o tym wątku zostanie powiedziane podczas szkolenia. 

 

Wyjątki 

Do tej pory zawsze zakładaliśmy, że nasz kod programu działa poprawnie (np. dzieląc 

liczby zakładaliśmy, że nikt nie będzie chciał dzielić przez zero). Co się jednak dzieje, kiedy 

coś pójdzie nie tak? W takich sytuacjach ”wyrzucany” jest wyjątek. Wyjątek jest obiektem 

specjalnego typu, który powoduje awaryjne przerwanie wykonania programu. Dla przykładu:  

wyjątek jest ”wyrzucany” np. kiedy staramy się odwołać do nieistniejącego elementu w liście, 

będziemy próbować dzielić przez zero itd. Jeżeli spróbujemy wykonać kod: 

 

lista = [1, 2, 3, 4] 

print (lista[5]) 

 

to wówczas pojawi się wyjątek, jak pokazano na Rys. 2.31.   

 

 

Rys. 31. Przykład wyjątku podczas odwołania się do nieistniejącego elementu w liście  

Źródło: Opracowanie własne 
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Jak widać na Rys. 31. ostatnia linia informuje, jakiego rodzaju błąd wystąpił. „IndexError” jest 

typem wyjątku, który oznacza, że numer indeksu, do którego próbujemy się odwołać, jest 

niepoprawny. Z kolei po dwukropku następuje słowny opis błędu, który w tym przypadku 

informuje, że podaliśmy zbyt dużą cyfrę jako indeks listy. „Wyrzucony” wyjątek może zostać 

przez program złapany i obsłużony. Kiedy wyjątek jest „wyrzucany”, wykonanie programu jest 

przerywane i wyjątek jest wyrzucany tak długo, aż zostanie obsłużony lub dopóki nie będzie 

już nic powyżej i wtedy program kończy swoje działanie z błędem. Wyjątki obsługuje się 

specjalną składnią, która wygląda następująco: 

 

try: 

  instrukcja1 

  instrukcja2 

  ... 

except: 

  instrukcja1 

  instrukcja2 

 

Dla naszego powyższego przykładu, obsługa wyjątku wygadałaby następująco:  

 

try: 

a[3] 

except: 

print('poza zakresem listy') 

 

Taki kod zadziała, „wyrzucany” wyjątek zostanie obsłużony, jednak w ogólności lepiej zapisać 

obsługę wyjątku w bardziej ogólnej formie (niezależnie od wartości indeksu i z konkretnym 

typem wyjątku) : 
  

lista = [1, 2, 3, 4] 

indeks = 5 

try: 

  print(lista[indeks]) 

except IndexError: 

     print(lista[len(lista)-1]) 
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Konstrukcja „try … except …” może mieć na końcu dołożoną opcjonalną część „else”, 

która będzie wywoływana, jeśli kod wewnątrz sekcji „try” zostanie wykonany poprawnie bez 

wyrzucania wyjątku. 

 

try: 

  print(tablica[indeks]) 

 except IndexError: 

print(tablica[len(tablica)-1]) 

 else: 

print("Kod w bloku try został wykonany poprawnie") 

 

Można jeszcze dołożyć jedną opcje (finally), która wykona się niezależnie, czy 

powstanie wyjątek, czy też nie. 

 

try: 

  print(tablica[indeks]) 

 except IndexError: 

  print(tablica[len(tablica)-1]) 

 else: 

  print("Kod w bloku try został wykonany poprawnie") 

 finally: 

print("Ten print wykona się zawsze bez względu na to czy  

powstanie wyjątek czy nie")  

 

Elementy programowania obiektowego  

Programowanie obiektowe różni się od tradycyjnego programowania proceduralnego, 

gdzie dane i procedury nie są ze sobą bezpośrednio związane. Programowanie obiektowe ma 

ułatwić pisanie, konserwację i wielokrotne użycie programów lub ich fragmentów.  

W programowaniu obiektowym programista może deklarować własne typy zmiennych, tak 

zwane klasy, które mają w sobie pola, czyli własności oraz zachowanie, czyli metody. Na 

podstawie wzorca (szablonu), jakim jest klasa programista tworzy nowe obiekty.  

Klasy definiujemy według następującego schematu: 
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 class NaszaNowaKlasa: 

 pola 

 metody 

 

 Z kolei obiekty tworzymy według następującego schematu: 

 

NazwaObiektu = NazwaKlasy(argumenty)   

 

Ważnym elementem używania obiektów jest notacja obiektowa. Do pól i metod obiektów 

dostajemy się pisząc nazwę zmiennej dowiązanej do obiektu, kropkę i nazwę atrybutu obiektu. 

 

nazwaObiektu.nazwaMetody() 

nazwaObiektu.nazwaMetody(argumenty) 

 

Kolejnym ważnym elementem klasy jest zmienna self. 

Wewnątrz metod, zmienna self odnosi się do samego obiektu.  

 Dzięki temu możliwy jest dostęp do pól obiektu, np. self.a.  

 W momencie wywołania metody obiektu, zostaje on automatycznie wstawiony jako 

pierwszy argument metody i użytkownik podaje o jeden mniej argument niż metoda 

wymaga. 

 

Przykład klasy przedstawiony jest poniżej: 

 

class Wektor():  

def __init__(self, x, y): 

 self.a = x 

 self.b = y 

print "wektor został stworzony!" 

 

 w1 = Wektor(5, 7)      # wektor został stworzony 
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Tak jak zmienna self daje dostęp do pól obiektu, tak metoda __init__ jest wywoływana  

automatycznie w momencie tworzenia obiektu. Metoda ta powinna wykonywać wszystkie 

operacje potrzebne do zainicjowania nowego obiektu, w szczególności powinna ona nadawać 

wartości jego polom. Oprócz specjalnej metody __init__ programista może tworzyć własne 

metody. Metoda jest to funkcja zdefiniowana wewnątrz klasy.    

 

class NazwaKlasy: 

  def NazwaMetody(self, atrybuty): 

   [ciało metody] 

 

Wywołanie metody odbywa się następująco: 

 

NazwaObiektu = NazwaKlasy(atr1, …, atrN)  # tworzenie obiektu 

NazwaObiektu.NazwaMetody(atrybuty)     # wywołanie metody na obiekcie  

 

 

Przykładowe zadanie z rozwiązaniem  

Napisz program, który posłuży do przechowania studentów w liście. Utwórz klasę Student:  

 Pola: imię, nazwisko, oceny 

 Metody: dodajOcene(ocena), wypiszOceny(), policzSrednia() 

Utwórz menu: 1 - dodaj studenta, 2 - pokaż studentów, 3 - usuń studenta, 4 - dodaj ocenę 

studentowi, 5 - wypisz oceny studenta, 6 - średnia studenta, 7 - koniec. 

 

Przykład klasy Student pokazany jest na Rys. 32., natomiast dalsza część programu  

z powyższego zadania przedstawiona jest na Rys. 33. i Rys. 34. 
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Rys. 32. Przykład klasy Student.  

Źródło: Opracowanie własne 
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Rys. 33. Obsługa programu z klasą Student, cześć 1.  

Źródło: Opracowanie własne 
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Rys. 33. Obsługa programu z klasą Student, cześć 2.  

Źródło: Opracowanie własne 

 

Programowanie obiektowe, ma wiele aspektów, które zostaną bardziej szczegółowo 

omówione podczas szkolenia , min. hermetyzacja, dziedziczenie, i wiele innych.   

 

Wprowadzenie do operacji na plikach  

Zmienne stanowią pewien sposób przechowywania informacji i uzyskiwania do nich 

dostępu w trakcie wykonywania programu, jednak po wyłączeniu programu informacje ulatują. 

Dlatego warto zapisać dane w taki sposób, aby można je było później odzyskać. Do takiego 
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trwałego zapisu można wykorzystać pliki. Pliki można otworzyć na kilka sposobów (z różnymi 

atrybutami) w zależności od potrzeby. 

 

 Odczytywanie danych z plików tekstowych 

 

text_file = open("odczyt.txt", "r") 

text_file.close() 

 

Powyższe instrukcje pozwalają na otwarcie pliku o nazwie odczyt.txt z atrybutem r, czyli do 

odczytu. Po tej instrukcji możemy czytać dane z pliku. Po zakończeniu czytania należy plik 

zamknąć. Plik możemy czytać na kilka sposobów, np. linia po linii. Poniżej został 

przedstawiony przykładowy kod programu, który czyta 3 linie pliku o nazwie odczyt.txt, 

a następnie wyświetla je na ekranie. W tym przykładzie czytamy plik po jednym wierszu naraz. 

text_file to taki uchwyt do pliku.  

 

text_file = open("odczyt.txt", "r") 

print(text_file.readline()) 

print(text_file.readline()) 

print(text_file.readline()) 

text_file.close()  

  

Możemy również wczytać cały pliku do listy, a następnie wyświetlić je linia po linii. Metoda 

readline(), czyta jedną linie, z kolei readlines() czyta wszystkie linie z pliku. 

 

text_file = open("odczyt.txt", "r") 

lines = text_file.readlines() 

print(lines)  # wszystkie linie od razu  

print(len(lines))  # liczba linii  

for line in lines:         # tak długo jak są linie  

print(line)      # linia po linii  

text_file.close() 
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Tak naprawdę można to zrobić bez instrukcji readlines(). Przykład kodu jest zaprezentowany 

poniżej.   

 

text_file = open("odczyt.txt", "r") 

for line in text_file: 

print(line) 

text_file.close() 

 

Wybrane tryby dostępu do pliku tekstowego: 

 

F = open("plik.txt","tryb") 

 

 „r” - Odczyt danych z pliku tekstowego. Jeśli plik nie istnieje, zasygnalizuje błąd. 

 „w” - Zapis danych do pliku tekstowego. Jeśli plik już istnieje, jego zawartość 

zostaje zastąpiona przez nowe dane. Jeśli nie istnieje, zostaje utworzony. 

 „a” - Dopisanie danych na końcu pliku tekstowego. Jeśli plik istnieje, nowe dane 

zostają do niego dopisane. Jeśli plik nie istnieje, jest tworzony. 

 

 Zapisywanie łańcuchów znaków do pliku 

 

text_file = open("zapisz.txt", "w") 

text_file.write("Wiersz 1\n") 

text_file.write("To jest wiersz 2\n") 

text_file.write("Ten tekst tworzy wiersz 3\n") 

text_file.close() 

 

Metody write() zapisuje łańcuch znaków do pliku. Warto wiedzieć, że metoda write() nie 

wstawia automatycznie znaku nowego wiersza na końcu łańcucha, który zapisuje. Należy 

samemu wstawić znaki nowego wiersza tam, gdzie są one potrzebne. Podobnie jak readlines(), 

metoda writelines() obsługuje listę łańcuchów, lecz zamiast wczytywać zawartość pliku 

tekstowego do listy, zapisuje listę łańcuchów do pliku.  
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text_file = open("zapisz_to.txt", "w") 

lines = ["Wiersz 1\n", 

"To jest wiersz 2\n", 

"Ten tekst tworzy wiersz 3\n"] 

text_file.writelines(lines) 

text_file.close() 

 

Wybrane metody do obsługi pliku 

 close() - Zamyka plik. Odczytywanie danych z zamkniętego pliku oraz zapisywanie  

do niego jest niemożliwe, dopóki nie zostanie ponownie otwarty. 

 readline() - Metoda zwraca wszystkie znaki od pozycji bieżącej do końca wiersza. 

 readlines() - Odczytuje wszystkie wiersze pliku i zwraca je jako elementy listy. 

 write(dane) - Zapisuje łańcuch dane do pliku. 

 writelines(dane) - Zapisuje łańcuchy będące elementami listy dane do pliku. 

 

Przykład programu z obsługą plików 

Napisz program do wprowadzania studentów w zakresie informacji (imię, nazwisko, grupa). 

Program ma przechowywać dane w pliku txt, ma umożliwiać dodawanie, usuwanie, zmianę 

oraz pokazywanie listy studentów. Usuwanie oraz zmianę mogą wykonywać np. po nazwisku. 

Program wyposażony jest w interaktywne menu (1-dodaj, 2-pokaz, 3-usuń, 4-zmień,  

5-wyjście). 

 

Przykładowa realizacja zadania z obsługą plików jest pokazana na Rys. 34. i Rys. 35.  

W przypadku zapisu do pliku bardziej złożonych informacji, np. list, słowników, a nawet baz 

danych służy biblioteka pickle. Moduł pickle umożliwia marynowanie i przechowywanie  

w pliku bardziej złożonych danych. Przykład marynowania danych zostanie pokazany Państwu 

podczas zajęć. 
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Rys. 34. Program z obsługą plików, cześć 1.  

Źródło: Opracowanie własne 
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Rys. 35. Program z obsługą plików, cześć 2.  

Źródło: Opracowanie własne 

 

Pliki binarne 

Pliki binarne to pliki, w których dane zapisywane są w postaci zer i jedynek (0/1), a nie 

jako tekst czytelny dla człowieka (jak np. pliki .txt czy .csv). Człowiek nie jest w stanie 

„przeczytać” takiego pliku w edytorze tekstu, ale program komputerowy potrafi odtworzyć  

z niego obiekt w pamięci. W uczeniu maszynowym model po treningu jest obiektem w pamięci 

RAM, zawierającym: wyuczone parametry, współczynniki, strukturę modelu, informacje  

o preprocessingu. Po zamknięciu programu model znika, jeśli go nie zapiszemy. Korzystając  

z biblioteki pickle możemy w łatwy sposób zapisać obiekt (model) do pliku oraz go  

w późniejszym czasie załadować do programu. Zapis modelu do pliku za pomocą biblioteki 

pickle prezentuje Rys. 36. Otwieramy plik (b – binarny, w – do zapisu) i w nim zapisujemy za 

pomocą metody dump wytrenowany model. Z kolei Rys. 37. prezentuje w jaki sposób można 

odczytać modle z pliku binarnego za pomocą biblioteki pickle.     
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Rys. 36. Zapis modelu do pliku za pomocą biblioteki pickle.  

Źródło: Opracowanie własne 

 

 
Rys. 37. Odczyt modelu z pliku za pomocą biblioteki pickle.  

Źródło: Opracowanie własne 

 

Teraz za pomocą metody load z biblioteki pickle możemy otworzyć plik (b – binarny, r – do 

odczytu) i wyczytać model do obiektu o nazwie loaded_model, a następnie z niego korzystać. 

 

Zadania (Python)  

Zadanie 1 

Utwórz przykładowy komentarz jednoliniowy i wielowierszowy (blokowy). 

 

Zadanie 2 

Utwórz zmienne o dowolnej nazwie, którym przypiszesz wartości: 80, 27.5, Kurs Python. 

 

Zadanie 3 

Napisz program, który wykona sumę cen produktów dla konkretnego zamówienia.  

Cennik:  

 chleb (5,40zł / 1 szt.),  

 masło (6,50 zł / 1 szt.),  

 pierniki (13,09 / 1kg.), 

 sok (4,5 / 1 litr). 

Zamówienie: 2 szt. chleba + 3 szt. masła + 1,5 kg pierników + 1 sok. 
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Zadanie 4 

Samochód na 100 km spala 5,2 l paliwa. Ile spali paliwa po przejechaniu 479 km? Wykorzystaj 

zmienne i operatory w języku Python w celu obliczenia zadania. 

 

Zadanie 5 

Napisz program, który prosi użytkownika o podanie imienia i następnie wypisze na ekran 

powitanie po imieniu użytkownika, np. „Witaj Paweł na programowaniu z Pythona”. 

 

Zadanie 6 

Napisz program, który obliczy pole trójkąta na podstawie danych podanych przez użytkownika 

z konsoli tj.: wysokość (h) i długość podstawy tego trójkąta (a). Uwzględnij fakt, że wysokość 

i długość podstawy mogą być liczbami niecałkowitymi. Wzór na obliczeni pola  

 

�∆ �
�

�
�ℎ. 

 

 

Zadanie 7 

Napisz program obliczający średnią z pięciu liczb podanych przez użytkownika. Liczby mogą 

być typu zmiennoprzecinkowego. 

 

Zadanie 8 

Napisz interaktywny sklep z trzema produktami: 

Chleb – 6.50 zł 

Sok – 4.00 zł 

Pączek – 5.50 zł 

Użytkownik będzie pytany o ilość dla każdej z ww. pozycji asortymentowej, ilość musi być 

całkowita (int). Wypisz podsumowanie zakupów, czyli co zostało kupione, ile sztuk i jaka 

wartość. Wypisz, ile należy zapłacić całkowicie za złożone zamówienie. 

 

Zadanie 9 

Napisz program do nauki tabliczki mnożenia. Program ma wylosować dwie liczby z zakresu 

(1-10), po czym ma zapytać użytkownika, jaki będzie wynik mnożenia tych liczb. Użytkownik 
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podaje swój wynik. Natomiast po podaniu wyniku przez użytkownika, program wyświetla swój 

wynik. Póki co nie sprawdzamy, czy wynik podany przez użytkownika jest poprawny. 

Np. 

Ile to jest 3 * 7 ? 

Odpowiedz użytkownika: 21  

Odpowiedź komputera: 21 

 

Zadanie 10 

Napisz program, który będzie obliczał potęgę. Potęga zostanie obliczona na podstawie 

pobranych danych od użytkownika tj. podstawa i wykładnika (podstawawykladnik). 

 

Zadanie 11 

Zaprojektuj program, który wczyta od użytkownika dowolny tekst. Program za zadanie 

wypisać: 

 

 Ile prowadzono znaków, 

 Ile jest spacji w wprowadzonym tekście. 

 

Np.: „Programowanie w Pythonie” 

Liczba znaków: 24 

Liczba spacji: 2 

 

Zadanie 12 

Napisz program, który 5 razy poprosi o podanie imienia. Podane imiona będą zapisywane do 

listy. Wypisz dla wszystkich imion z listy poniższy komunikat: 

Cześć <tutaj imię z listy> 

 

Zadanie 13 

Napisz program, w którym zadeklarujesz dwie listy, które będą przechowywały po 4 dowolne 

liczby.  Np.:                                                

lista1 = [1, 3, 2, 5]      

lista2 = [4, 5, 1, 8] 
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Program powinien wyświetlić sumę wszystkich liczb z obu list (29). 

 

Zadanie 14 

Napisz program, w którym użytkownik podaje 7 dowolnych liczb całkowitych i dodaje je do 

listy. Program ma za zadanie: 

 wyświetlić wszystkie liczby, 

 policzyć sumę wszystkich liczb 

 policzyć średnią 

 odwrócić kolejność elementów w liście. 

 

Zadanie 15 

Napisz program, który 5 razy poprosi użytkownika o wprowadzenie dowolnych liczb 

całkowitych. Program za zadanie zliczyć, ile wprowadzono liczb unikatowych. Pomocne mogą 

okazać się zbiory. 

 

Zadanie 16 

Wykorzystując poznane typy sekwencyjne zaprojektuj kod dla poniższej funkcjonalności: 

Utwórz zmienne z wartościami: 

 zmienna1 = ”jeden” 

 zmienna2 = ”pięć” 

 zmienna3= ”siedem” 

 

Oblicz sumę ww. zmiennych. Suma zmiennych, to: 13. W rozwiązaniu problemu pomocne 

mogą okazać się słowniki.  

 

Zadanie 17 

Zaprojektuj program, która dowolną liczbę 4-cyfrową zamieni na  

interpretację słowną np.: 

 9112  # dziewięć jeden jeden dwa 

 5842  # pięć osiem cztery dwa 
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W rozwiązaniu problemu pomocne mogą okazać się słowniki. 

 

Zadanie 18 

Napisz program do nauki tabliczki mnożenia. Program ma wylosować dwie liczby z zakresu 

(1-10), po czym ma zapytać użytkownika, jaki będzie wynik mnożenia tych liczb. Użytkownik 

podaje swój wynik. Natomiast po podaniu wyniku przez użytkownika, program wyświetla swój 

wynik. Program ma również sprawdzić, czy wynik podany przez użytkownika jest poprawny.  

Np. 

Ile to jest 3 * 7 ? 

Odpowiedź użytkownika: 23  

Odpowiedź komputera: 21 

Użytkowniku poddałeś błędny wynik! 

 

 

 

Zadanie 19 

Napisz program, który sprawdza, czy wprowadzona liczba jest liczbą parzystą, czy nieparzystą. 

Wykorzystaj instrukcję modulo, czyli resztę z dzielenia %. 

 

Zadanie 20 

Utwórz 2 zmienne, przypisując im dowolne - różne wartości liczbowe. Napisz program, który 

wskaże największą wartość. Rozszerz program dodając dodatkową zmienną (trzecią) i przypisz 

jej dowolną wartość różną od powyższych, następnie wskaże największą wartość. 

 

Zadanie 21 

Utwórz 3 zmienne i przypisz im dowolne wartości liczbowe np.: a = 10 b = 2 c = 9. Wypisz 

wartości zmiennych od największej do najmniejszej w konsoli. 

 

Zadanie 22 

Napisz program, który oblicza wartość współczynnika BMI wg wzoru (waga / wzrost**2). 

Wzrost podawany jest w metrach. Jeżeli wynik jest w przedziale (18.5 – 24.9) to wypisuje  

w konsoli „waga prawidłowa”, jeżeli poniżej to „niedowaga”, jeżeli powyżej to „nadwaga”. 
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Zadanie 23 

Napisz program, który spośród liczb 1-100 wyświetli tylko te, które są podzielne przez 6. 

 

Zadanie 24 

Napisz program, który pobiera od użytkownika np. 10 liczb i oblicza sumę tylko tych liczb, 

które są nieparzyste. 

 

Zadanie 25 

Utwórz listę i dodaj do niej w pętli 8 imion. Następnie, wypisz imiona z listy zgodnie z 

poniższym wzorem:  Witaj <imię z listy>. 

 

Zadanie 26 

Napisz własny mechanizm obliczania potęgi (bez użycia operatora potęgowania **). 

Użytkownik podaje podstawę i wykładnik potęgi. W celu napisania powyższego mechanizmu 

wykorzystaj pętle. Warto jeszcze przypomnieć, że wszystko co jest podniesione do potęgi 0 jest 

równe 1, a wykładnikiem potęgi są liczby większe bądź równe 0. 

 

Zadanie 27 

Napisz program, który oblicza silnie. Użytkownik podaje dowolną liczbę całkowitą dodatnią,  

a program zwraca wartość silni z podanej liczby. Np. 5! = 1 * 2 * 3 * 4 * 5 = 120. 

 

Zadanie 28 

Napisz grę: komputer losuje liczbę z przedziału 1 – 100. Użytkownik ma za zadanie odgadnąć, 

co to za liczba poprzez podawanie kolejnych wartości. Jeżeli podana liczba jest: większa od 

wylosowanej - wyświetlany jest komunikat „podałeś za dużą liczbę”, mniejsza od wylosowanej 

– wyświetlony jest komunikat „podałeś za małą liczbę”, Równą wylosowanej – wyświetlony 

jest komunikat „Gratulacje” i gra zostaje zakończona. 
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Rozwiązania zadań 

Zadanie 1 

# przykład użycia instrukcji print 

print("Witaj Świecie!") 
 
""" 
Programowanie  
w  
Pytonie 
jest  
fajne""" 
print("Do pracy ...") 

 

Zadanie 2 

wiek = 80 

cenaCukierkow = 27.5 

kurs_programowania = "Kurs Python." 

 

Zadanie 3 

cenaChleba = 5.40 

cenaMasla = 6.50 

cenaPierniki = 13.09 

cenaSok = 4.5 

 

zamowienie = 2*cenaChleba + 3*cenaMasla + 1.5*cenaPierniki + 1*cenaSok 

print(f"Zamówienie: 2 szt. chleba + 3 szt. masła + 1,5 kg pierników + 1 sok 

ma wartość: {zamowienie} zł") 

 

Zadanie 4 

ile_na_100 = 5.2 

droga = 479 

spalanie = (droga/100)*ile_na_100 

print(f"Po przejechaniu {droga} km samochód spali {spalanie} litrów 

paliwa.") 

 

Zadanie 5 

imie = input("Podaj imie: ") 

print(f"Witaj {imie} na programowaniu z Pythona.") 
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Zadanie 6 

print("Program oblicza pole trójkąta!") 

h = float(input("Podaj wyskość trójkąta: ")) 

a = float(input("Podaj długość podstawy trójkąta: ")) 

 

pole = 0.5*a*h 

print(f"Pole trójkąta o wykości {h} i długości podstawy {a} wynosi: {pole} 

") 

 

Zadanie 7 

print("Program oblicza średnią z pięciu zadeklarownych liczb.") 

l1 = 1.0 

l2 = 2.0 

l3 = 3.0 

l4 = 4.0 

l5 = 5.0 

suma = l1 + l2 + l3 + l4 + l5 

srednia = suma/5.0 

print(f"Średnia z liczb: {l1}, {l2}, {l3}, {l4}, {l5}, to: {srednia}") 

 

Zadanie 8 

print("Sklep") 

chleb = 6.50 

sok = 4.00 

paczek = 5.50 

ile_chlebow = int(input("Ile sztuk chleba chcesz zamówić? ")) 

ile_sokow = int(input("Ile sztuk soków chcesz zamówić? ")) 

ile_paczkow = int(input("Ile pączków chcesz zamówić? ")) 

wartosc_chleb = ile_chlebow * chleb 

wartosc_sok = ile_sokow * sok 

wartosc_paczkow = ile_paczkow * paczek 

print("") 

print(f"Zamówiłeś {ile_chlebow} chlebów o wartości: {wartosc_chleb}") 

print(f"Zamówiłeś {ile_sokow} soków o wartości: {wartosc_sok}") 

print(f"Zamówiłeś {ile_paczkow} pączków o wartości: {wartosc_paczkow}") 

zamownienie = wartosc_chleb + wartosc_sok + wartosc_paczkow 

print(f"Całkowita wartość zamówienia, to: {zamownienie}") 
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Zadanie 9 

import random #biblioteka do liczb pseudolosowych 

 

l1=random.randint(1,10) #losowanie liczby całkowitej z zakresu <1,10> 

l2=random.randint(1,10) 

wynik=l1*l2 

liczba_u=input(f"Ile to jest {l1} * {l2} ?") 

 

print(f"Odpowiedź użytkownika: {liczba_u}") 

print(f"Odpowiedź komputera: {wynik}") 

 

Zadanie 10 

print("Potęgowanie liczb.") 

pod=float(input("Podaj podstawę: ")) 

wyk=float(input("Podaj wykładnik: ")) 

 

wy=pod**wyk 

print(f"Wynik wynosi: {wy}.") 

 

Zadanie 11 

tekst = input("Wprowadź tekst: ") 

ile_znakow = len(tekst)          #len() sprawdza długość napisu 

ile_spacji = tekst.count(" ")    #tekst.count(" ") zlicza liczbę wystąpień 

spacji w napisie tekst     

print(f"Liczba znaków: {ile_znakow}") 

print(f"Liczba spacji: {ile_spacji}") 

 

Zadanie 12 

lista=[] #przykład bez pętli 

print("Dodawanie do listy imion!") 

lista.append(input("Podaj 1 imie: ")) 

lista.append(input("Podaj 2 imie: ")) 

lista.append(input("Podaj 3 imie: ")) 

lista.append(input("Podaj 4 imie: ")) 

lista.append(input("Podaj 5 imie:")) 

print("Lista imion: ") 

print(lista) 
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print("") 

print(f"Cześć {lista[0]}") 

print(f"Cześć {lista[1]}") 

print(f"Cześć {lista[2]}") 

print(f"Cześć {lista[3]}") 

print(f"Cześć {lista[4]}") 

 

Zadanie 13 

#Program sumuje wszystkie liczby z obu list, wersja bez pętli. 

lista1 = [1, 3, 2, 5] 

lista2 = [4, 5, 1, 8] 

suma = 

lista1[0]+lista1[1]+lista1[2]+lista1[3]+lista2[0]+lista2[1]+lista2[2]+lista

2[3] 

print(f"Suma liczb to {suma}") 

 

Zadanie 14 

#Wersja programu z pętlą 

lista=[] 

suma = 0 

for i in range(1,8): 

    lista.append(int(input(f"Podaj {i} liczbę: "))) 

    suma = suma + i 

 

print() 

print("Elementy listy: ") 

print(lista) 

 

print() 

srednia=suma/len(lista) 

print(f"Suma liczb to {suma}") 

print(f"Średnia liczb to {srednia}") 

 

print() 

print("Elementy listy w odwrotnej kolejności: ") 

for i in range(6, -1, -1): 

    print(lista[i], end=", ") 
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Zadanie 15 

#Zbiory z założenia przechowują unikatowe dane 

#Wersja bez pętli 

zbior = set() 

zbior.add(int(input("Podaj liczbę: "))) 

zbior.add(int(input("Podaj liczbę: "))) 

zbior.add(int(input("Podaj liczbę: "))) 

zbior.add(int(input("Podaj liczbę: "))) 

zbior.add(int(input("Podaj liczbę: "))) 

ile = len(zbior) #ilość elementów zbioru = liczba unikatowych liczb 

 

print(f"Unikatowych liczb jest {ile}") 

 

Zadanie 16 

zmienna1 = "jeden" 

zmienna2 = "pięć" 

zmienna3 = "siedem" 

slownik={"jeden":1, "pięć":5, "siedem":7} 

 

suma=slownik[zmienna1] + slownik[zmienna2] + slownik[zmienna3] 

print(f"Suma liczb: {suma} ") 

 

Zadanie 17 

slownik = {"1":"jeden", "2":"dwa", "3":"trzy", "4":"cztery", "5":"pięć", 

"6":"sześć", "7":"siedem", "8":"osiem", "9":"dziewięć"} 

liczba = input("Podaj liczbe 4 cyforową :") 

 

print(f"{slownik[liczba[0]]} {slownik[liczba[1]]} {slownik[liczba[2]]} 

{slownik[liczba[3]]}") 

 

Zadanie 18 

import random # biblioteka do generowania liczb pseudolosowych 

 

l1=random.randint(1,10) # losowanie liczby z zakresu <1, 10> 

l2=random.randint(1,10) 

wynik=l1*l2 

liczba_g=int(input(f"Ile to jest {l1} * {l2} ?")) 
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print(f"Odpowiedź użytkownika: {liczba_g}") 

print(f"Odpowiedź komputera: {wynik}") 

 

if wynik == liczba_g: 

    print("Użytkowniku podałeś prawidłowy wynik!") 

else: 

    print("Użytkowniku podałeś błędny wynik!") 

 

Zadanie 19 

liczba = int(input("Wprowadź liczbę: ")) 

if liczba % 2 == 0: 

    print("Wprowadzona liczba jest parzysta!") 

else: 

    print("Wprowadzona liczba jest nieparzysta!") 

 

Zadanie 20 

# wersja 2 zmienne 

zm1 = 5.0 

zm2 = 2.0 

print (f"Wartość zm1 = {zm1}, a zm2 = {zm2}") 

if zm1 > zm2: 

    print(f"Zmienna pierwsza ma większą wartość: {zm1}!") 

else: 

    print(f"Zmienna druga ma większą wartość: {zm2}!") 

 

# wersja 3 zmienne (założenie zmienne są różne!) 

z1 = 2.0 

z2 = 3.0 

z3 = 10.0 

print (f"Wartość z1 = {z1}, z2 = {z2}, z3 = {z3}") 

if z1 > z2: 

    if z1 > z3: 

        print("Zmienna z1 największa!") 

    else: 

        print("Zmienna z3 największa!") 

elif z2 > z3: 

    print("Zmienna z2 jest największa!") 

else: 

    print("Zmienna z3 jest największa!") 



 

63 
 

 

Zadanie 21 

#wersja bez wbudwanych funkcji 

a = 10 

b = 2 

c = 9 

 

if a > b and a >c: 

    print(a, end=" ") 

    if b > c: 

        print(b, c) 

    else: 

        print(c, b) 

elif b > c and b > c: 

    print(b, end=" ") 

    if a > c: 

        print(a, c) 

    else: 

        print(c, a) 

elif c > a and c > b: 

    print(c, end=" ") 

    if a > b: 

        print(a, b) 

    else: 

        print(b, a) 

 

Zadanie 22 

waga = float(input("Podaj swoją wagę [kg]: ")) 

wzrost = float(input("Podaj swój wzrost [m]: ")) 

 

bmi = waga/(wzrost**2) 

print(f"Twoje BMI: {bmi}") 

print() 

 

if bmi >= 18.5 and bmi <=24.9: 

    print("Waga prawidłowa!") 

elif bmi <18.5: 

    print("Niedowaga!") 



 

64 
 

else: 

    print("Nadwaga!") 

 

Zadanie 23 

print("Program wyświetla liczby podzielne przez 6 z zakresu od <1,100>. ") 

for i in range (1,101): 

    if i%6 == 0: 

       print(i, end=", ") 

 

Zadanie 24 

suma = 0 

for i in range(1, 11): 

    liczba = int(input(f"Podaj {i} liczbę: ")) 

    if liczba % 2 == 1: 

       suma = suma + liczba 

 

print(f"Suma liczb nieparzystych, to: {suma}") 

 

Zadanie 25 

imiona = [] 

for i in range (8): 

    imiona.append(input("Podaj imie: ")) 

 

print() 

 

for i in imiona: 

    print(f"Witaj {i}.") 

 

Zadanie 26 

podstawa = int(input("Podaj podstawę: ")) 

wykladnik = int(input("Podaj wykładnik: ")) 

 

potega = 1 

 

if wykladnik >= 0: 

    for i in range(wykladnik): 

        potega=potega*podstawa 

    print(f"{podstawa}^{wykladnik}={potega}") 
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else: 

    print("Nieprawidłowa wartość wykładnika!") 

 

Zadanie 27 

liczba = int(input("Podaj z jakiej liczby chcesz obliczyć silnie: ")) 

silnia = 1 

if liczba >= 0: 

    for i in range(1,liczba+1): 

        silnia=silnia*i 

    print(f"{liczba}! = {silnia}") 

else: 

    print("Wyznaczenie silni dotyczy liczb dodatnich oraz zera.") 

 

Zadanie 28 

import random 

los = random.randint(1,100) 

 

while True: 

    liczba = int(input("Podaj wylosowaną liczbę: ")) 

 

    if liczba > los: 

        print("Podałeś za dużą liczbę.") 

    elif liczba < los: 

        print("Podałeś za małą liczbę.") 

    elif liczba == los: 

        print("Gratulacje!") 

        break 

 

Analiza danych i uczenie maszynowe  
 

Co to jest analiza danych i uczenie maszynowe? 

Analiza danych to proces przekształcania surowych danych w informację, wiedzę  

i wnioski, które mogą wspierać podejmowanie decyzji. W praktyce nie polega ona wyłącznie 

na obliczeniach, ale na zrozumieniu danych, ich jakości, struktury oraz zależności, jakie między 

nimi występują. W rzeczywistych projektach dane rzadko są idealne. Zazwyczaj są: 

niekompletne, zawierają błędy, pochodzą z różnych źródeł, zapisane w różnych formatach. 
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Dlatego analiza danych obejmuje kilka kluczowych etapów: 

1. Pozyskiwanie danych (pliki CSV, Excel, bazy danych, API), 

2. Czyszczenie danych (braki, duplikaty, błędy), 

3. Eksplorację danych (szukanie zależności i wzorców), 

4. Wizualizację danych, 

5. Formułowanie wniosków i rekomendacji. 

 

Przykłady analizy danych w praktyce: 

 analiza sprzedaży w firmie (które produkty sprzedają się najlepiej), 

 analiza danych klientów (kto odchodzi, kto kupuje częściej), 

 analiza wyników egzaminów lub ankiet, 

 analiza ruchu na stronie internetowej, 

 analiza danych finansowych. 

 

Uczenie maszynowe (Machine Learning) jest naturalnym i logicznym rozszerzeniem 

analizy danych, w którym celem nie jest już jedynie opisanie i zrozumienie danych 

historycznych, lecz budowa modeli zdolnych do generalizacji wiedzy i podejmowania decyzji 

na podstawie nowych, wcześniej niewidzianych danych. Modele uczenia maszynowego uczą 

się zależności występujących w danych na podstawie przykładów, a następnie wykorzystują 

zdobytą wiedzę do przewidywania przyszłych wartości, klasyfikowania obiektów, 

identyfikowania wzorców oraz wykrywania nietypowych obserwacji. 

W przeciwieństwie do klasycznego programowania, w którym logika działania systemu 

jest definiowana ręcznie w postaci sztywnych reguł i instrukcji, w uczeniu maszynowym reguły 

te powstają automatycznie w procesie uczenia. Oznacza to, że zamiast opisywać krok po kroku, 

jak program ma podejmować decyzje, dostarczamy mu dane wejściowe oraz oczekiwane 

rezultaty, a algorytm samodzielnie wyznacza relacje pomiędzy zmiennymi. Takie podejście 

pozwala tworzyć rozwiązania, które są elastyczne, odporne na zmienność danych i zdolne do 

adaptacji w dynamicznych środowiskach. 

Model uczenia maszynowego stanowi matematyczny opis zależności występujących  

w danych, zapisany w postaci parametrów, wag lub struktur decyzyjnych. Jakość tego modelu 

zależy nie tylko od zastosowanego algorytmu, lecz w dużej mierze od jakości danych, sposobu 
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ich przygotowania oraz poprawnej oceny wyników. W praktyce oznacza to, że skuteczne 

uczenie maszynowe wymaga połączenia wiedzy z zakresu programowania, statystyki oraz 

analizy danych, a sam proces budowy modelu jest iteracyjny i wymaga testowania różnych 

podejść. 

Istotnym aspektem uczenia maszynowego jest również umiejętność oceny, na ile 

wyuczony model radzi sobie z nowymi danymi. Modele, które zbyt dokładnie dopasowują się 

do danych treningowych, mogą tracić zdolność generalizacji, natomiast zbyt proste modele nie 

są w stanie uchwycić istotnych zależności. Dlatego w praktycznych zastosowaniach uczenia 

maszynowego równie ważne jak samo trenowanie modelu jest jego walidowanie, interpretacja 

wyników oraz świadome wykorzystanie w rzeczywistych systemach analitycznych  

i decyzyjnych. Dlatego proces uczenia maszynowego obejmuje kilka kluczowych etapów: 

1. Zdefiniowanie problemu i celu modelu (co chcemy przewidywać lub klasyfikować), 

2. Przygotowanie danych do modelowania (selekcja cech, kodowanie zmiennych, 

skalowanie), 

3. Podział danych na zbiory treningowe i testowe, 

4. Dobór i trenowanie modelu uczenia maszynowego, 

5. Ocena jakości modelu oraz jego optymalizacja, 

6. Wykorzystanie modelu do predykcji i podejmowania decyzji. 

 

Przykłady zastosowań uczenia maszynowego w praktyce: 

 przewidywanie cen nieruchomości lub produktów, 

 prognozowanie sprzedaży i popytu, 

 klasyfikacja klientów (np. lojalny / zagrożony odejściem), 

 wykrywanie nadużyć i anomalii w danych, 

 systemy rekomendacyjne i personalizacja treści. 

 

Podział technik uczenia maszynowego 

Można wyróżnić wiele technik uczenia maszynowego oraz uczenia głębokiego, które 

różnią się zakresem zastosowań, stopniem złożoności oraz wymaganiami obliczeniowymi. Ze 

względu na ograniczenia czasowe szkolenia, w ramach niniejszego kursu omówione zostaną 

jedynie wybrane techniki, najczęściej wykorzystywane w praktycznych projektach analizy 

danych i uczenia maszynowego. Podczas zajęć uczestnicy krok po kroku poznają pełny proces 
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pracy z danymi – od wczytania i przygotowania danych, przez ich analizę i wizualizację  

w postaci licznych wykresów, aż po budowę, ocenę i interpretację wyników modeli uczenia 

maszynowego. Szczególny nacisk zostanie położony na zrozumienie całego przepływu pracy, 

tak aby prezentowane rozwiązania mogły być łatwo przenoszone na inne zbiory danych, 

modyfikowane poprzez zmianę modelu lub jego parametrów oraz dostosowywane do własnych 

potrzeb i problemów analitycznych. Poniżej dokonamy podziąłu technik uczenia 

maszynowego. 

 

1. Uczenie nadzorowane (Supervised Learning) 

Uczenie nadzorowane jest najczęściej stosowaną i najbardziej intuicyjną techniką 

uczenia maszynowego, szczególnie w projektach biznesowych i analitycznych. Jego istotą jest 

uczenie modelu na danych, które zawierają zarówno zmienne wejściowe, jak i znaną poprawną 

odpowiedź, nazywaną zmienną docelową lub etykietą. Model otrzymuje więc przykłady typu: 

„takie dane → taki wynik” i na ich podstawie uczy się zależności, które następnie może 

wykorzystać do przewidywania wyników dla nowych danych. 

Proces uczenia polega na stopniowym dopasowywaniu parametrów modelu w taki 

sposób, aby minimalizować błąd pomiędzy przewidywaniami modelu a rzeczywistymi 

wartościami. Kluczową cechą uczenia nadzorowanego jest możliwość obiektywnej oceny 

jakości modelu, ponieważ dla danych testowych znamy poprawne odpowiedzi i możemy 

sprawdzić, jak dobrze model generalizuje wiedzę. 

Uczenie nadzorowane dzieli się na dwa główne typy problemów: regresję oraz 

klasyfikację. W regresji model przewiduje wartości liczbowe, natomiast w klasyfikacji 

przypisuje obiekty do określonych klas. Technika ta jest szczególnie dobrze dopasowana do 

sytuacji, w których dysponujemy dużą liczbą historycznych danych oraz jasno zdefiniowanym 

celem predykcji. 

Przykłady problemów rozwiązywanych za pomocą uczenia nadzorowanego: 

 przewidywanie cen mieszkań na podstawie ich cech, 

 prognozowanie sprzedaży w kolejnych miesiącach, 

 klasyfikacja klientów jako lojalnych lub zagrożonych odejściem, 

 wykrywanie spamu w wiadomościach e-mail, 

 ocena ryzyka kredytowego klienta. 
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2. Uczenie nienadzorowane (Unsupervised Learning) 

Uczenie nienadzorowane jest techniką, w której model pracuje na danych 

pozbawionych etykiet, czyli takich, dla których nie znamy poprawnych odpowiedzi. Celem nie 

jest tutaj przewidywanie konkretnej wartości, lecz odkrywanie struktury, wzorców  

i zależności ukrytych w danych. Model samodzielnie analizuje dane i próbuje znaleźć w nich 

naturalne grupy, podobieństwa lub nietypowe obserwacje. 

Technika ta jest szczególnie użyteczna na etapie eksploracji danych, gdy nie mamy 

jeszcze jasno określonego celu predykcyjnego lub gdy chcemy lepiej zrozumieć charakter 

analizowanego zbioru danych. Uczenie nienadzorowane często stanowi punkt wyjścia do 

dalszych analiz lub do budowy modeli nadzorowanych, np. poprzez segmentację danych. 

Jednym z największych wyzwań uczenia nienadzorowanego jest interpretacja wyników, 

ponieważ brak etykiet uniemożliwia klasyczną ocenę jakości modelu. Wymaga to większego 

zaangażowania analityka oraz dobrej znajomości kontekstu biznesowego lub problemowego. 

Przykłady problemów rozwiązywanych za pomocą uczenia nienadzorowanego: 

 segmentacja klientów na podstawie ich zachowań zakupowych, 

 grupowanie produktów o podobnych cechach, 

 wykrywanie anomalii i nietypowych transakcji, 

 analiza zachowań użytkowników na stronie internetowej, 

 redukcja wymiarowości i wizualizacja złożonych danych. 

 

3. Uczenie przez wzmacnianie (Reinforcement Learning) 

Uczenie przez wzmacnianie jest techniką, która znacząco różni się od pozostałych 

podejść. W tym przypadku model, nazywany agentem, uczy się poprzez interakcję ze 

środowiskiem, podejmując kolejne decyzje i obserwując ich konsekwencje. Zamiast zbioru 

danych wejściowych z etykietami, agent otrzymuje sygnał zwrotny w postaci nagrody lub kary, 

na podstawie którego modyfikuje swoje zachowanie. Celem uczenia przez wzmacnianie jest 

znalezienie takiej strategii działania, która maksymalizuje sumę nagród w długim okresie. 

Proces uczenia jest iteracyjny i często wymaga wielu prób oraz symulacji, co sprawia, że 

technika ta jest bardziej złożona obliczeniowo i koncepcyjnie niż uczenie nadzorowane  

i nienadzorowane. 
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Uczenie przez wzmacnianie znajduje zastosowanie głównie tam, gdzie decyzje są 

sekwencyjne, a ich skutki ujawniają się w czasie. Choć rzadziej spotykane w klasycznych 

kursach analizy danych, stanowi ważny element nowoczesnej sztucznej inteligencji. 

Przykłady problemów rozwiązywanych za pomocą uczenia przez wzmacnianie: 

 systemy sterowania i robotyka, 

 gry komputerowe i planszowe, 

 optymalizacja tras i harmonogramów, 

 systemy rekomendacyjne uczące się na bieżących interakcjach, 

 zarządzanie zasobami i procesami w czasie rzeczywistym. 

 

4. Uczenie półnadzorowane (Semi-supervised Learning) 

Uczenie półnadzorowane łączy elementy uczenia nadzorowanego i nienadzorowanego. 

W tym podejściu tylko część danych posiada etykiety, a pozostała część jest nieoznaczona. 

Technika ta jest szczególnie przydatna w sytuacjach, gdy pozyskanie etykiet jest kosztowne, 

czasochłonne lub wymaga wiedzy eksperckiej. Model wykorzystuje niewielką liczbę 

oznaczonych przykładów, aby nauczyć się podstawowych zależności, a następnie wspomaga 

się dużą ilością danych nieoznaczonych w celu poprawy jakości predykcji. Takie podejście 

często pozwala uzyskać lepsze wyniki niż klasyczne uczenie nadzorowane przy ograniczonej 

liczbie etykiet. 

Przykłady problemów rozwiązywanych za pomocą uczenia półnadzorowanego: 

 analiza danych medycznych, 

 klasyfikacja dokumentów i tekstów, 

 rozpoznawanie obrazów, 

 systemy rekomendacyjne oparte na ograniczonej liczbie ocen, 

 przetwarzanie danych pochodzących z Internetu. 

 

Każda z technik uczenia maszynowego odpowiada innemu typowi problemów i innemu 

charakterowi danych. W praktyce analitycznej kluczowe jest nie tylko poznanie algorytmów, 

lecz przede wszystkim umiejętność doboru właściwej techniki do konkretnego problemu.  

W ramach kursu uczestnicy poznają te podejścia w praktyce, ucząc się, jak świadomie 

wykorzystywać je w analizie danych i projektach uczenia maszynowego. 
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Biblioteki i narzędzia w Pythonie 

Praktyczna analiza danych i uczenie maszynowe w Pythonie opierają się na 

wykorzystaniu sprawdzonych narzędzi oraz bibliotek, które wspierają każdy etap pracy  

z danymi – od ich wczytania, przez przygotowanie i analizę, aż po budowę oraz ocenę modeli 

uczenia maszynowego. Współczesne projekty analityczne rzadko polegają na pisaniu 

rozwiązań od podstaw. Zamiast tego korzysta się z rozbudowanego ekosystemu bibliotek, które 

znacząco przyspieszają pracę, zwiększają czytelność kodu oraz pozwalają skupić się na 

rozwiązywaniu problemów, a nie na implementacji niskopoziomowych mechanizmów. 

W ramach niniejszego kursu głównym środowiskiem pracy będzie Google Colab,  

a podstawowymi formatami danych będą pliki CSV oraz Excel (XLSX). Takie podejście 

odzwierciedla realia pracy analityka danych oraz specjalisty uczenia maszynowego, gdzie dane 

bardzo często pochodzą z plików eksportowanych z systemów biznesowych, baz danych lub 

narzędzi raportowych. 

 

 Środowisko pracy: Google Colab 

Google Colab to środowisko analityczne działające w przeglądarce internetowej, oparte 

na technologii Jupyter Notebook. Umożliwia ono pisanie i uruchamianie kodu Pythona bez 

konieczności instalowania oprogramowania na komputerze lokalnym. Jest to szczególnie 

istotne w kontekście szkoleń praktycznych, ponieważ eliminuje problemy związane  

z konfiguracją środowiska oraz różnicami systemowymi pomiędzy uczestnikami. 

Colab oferuje gotowe środowisko z zainstalowanym Pythonem oraz najważniejszymi 

bibliotekami do analizy danych i uczenia maszynowego. Notebooki pozwalają na 

wykonywanie kodu krok po kroku, obserwowanie wyników pośrednich, tworzenie wykresów 

oraz dokumentowanie analizy za pomocą komentarzy tekstowych. Taki sposób pracy sprzyja 

nauce, eksperymentowaniu oraz lepszemu zrozumieniu przetwarzanych danych i działania 

modeli. 

W praktyce Google Colab pełni rolę interaktywnego laboratorium, w którym możliwe 

jest szybkie testowanie różnych rozwiązań, modyfikowanie kodu oraz natychmiastowa 

obserwacja efektów w postaci tabel, wykresów i wyników predykcji. 
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 Format danych: CSV i Excel 

Podstawowym źródłem danych w kursie będą pliki w formatach CSV oraz XLSX. Są 

to jedne z najczęściej spotykanych formatów danych w analizie danych, wykorzystywane 

zarówno w środowiskach biznesowych, jak i naukowych. Pliki CSV charakteryzują się prostą 

strukturą i dużą uniwersalnością, natomiast pliki Excel są powszechnie używane do 

raportowania, zestawień oraz ręcznej obróbki danych. 

W kontekście analizy danych kluczowe jest umiejętne wczytywanie tych plików do 

środowiska Python oraz ich dalsze przetwarzanie. Dane zapisane w plikach często zawierają 

braki, niespójności, różne typy danych lub nadmiarowe informacje, które wymagają 

oczyszczenia i odpowiedniego przygotowania przed dalszą analizą i modelowaniem. 

 

 Pandas – fundament pracy z danymi 

Podstawową biblioteką wykorzystywaną do pracy z danymi tabelarycznymi jest 

Pandas. Umożliwia ona wczytywanie danych z plików CSV i Excel, ich przechowywanie  

w strukturach danych takich jak DataFrame oraz wykonywanie operacji analitycznych  

i transformacji danych. 

Pandas pozwala m.in. na: 

 selekcję i filtrowanie danych, 

 obsługę brakujących wartości, 

 sortowanie i grupowanie danych, 

 łączenie danych z różnych źródeł, 

 tworzenie nowych cech na podstawie istniejących danych. 

W praktycznych projektach analizy danych to właśnie Pandas zajmuje największą część 

pracy analityka. Odpowiednie przygotowanie danych w tej bibliotece ma bezpośredni wpływ 

na jakość dalszych analiz oraz skuteczność modeli uczenia maszynowego. 

 

 NumPy – obliczenia numeryczne 

NumPy jest biblioteką wspierającą obliczenia numeryczne oraz operacje na 

wielowymiarowych tablicach danych. Choć często działa „w tle” i nie jest bezpośrednio 

widoczna dla użytkownika, stanowi fundament wielu innych bibliotek analitycznych i uczenia 

maszynowego. 
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W kontekście kursu NumPy będzie wykorzystywana do operacji matematycznych, 

pracy z macierzami oraz efektywnego przetwarzania danych liczbowych. Jej znaczenie rośnie 

wraz z wielkością zbiorów danych oraz złożonością obliczeń. 

 

 Wizualizacja danych: Matplotlib i Seaborn 

Wizualizacja danych jest nieodłącznym elementem analizy danych oraz uczenia 

maszynowego. Pozwala ona lepiej zrozumieć strukturę danych, rozkłady zmiennych, 

zależności pomiędzy cechami oraz jakość działania modeli. 

Do tworzenia wykresów wykorzystywane będą biblioteki Matplotlib oraz Seaborn. 

Matplotlib zapewnia pełną kontrolę nad wyglądem wykresów, natomiast Seaborn upraszcza 

tworzenie estetycznych i czytelnych wizualizacji statystycznych. W trakcie kursu wykresy będą 

wykorzystywane zarówno na etapie eksploracji danych, jak i do interpretacji wyników modeli 

uczenia maszynowego. 

 

 Scikit-learn – uczenie maszynowe w praktyce 

Kluczową biblioteką kursu w obszarze uczenia maszynowego jest scikit-learn. Jest to 

biblioteka zaprojektowana z myślą o praktycznym zastosowaniu algorytmów uczenia 

maszynowego, oferująca spójny i intuicyjny interfejs do trenowania, testowania oraz oceny 

modeli. Scikit-learn umożliwia: 

 budowę modeli regresji i klasyfikacji, 

 realizację algorytmów uczenia nienadzorowanego, 

 przygotowanie danych do modelowania (skalowanie, kodowanie), 

 podział danych na zbiory treningowe i testowe, 

 ocenę jakości modeli za pomocą różnych metryk, 

 tworzenie pipeline’ów łączących przetwarzanie danych i modelowanie. 

 

Biblioteka ta doskonale nadaje się do nauki uczenia maszynowego, ponieważ pozwala 

skupić się na logice problemu i interpretacji wyników, a nie na implementacji algorytmów od 

podstaw. Jednocześnie rozwiązania oparte na scikit-learn są powszechnie stosowane w 

projektach komercyjnych i analitycznych. 

Podczas kursu uczestnicy będą stopniowo przechodzić przez pełny proces analizy 

danych i uczenia maszynowego, wykorzystując opisane narzędzia w sposób spójny  
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i praktyczny. Praca będzie odbywać się na rzeczywistych zbiorach danych, a każdy etap – od 

wczytania plików CSV i Excel, przez analizę i wizualizację, aż po budowę i ocenę modeli – 

będzie realizowany w Google Colab z użyciem bibliotek Pythona. Prezentowane rozwiązania 

będą miały charakter uniwersalny, tak aby mogły być łatwo przenoszone na inne dane, 

modyfikowane poprzez zmianę modelu lub parametrów oraz dostosowywane do własnych 

potrzeb analitycznych. 

 

Ogólny algorytm analizy danych i uczenia maszynowego 

 

Krok 1. Przygotowanie środowiska i instalacja bibliotek 

Pierwszym etapem jest przygotowanie środowiska pracy tak, aby każdy uczestnik miał 

możliwość uruchomienia tego samego kodu i uzyskania porównywalnych wyników. W kursach 

praktycznych bardzo wygodnym rozwiązaniem jest Google Colab, ponieważ eliminuje 

problemy instalacyjne i pozwala od razu przejść do pracy z danymi. Należy upewnić się, że 

podstawowe biblioteki są dostępne, a w razie potrzeby doinstalować je w notebooku. Warto od 

razu ustalić standard pracy: jedna komórka na importy, jedna na ustawienia (np. losowość),  

a następnie logiczne sekcje notebooka. Dobrą praktyką jest też zapisywanie wersji bibliotek 

(np. w komentarzu), aby w przyszłości łatwiej było odtworzyć wyniki. Jeśli projekt ma 

charakter zespołowy, warto już na starcie zadbać o czytelne nazewnictwo plików, folderów  

i notebooków. 

 

Krok 2. Zdefiniowanie celu analizy i problemu ML 

Zanim wczytasz dane, musisz jasno określić, co jest celem projektu. W analizie danych 

celem może być znalezienie zależności, odpowiedź na pytanie biznesowe lub wyciągnięcie 

wniosków z danych historycznych. W uczeniu maszynowym celem jest zwykle predykcja 

(regresja) albo klasyfikacja (np. 0/1), ewentualnie grupowanie (clustering) lub wykrywanie 

anomalii. Na tym etapie warto nazwać zmienną docelową, opisać co oznacza „dobry wynik” 

oraz jakie błędy są kosztowne (np. fałszywie negatywne w medycynie). Ten krok wpływa na 

dobór metryk, algorytmu oraz sposobu przygotowania danych. Dobrze też wskazać, jakiego 

typu dane spodziewasz się zobaczyć (liczbowe, kategoryczne, daty) i jakie mogą występować 

ograniczenia (np. brak etykiet, mała liczba obserwacji). 
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Krok 3. Pozyskanie danych i wczytanie do Pythona (CSV/XLSX) 

Kolejnym etapem jest pozyskanie danych i wczytanie ich do środowiska analitycznego, 

najczęściej do obiektu DataFrame w Pandas. W praktyce kursowej bardzo często pracuje się na 

plikach CSV i Excel, więc kluczowe jest poprawne ustawienie separatorów, kodowania oraz 

interpretacji typów danych. Już na tym etapie trzeba zwrócić uwagę, czy nagłówki kolumn są 

poprawne, czy nie ma „pustych” kolumn, oraz czy dane nie zostały źle wczytane jako tekst 

zamiast liczb. Warto też sprawdzić rozmiar zbioru danych, liczbę kolumn oraz pierwsze 

rekordy, aby upewnić się, że struktura jest zgodna z oczekiwaniami. Dobrą praktyką jest 

natychmiastowe zapisanie krótkiej informacji o źródle danych oraz krótkiego opisu, co zawiera 

zbiór. 

 

Krok 4. Szybki przegląd danych (sanity check) 

Zanim rozpoczniesz jakiekolwiek przekształcenia, wykonuje się tzw. sanity check, czyli 

podstawową kontrolę jakości danych. Obejmuje to sprawdzenie typów danych, braków danych, 

duplikatów, nietypowych wartości oraz podstawowych statystyk opisowych. Ten krok bardzo 

często pozwala wykryć problemy na wczesnym etapie, np. kolumny z wartościami „0”, które 

w rzeczywistości oznaczają brak pomiaru, albo błędne jednostki. W praktyce, im szybciej 

wykryjesz problem z danymi, tym mniej czasu stracisz później na „naprawianie” modelu, który 

tak naprawdę uczy się na błędnych danych. To także etap, na którym warto zidentyfikować 

potencjalną zmienną docelową oraz wstępnie ocenić, czy klasy są zbalansowane  

(w klasyfikacji). 

 

Krok 5. Czyszczenie danych i przygotowanie jakościowe 

Czyszczenie danych to etap, w którym usuwamy lub korygujemy elementy, które 

mogłyby zaburzyć analizę i modelowanie. Typowe działania to uzupełnianie lub usuwanie 

braków danych, usuwanie duplikatów, poprawa typów danych (np. zamiana tekstu na liczby), 

standaryzacja nazw kategorii oraz obsługa wartości odstających. Bardzo ważne jest, aby 

decyzje o czyszczeniu były uzasadnione, a nie przypadkowe, ponieważ każda taka decyzja 

wpływa na wynik modelu. W projektach szkoleniowych warto dopisywać komentarze: 

dlaczego dana kolumna jest usuwana, dlaczego braki są uzupełniane medianą albo czemu 

wartości „0” zamieniono na NaN. Ten krok jest często najdłuższy w całym procesie, ale ma 

największy wpływ na jakość końcowego rozwiązania. 
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Krok 6. Eksploracyjna analiza danych (EDA) 

EDA (ang. Exploratory Data Analysis) to etap, w którym staramy się zrozumieć dane: 

jak wyglądają rozkłady zmiennych, jakie są zależności między cechami, oraz co różni 

poszczególne grupy obserwacji. W praktyce wykonuje się zarówno analizę liczbową 

(statystyki, korelacje), jak i wizualną (histogramy, boxploty, wykresy zależności). W EDA 

często wykrywa się problemy, które wcześniej nie były widoczne, np. silną skośność rozkładu, 

nielogiczne wartości albo kolumny silnie skorelowane. Dla projektów ML EDA jest też 

momentem, w którym można wstępnie ocenić, które cechy prawdopodobnie będą 

informatywne, a które mogą wnosić szum. Na końcu EDA warto sformułować kilka wniosków, 

które będą prowadzić do decyzji o preprocessingu i modelowaniu. 

 

Krok 7. Przygotowanie danych do modelowania (feature engineering + 

preprocessing) 

Gdy dane są już zrozumiane i oczyszczone, przechodzi się do przygotowania ich  

w formie „zjadliwej” dla algorytmu. Obejmuje to wybór cech, kodowanie zmiennych 

kategorycznych (np. one-hot encoding), skalowanie cech liczbowych oraz ewentualne 

transformacje (np. logarytmowanie). W tym kroku można też tworzyć nowe cechy, np. różnice, 

ilorazy, agregaty czy flagi logiczne, jeśli ma to sens w kontekście problemu. Ważne jest, aby 

preprocessing był wykonywany w sposób powtarzalny, najlepiej poprzez pipeline, aby podczas 

predykcji na nowych danych wykonać dokładnie te same kroki. W praktyce ML jest to 

fundament poprawnego wdrożenia modelu – bez spójnego preprocessingu model często „działa 

tylko w notebooku”. 

 

Krok 8. Podział danych na zbiory treningowe i testowe 

Zanim zaczniemy trenować model, dane należy podzielić na zbiór treningowy i testowy. 

Zbiór treningowy służy do uczenia modelu, a testowy do sprawdzenia, jak model radzi sobie 

na danych, których nie widział wcześniej. Taki podział jest niezbędny do oceny generalizacji  

i ograniczenia ryzyka „oszukania się”, że model działa dobrze, gdy w rzeczywistości jedynie 

zapamiętał dane treningowe. W zależności od problemu stosuje się też walidację krzyżową, 

szczególnie gdy zbiór danych jest mały. W klasyfikacji często dba się o zachowanie proporcji 

klas w podziale (stratyfikacja), aby wyniki były wiarygodne. 
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Krok 9. Wybór modelu bazowego i trening pierwszej wersji 

Następnie buduje się pierwszy, prosty model bazowy, który stanowi punkt odniesienia. 

W praktyce często zaczyna się od modeli interpretowalnych, takich jak regresja logistyczna lub 

proste drzewa, aby zrozumieć problem i uzyskać pierwsze wyniki. Na tym etapie kluczowe jest 

poprawne dopasowanie modelu do rodzaju problemu (regresja vs klasyfikacja) i użycie 

właściwych danych wejściowych. Pierwszy model nie musi być najlepszy – jego celem jest 

sprawdzenie, czy pipeline działa oraz uzyskanie wstępnej oceny trudności problemu. To 

również moment, w którym ujawniają się typowe problemy, np. niezbalansowane klasy lub 

zbyt duża liczba cech w stosunku do liczby obserwacji. 

 

Krok 10. Ewaluacja modelu i dobór metryk 

Ocena modelu powinna być dopasowana do problemu. Dla klasyfikacji często liczy się 

nie tylko accuracy, ale również precision, recall, F1-score oraz macierz pomyłek, bo różne 

błędy mogą mieć różny koszt. Dla regresji stosuje się m.in. MAE, MSE, RMSE lub R²,  

a interpretacja zależy od jednostek i skali danych. Ważne jest, aby na podstawie metryk 

odpowiedzieć na pytanie: czy model jest wystarczająco dobry dla celu projektu i co dokładnie 

oznacza „dobry”. W projektach szkoleniowych warto uczyć kursantów interpretacji: np. wysoki 

accuracy przy niezbalansowanych klasach może być złudny, bo model może „zgadywać” klasę 

dominującą. Ewaluacja to również etap, w którym analizuje się błędy: na jakich przypadkach 

model się myli i dlaczego. 

 

Krok 11. Poprawa modelu: tuning, inne algorytmy, balans klas 

Po uzyskaniu wyników modelu bazowego przechodzi się do ulepszania rozwiązania. 

Może to oznaczać dobór lepszego algorytmu, dostrojenie hiperparametrów, zmianę 

preprocessingu, usunięcie nieistotnych cech lub dodanie nowych. W klasyfikacji częstym 

problemem jest niezbalansowanie klas, więc stosuje się metody takie jak wagi klas, 

undersampling/oversampling lub techniki pokroju SMOTE. W tym kroku kluczowe jest 

zachowanie metodologii: każdą zmianę należy ocenić w porównywalny sposób na danych 

testowych lub w walidacji, aby nie dopasować się przypadkowo do jednego podziału danych. 

To etap, który uczy najbardziej praktycznego myślenia: poprawa modelu to zwykle seria 

kontrolowanych eksperymentów. 
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Krok 12. Interpretacja wyników i wnioski 

Dobry projekt ML nie kończy się na liczbie w metryce. Trzeba jeszcze zinterpretować, 

co wynik oznacza i czy model jest użyteczny w kontekście problemu. W praktyce analizuje się 

również znaczenie cech, wpływ preprocessingu oraz stabilność wyników. Jeśli model ma 

wspierać decyzje, warto jasno opisać, jakie decyzje mogą zostać podjęte na podstawie jego 

predykcji i jakie ryzyka się z tym wiążą. To też moment na wskazanie ograniczeń: np. mała 

liczba danych, brak istotnych zmiennych, możliwe błędy pomiarowe. Wnioski powinny być 

sformułowane tak, aby osoba nietechniczna mogła zrozumieć, co model robi i jak dobrze działa. 

 

Krok 13. Zapis modelu i przygotowanie do użycia na nowych danych 

W praktyce model powinien być zapisany do pliku (najczęściej binarnego), aby nie 

trenować go od nowa i móc wykorzystać go na nowych danych. Dobrą praktyką jest 

zapisywanie nie tylko samego modelu, ale całego pipeline’u (preprocessing + model), aby 

zapewnić spójność działania w przyszłości. Na tym etapie warto też przygotować przykładową 

funkcję „predict”, która pokazuje, jak wczytać model i wykonać predykcję dla nowego rekordu 

danych. To jest bardzo ważny element dydaktyczny, bo pokazuje, że ML to nie tylko trening, 

ale również praktyczne wykorzystanie modelu. 

 

W przedstawionych trzynastu krokach zaprezentowana została kompletna procedura 

tworzenia modelu uczenia maszynowego – od pracy z surowymi danymi, poprzez analizę  

i przygotowanie danych, aż do budowy, oceny oraz wykorzystania modelu. Należy podkreślić, 

że każdy problem analityczny jest inny i w praktyce sposób postępowania może się różnić  

w zależności od charakteru danych, celu analizy oraz dostępnych zasobów. Niemniej jednak, 

niezależnie od specyfiki projektu, proces analizy danych i uczenia maszynowego zazwyczaj 

przebiega w przybliżeniu według zaprezentowanego schematu, który stanowi uniwersalny 

i sprawdzony punkt odniesienia w pracy analityka danych oraz specjalisty uczenia 

maszynowego. 

 

Dobór technik uczenia maszynowego do rodzaju problemu i danych 

Jednym z kluczowych etapów pracy z uczeniem maszynowym jest świadomy dobór 

techniki modelowania, który wynika nie z mody na konkretny algorytm, lecz z charakteru 

problemu, struktury danych oraz celu analizy. W praktyce analityk danych bardzo rzadko 
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zaczyna pracę od pytania „jaki algorytm jest najlepszy”, a znacznie częściej od pytania „jakie 

są moje dane i czego tak naprawdę od nich oczekuję”. 

W niniejszym rozdziale przedstawiono najważniejsze techniki uczenia maszynowego  

w sposób opisowy i kontekstowy, tak aby uczestnik szkolenia mógł zrozumieć nie tylko jak 

dany algorytm działa, ale przede wszystkim, kiedy i dlaczego warto go zastosować. 

 

 Regresja liniowa  

Regresja liniowa jest jednym z najstarszych i najprostszych modeli statystycznych,  

a jednocześnie stanowi punkt odniesienia dla niemal wszystkich problemów regresyjnych. Jej 

istota polega na modelowaniu zależności pomiędzy zmienną docelową, a zestawem cech 

wejściowych w postaci liniowej kombinacji tych cech. Model próbuje znaleźć takie 

współczynniki, aby możliwie najlepiej opisać trend występujący w danych. 

W praktyce regresja liniowa bardzo rzadko jest modelem końcowym, ale pełni 

niezwykle istotną rolę poznawczą. Pozwala szybko sprawdzić, czy w danych istnieje 

jakakolwiek zależność pomiędzy cechami a zmienną docelową, a także umożliwia interpretację 

wpływu poszczególnych cech na wynik. Dzięki temu analityk może zrozumieć kierunek i siłę 

zależności, zanim przejdzie do bardziej złożonych technik. 

Regresja liniowa najlepiej sprawdza się w sytuacjach, gdy dane są względnie czyste, 

relacje pomiędzy zmiennymi są w przybliżeniu liniowe, a celem projektu jest nie tylko 

predykcja, lecz również wyjaśnienie zjawiska. W projektach biznesowych bywa często 

wykorzystywana jako model wyjaśniający, nawet jeśli jego skuteczność predykcyjna jest niższa 

niż w przypadku modeli zespołowych. 

 

 Ridge, Lasso i ElasticNet  

W rzeczywistych zbiorach danych bardzo często spotyka się sytuację, w której liczba 

cech jest duża, a pomiędzy nimi występują silne zależności. W takich przypadkach klasyczna 

regresja liniowa staje się niestabilna, a wyuczone współczynniki mogą mieć nieintuicyjne 

wartości. Właśnie w tym miejscu pojawiają się techniki regularyzacji, takie jak Ridge, Lasso 

oraz ElasticNet. Modele te zachowują ideę regresji liniowej, ale wprowadzają dodatkowe 

ograniczenie, które „karze” zbyt duże wartości współczynników. W praktyce oznacza to, że 

model staje się bardziej odporny na szum, lepiej generalizuje oraz jest mniej podatny na 
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przeuczenie. Szczególnie istotna jest regresja Lasso, która ma zdolność do zerowania 

współczynników, co prowadzi do automatycznej selekcji cech. 

Techniki regularyzacji są często stosowane w problemach, gdzie dane są 

wysokowymiarowe, liczba obserwacji jest ograniczona, a interpretowalność nadal ma 

znaczenie. Stanowią one naturalny krok po regresji liniowej w projektach, które wymagają 

większej stabilności modelu. 

 

 Regresja logistyczna  

Regresja logistyczna, mimo swojej nazwy, jest jedną z najważniejszych technik 

klasyfikacji, szczególnie binarnej. Jej celem nie jest bezpośrednie przypisanie klasy, lecz 

oszacowanie prawdopodobieństwa przynależności do danej klasy. Dzięki temu model ten 

bardzo dobrze wpisuje się w projekty decyzyjne, w których ważne jest nie tylko „co”, ale 

również „z jaką pewnością”. W praktyce regresja logistyczna jest niezwykle popularna  

w projektach biznesowych, finansowych i medycznych, ponieważ zapewnia kompromis 

pomiędzy skutecznością a interpretowalnością. Współczynniki modelu można analizować 

podobnie jak w regresji liniowej, co pozwala zrozumieć, które cechy zwiększają lub 

zmniejszają prawdopodobieństwo wystąpienia danego zdarzenia. 

Regresja logistyczna bardzo często pełni rolę modelu referencyjnego, do którego 

porównuje się bardziej złożone algorytmy. Nawet jeśli zostaje później zastąpiona przez 

Random Forest, czy boosting, jej wyniki stanowią ważny punkt odniesienia. 

 

 Naive Bayes 

Modele Naive Bayes opierają się na probabilistycznym podejściu do klasyfikacji  

i zakładają niezależność cech względem siebie. Choć założenie to rzadko jest spełnione  

w rzeczywistych danych, w praktyce modele te potrafią działać zaskakująco dobrze, 

szczególnie w analizie tekstu i danych wysokowymiarowych. Technika ta jest często 

pierwszym wyborem w problemach takich jak klasyfikacja dokumentów, filtrowanie spamu 

czy analiza opinii. Jego siłą jest szybkość działania oraz zdolność do pracy na bardzo dużej 

liczbie cech, gdzie inne algorytmy miałyby trudności obliczeniowe.  

W projektach szkoleniowych Naive Bayes jest doskonałym przykładem algorytmu, 

który pokazuje, że prosty model oparty na silnych założeniach może być bardzo skuteczny, jeśli 

jest dobrze dopasowany do problemu. 
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 k-Nearest Neighbors  

Algorytm k-najbliższych sąsiadów opiera się na intuicyjnej idei podobieństwa 

obserwacji. Zamiast budować jawny model, algorytm przechowuje dane treningowe  

i podejmuje decyzję na podstawie tego, jakie etykiety mają najbardziej podobne obserwacje. 

Technika k-NN bardzo dobrze pokazuje, jak ważne w uczeniu maszynowym jest 

przygotowanie danych, w szczególności skalowanie cech. Bez odpowiedniego preprocessingu 

algorytm ten traci sens, ponieważ odległości pomiędzy obserwacjami przestają być miarodajne. 

W praktyce k-NN stosowany jest głównie do problemów o niewielkiej lub średniej skali, 

często w celach edukacyjnych lub eksploracyjnych, gdzie jego prostota i intuicyjność są dużą 

zaletą. 

 Support Vector Machines  

SVM to technika, która koncentruje się na wyznaczeniu granicy decyzyjnej  

o maksymalnym marginesie pomiędzy klasami. W swojej istocie jest to algorytm 

geometryczny, który bardzo dobrze radzi sobie w przestrzeniach wysokowymiarowych. Dzięki 

zastosowaniu funkcji jądra SVM potrafi modelować złożone, nieliniowe zależności bez 

jawnego zwiększania liczby cech. W praktyce algorytm ten bywa stosowany w problemach, 

gdzie dane są trudne do separacji, a jakość klasyfikacji jest kluczowa. 

Jednocześnie SVM wymaga dużej uwagi przy doborze parametrów i jest mniej 

skalowalny niż modele zespołowe, co sprawia, że w bardzo dużych projektach bywa 

zastępowany innymi technikami. 

 

 Drzewa decyzyjne 

Drzewa decyzyjne budują model w postaci sekwencji logicznych reguł. Każdy węzeł 

drzewa odpowiada decyzji opartej na wartości jednej z cech, a ścieżka od korzenia do liścia 

reprezentuje pełny proces decyzyjny. Ich największą wartością jest interpretowalność – model 

można przedstawić w formie logicznych reguł zrozumiałych nawet dla osób nietechnicznych. 

Z tego powodu drzewa decyzyjne są często wykorzystywane w projektach, gdzie 

transparentność modelu jest równie ważna jak jego skuteczność. W praktyce pojedyncze 

drzewo rzadko jest modelem końcowym, ponieważ łatwo ulega przeuczeniu. Stanowi jednak 

fundament dla potężniejszych technik zespołowych. 
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 Random Forest 

Random Forest jest jedną z najczęściej stosowanych technik uczenia maszynowego  

w pracy z danymi tablicowymi. Łączy wiele drzew decyzyjnych w jeden model, którego 

predykcja jest wynikiem agregacji decyzji poszczególnych drzew. W praktyce Random Forest 

jest często pierwszym „poważnym” modelem, po który sięga analityk. Działa dobrze bez 

skomplikowanego preprocessingu, radzi sobie z nieliniowościami, a jednocześnie jest 

stosunkowo odporny na szum i overfitting. 

 

 Extra Trees – losowość jako sposób na generalizację 

Extra Trees są rozwinięciem idei Random Forest, w którym proces budowy drzew jest 

jeszcze bardziej losowy. Dzięki temu model uczy się bardziej zróżnicowanych reguł, co często 

prowadzi do lepszej generalizacji kosztem interpretowalności. W praktyce Extra Trees są 

szczególnie użyteczne w problemach z dużą liczbą cech oraz w sytuacjach, gdy dane są 

zaszumione. 

 

 Boosting  

Boosting to rodzina technik, w których modele budowane są sekwencyjnie, a każdy 

kolejny skupia się na poprawianiu błędów poprzedniego. Algorytmy takie jak Gradient 

Boosting, XGBoost czy LightGBM należą do najskuteczniejszych technik w pracy z danymi 

tablicowymi. W praktyce boosting jest często wybierany w projektach, gdzie maksymalna 

skuteczność predykcji ma kluczowe znaczenie, a złożoność modelu jest akceptowalna. Są to 

algorytmy wymagające doświadczenia, ale oferujące bardzo dużą kontrolę nad procesem 

uczenia. 

Dobór techniki uczenia maszynowego nie jest decyzją jednorazową, lecz procesem 

iteracyjnym, w którym analityk stopniowo dopasowuje model do danych i celu projektu. 

Rozdział ten ma stanowić mapę myślenia, do której uczestnik kursu będzie wracał przy każdym 

nowym problemie analitycznym. Pewnego rodzaju podsumowaniem powyższego opisu jest 

Rys. 38., który przedstawia wybór techniki uczenia maszynowego w zależności od problemu  

i skuteczności techniki. Z kolei rysunek Rys. 39. obrazuje ogólny podział technik uczenia 

maszynowego ze względu na kategorię, Rys. 40. dokonuje podziału ML ze względu na problem 

i dane, do których ma zostać wykorzystany.      
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Rys. 38. Wybór technik uczenia maszynowego 

Źródło: Opracowanie własne 

 

 

Rys. 39. Ogólny podział technik uczenia maszynowego 

Źródło: Opracowanie własne 
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Rys. 40. Podział technik uczenia maszynowego ze względu na problem (dane). 

Źródło: Opracowanie własne 

 

Należy pamiętać, że nie istnieje jeden najlepszy algorytm. Istnieje algorytm najlepiej 

dopasowany do danych i celu. W praktyce zaczynamy od prostych modeli, następnie 

analizujemy błędy, zwiększamy złożoność i porównujemy wyniki. 

 

Pozyskiwanie danych do analizy danych i uczenia maszynowego 

Każdy projekt analizy danych i uczenia maszynowego rozpoczyna się od danych. Bez 

danych nie ma ani analizy, ani modeli, ani wniosków. W praktyce bardzo często to pozyskanie 

odpowiednich danych stanowi największe wyzwanie, a nie sam wybór algorytmu, czy 

implementacja modelu. Dane mogą pochodzić z wielu źródeł, mieć różną jakość, format  

i poziom kompletności, a ich charakter w dużej mierze determinuje dalsze etapy pracy 

analitycznej. Warto podkreślić, że w rzeczywistych projektach bardzo rzadko spotyka się 

„gotowe” zbiory danych, które można bezpośrednio wykorzystać w modelu. Dlatego już na 

etapie nauki należy oswajać się z danymi surowymi. Dane do analizy i uczenia maszynowego 

mogą pochodzić zarówno z otwartych repozytoriów, jak i z systemów biznesowych, baz 
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danych, API czy plików raportowych. Bardzo dobrym źródłem danych na start jest portal 

Kaggle: https://www.kaggle.com/ 

 

 Portal Kaggle 

Kaggle jest jednym z najpopularniejszych źródeł danych w społeczności data science  

i uczenia maszynowego. Platforma ta udostępnia ogromną liczbę zbiorów danych z różnych 

dziedzin, takich jak finanse, medycyna, marketing, sport, edukacja czy nauki społeczne. Dane 

dostępne na Kaggle są często dobrze opisane, zawierają dokumentację oraz przykładowe 

notebooki, co czyni je idealnym materiałem do nauki. W praktyce Kaggle jest doskonałym 

miejscem do: 

 nauki pracy z danymi tablicowymi (CSV, Excel), 

 ćwiczenia technik czyszczenia danych, 

 testowania różnych modeli ML na tym samym problemie, 

 budowania projektów do portfolio. 

Warto jednak pamiętać, że dane z Kaggle bywają częściowo „przygotowane”, dlatego 

nie zawsze w pełni oddają problemy spotykane w projektach komercyjnych. 

 

 Repozytoria danych akademickich i publicznych 

Wiele instytucji naukowych oraz organizacji publicznych udostępnia dane w ramach 

otwartych inicjatyw. Zbiory te często mają wysoki poziom wiarygodności i są wykorzystywane 

w badaniach naukowych. 

Do najczęściej spotykanych źródeł należą: 

 dane statystyczne publikowane przez urzędy państwowe, 

 zbiory danych demograficznych i ekonomicznych, 

 dane środowiskowe, klimatyczne i geograficzne, 

 dane edukacyjne i społeczne. 

Tego typu dane doskonale nadają się do projektów analizy danych, raportowania oraz 

budowy modeli predykcyjnych opartych na danych rzeczywistych. Ich dodatkową zaletą jest 

możliwość łączenia wielu źródeł w jeden zbiór, co pozwala ćwiczyć bardziej zaawansowane 

scenariusze analityczne. 
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 Dane z plików: CSV i Excel 

Jednym z najczęstszych źródeł danych w praktyce analitycznej są pliki w formatach 

CSV oraz Excel. Dane takie pochodzą zazwyczaj z systemów biznesowych, narzędzi 

raportowych, eksportów z baz danych lub ręcznie przygotowanych zestawień. 

Praca z plikami CSV i Excel jest szczególnie istotna, ponieważ: 

 są to formaty powszechnie stosowane w firmach, 

 dane często zawierają błędy, braki i niespójności, 

 wymagają interpretacji struktury i znaczenia kolumn. 

W projektach szkoleniowych pliki te idealnie nadają się do nauki wczytywania danych, 

eksploracji, czyszczenia oraz przygotowania do modelowania. Uczestnicy uczą się również, że 

sama obecność danych w pliku nie oznacza jeszcze, że dane są gotowe do analizy. 

 

 Dane z baz danych 

W rzeczywistych projektach bardzo często dane nie są przechowywane w plikach, lecz 

w bazach danych. Mogą to być relacyjne bazy danych (np. systemy transakcyjne) lub hurtownie 

danych. Choć na kursach podstawowych nie zawsze pracuje się bezpośrednio z bazami, warto 

uświadamiać uczestników, że w praktyce analityk bardzo często pobiera dane za pomocą 

zapytań. 

Dane z baz danych: 

 są zwykle duże i znormalizowane, 

 wymagają agregacji i łączenia wielu tabel, 

 często zawierają dane historyczne. 

Umiejętność pracy z danymi pochodzącymi z baz jest niezwykle cenna i stanowi 

naturalne rozszerzenie kompetencji analitycznych. 

 

 Dane pobierane przez API 

Coraz więcej danych udostępnianych jest za pośrednictwem interfejsów API. Pozwala 

to na automatyczne pobieranie aktualnych danych, np. pogodowych, finansowych, 

społecznościowych czy logistycznych. Dane z API: 

 często są w formacie JSON, 

 wymagają przetwarzania do postaci tabelarycznej, 

 pozwalają tworzyć dynamiczne projekty ML. 
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W kontekście uczenia maszynowego API umożliwiają pracę z danymi zmieniającymi 

się w czasie oraz symulowanie scenariuszy zbliżonych do produkcyjnych. 

 

 Dane generowane sztucznie (syntetyczne) 

W projektach edukacyjnych i testowych często wykorzystuje się dane syntetyczne, 

generowane programowo. Pozwalają one: 

 kontrolować strukturę danych, 

 symulować określone zależności, 

 testować zachowanie algorytmów. 

Dane syntetyczne są szczególnie przydatne do nauki działania algorytmów oraz do 

demonstracji problemów takich jak overfitting, niezbalansowane klasy czy wpływ szumu na 

model. 

 

 Dane własne i dane z rzeczywistych projektów 

Najlepszym materiałem do nauki są często dane własne lub dane pochodzące z realnych 

problemów. Mogą to być: 

 dane sprzedażowe, 

 dane ankietowe, 

 dane pomiarowe, 

 dane operacyjne. 

Praca z takimi danymi uczy nie tylko technik analizy i ML, ale również rozumienia 

kontekstu biznesowego oraz interpretacji wyników w praktyce. 

 

Pozyskiwanie danych jest pierwszym i jednym z najważniejszych etapów analizy 

danych oraz uczenia maszynowego. Źródło danych, ich jakość oraz sposób pozyskania mają 

bezpośredni wpływ na dalsze etapy pracy – od analizy eksploracyjnej, przez przygotowanie 

danych, aż po skuteczność modeli. W ramach kursu uczestnicy będą pracować głównie na 

danych pochodzących z plików CSV i Excel oraz z publicznych repozytoriów, ucząc się 

jednocześnie, jak samodzielnie wyszukiwać i oceniać dane do własnych projektów 

analitycznych i uczenia maszynowego. 
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Przykład analizy danych – studium przypadku krok po kroku 

Analiza danych (EDA – Exploratory Data Analysis) to pierwszy i najważniejszy etap 

pracy z danymi. Zanim zbudujemy model uczenia maszynowego, musimy zrozumieć, co jest 

w zbiorze: jakie mamy kolumny, jakie są wartości, czy są braki danych, czy dane są poprawnie 

wczytane, oraz jak wygląda zmienna docelowa (czyli to, co chcemy przewidywać). W praktyce 

EDA odpowiada na pytania: „czy dane są dobre?”, „czy są błędy?”, „co wyróżnia osoby  

z klasą 1 od klasy 0?”. 

W tym studium przypadku analizujemy dane BRFSS 2015 związane ze zdrowiem oraz 

cukrzycą – dane pochodzą ze wspominanego wcześniej portalu Kaggle. Zmienna 

Diabetes_binary opisuje, czy dana osoba ma cukrzycę (1) czy nie (0). W analizie wykonamy: 

wczytanie danych, podstawową kontrolę jakości (braki, duplikaty), statystyki (średnie, 

mediany, odchylenia), rozkłady cech (histogramy), porównania cech między klasami  

(np. cukrzyca vs brak), wykresy dla zmiennych binarnych (np. czy ktoś pali), wizualizację 

korelacji oraz prostą sekcję wniosków. To będzie wzorzec, jak robi się analizę danych  

w Pythonie krok po kroku. 

 

# ========================================================= 

# 0) IMPORTY I USTAWIENIA (zawsze na początku notebooka) 

# ========================================================= 

 

import pandas as pd  # biblioteka do pracy z tabelami (DataFrame) 

import numpy as np  # biblioteka do obliczeń matematycznych 

import matplotlib.pyplot as plt  # biblioteka do tworzenia wykresów 

import seaborn as sns  # biblioteka do ładniejszych wykresów statystycznych 

from pathlib import Path  # wygodna praca ze ścieżkami plików 

 

pd.set_option("display.max_columns", 200)  # pokazuj dużo kolumn w tabelach 

pd.set_option("display.width", 140)  # ustaw szerokość wyświetlania tabel 

sns.set_theme(style="whitegrid")  # ustaw przyjemny styl wykresów 

 

RANDOM_STATE = 42  # stałe ziarno losowości (dla powtarzalności) 

SAMPLE_N = 8000  # próbka do cięższych wykresów (żeby nie liczyć na 250k 

wierszy) 
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# ========================================================= 

# 1) WCZYTANIE DANYCH 

# ========================================================= 

 

FILE_PATH = Path("diabetes_binary_health_indicators_BRFSS2015 (3) (1) 

(1).csv")  # nazwa pliku danych 

df = pd.read_csv(FILE_PATH)  # wczytaj plik CSV do DataFrame 

 

print("Wymiary danych (wiersze, kolumny):", df.shape)  # pokaż rozmiar 

danych 

df.head(10)  # pokaż pierwsze 10 wierszy (szybki podgląd) 

 

# ========================================================= 

# 2) SPRAWDZENIE STRUKTURY DANYCH (typy, kolumny, podstawy) 

# ========================================================= 

 

print("\nNazwy kolumn:\n", list(df.columns))  # wypisz nazwy kolumn 

df.info()  # pokaż typy danych i liczbę niepustych wartości w kolumnach 

df.describe().T  # pokaż podstawowe statystyki liczbowe (transponowane) 

 

# ========================================================= 

# 3) BRAKI DANYCH I DUPLIKATY (kontrola jakości) 

# ========================================================= 

 

missing_count = df.isna().sum()  # policz braki danych w każdej kolumnie 

missing_percent = (missing_count / len(df)) * 100  # policz procent braków 

w każdej kolumnie 

 

missing_summary = pd.DataFrame({  # zbuduj tabelę podsumowania braków 

    "missing_count": missing_count,  # liczba braków 

    "missing_percent": missing_percent  # procent braków 

}).sort_values("missing_count", ascending=False)  # posortuj od największej 

liczby braków 

 

print("\nBraki danych (top 10 kolumn):")  # opis 
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display(missing_summary.head(10))  # pokaż 10 kolumn z największą liczbą 

braków 

 

duplicates_n = df.duplicated().sum()  # policz liczbę zduplikowanych 

wierszy 

print("\nLiczba duplikatów wierszy:", duplicates_n)  # wyświetl wynik 

 

# Uwaga: w EDA zwykle nie usuwamy nic od razu, tylko najpierw rozumiemy 

dane.  # komentarz dydaktyczny 

 

# ========================================================= 

# 4) ZMIENNA DOCELOWA (co chcemy analizować / przewidywać) 

# ========================================================= 

 

target_col = "Diabetes_binary"  # nazwa zmiennej docelowej (0 = brak, 1 = 

cukrzyca) 

 

target_counts = df[target_col].value_counts(dropna=False)  # policz liczbę 

przypadków w klasach 

target_percent = df[target_col].value_counts(normalize=True) * 100  # 

policz procent klas 

 

print("\nRozkład klas (liczności):\n", target_counts)  # pokaż liczności 

print("\nRozkład klas (procent):\n", target_percent.round(2))  # pokaż 

procenty 

 

plt.figure(figsize=(6, 4))  # ustaw rozmiar wykresu 

sns.countplot(data=df, x=target_col)  # wykres liczności klas 

plt.title("Rozkład klasy docelowej: cukrzyca (1) vs brak (0)")  # tytuł 

plt.xlabel("Diabetes_binary")  # podpis osi X 

plt.ylabel("Liczba obserwacji")  # podpis osi Y 

plt.show()  # pokaż wykres 

 

# ========================================================= 

# 5) PODZIAŁ KOLUMN NA GRUPY (żeby analizować mądrze) 

# ========================================================= 
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""" 

W tych danych większość kolumn jest binarna (0/1). 

Są też kolumny porządkowe (np. Age, GenHlth, Education, Income), 

oraz liczbowe (np. BMI, MentHlth, PhysHlth). 

 

Ten podział pomaga dobrać odpowiedni wykres i sposób analizy. 

""" 

 

binary_cols = [  # kolumny binarne (0/1) 

    "HighBP", "HighChol", "CholCheck", "Smoker", "Stroke", 

"HeartDiseaseorAttack", 

    "PhysActivity", "Fruits", "Veggies", "HvyAlcoholConsump", 

"AnyHealthcare", 

    "NoDocbcCost", "DiffWalk", "Sex" 

]  # koniec listy binarnej 

 

ordinal_cols = ["GenHlth", "Age", "Education", "Income"]  # kolumny 

porządkowe (liczby oznaczają kategorie) 

numeric_cols = ["BMI", "MentHlth", "PhysHlth"]  # kolumny liczbowe (ciągłe 

lub dyskretne) 

 

all_used = set(binary_cols + ordinal_cols + numeric_cols + [target_col])  # 

zbiór wszystkich użytych kolumn 

unused_cols = [c for c in df.columns if c not in all_used]  # kolumny 

nieuwzględnione w podziale 

 

print("\nKolumny nieuwzględnione w podziale (sprawdź czy chcesz je 

dodać):", unused_cols)  # pokaż ewentualne braki 

 

# ========================================================= 

# 6) MIARY STATYSTYCZNE (średnia, mediana, odchylenie, kwartyle, IQR) 

# ========================================================= 
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""" 

Miary statystyczne pomagają opisać dane liczbowo: 

- średnia i mediana mówią o "typowej" wartości, 

- odchylenie standardowe mówi, jak bardzo dane są rozproszone, 

- kwartyle i IQR pomagają rozumieć rozkład bez wrażliwości na skrajności. 

""" 

 

desc_num = df[numeric_cols].describe().T  # podstawowe statystyki (count, 

mean, std, min, Q1, Q2, Q3, max) 

desc_num["median"] = df[numeric_cols].median()  # dodaj medianę 

desc_num["skew"] = df[numeric_cols].skew()  # dodaj skośność 

desc_num["kurtosis"] = df[numeric_cols].kurtosis()  # dodaj kurtozę 

 

q1 = df[numeric_cols].quantile(0.25)  # pierwszy kwartyl 

q3 = df[numeric_cols].quantile(0.75)  # trzeci kwartyl 

iqr = q3 - q1  # rozstęp międzykwartylowy 

 

desc_num["Q1"] = q1  # dodaj Q1 

desc_num["Q3"] = q3  # dodaj Q3 

desc_num["IQR"] = iqr  # dodaj IQR 

 

print("\nStatystyki dla kolumn liczbowych:")  # opis 

display(desc_num)  # pokaż tabelę 

 

# ========================================================= 

# 7) ROZKŁADY ZMIENNYCH LICZBOWYCH (histogram + KDE) 

# ========================================================= 

 

for col in numeric_cols:  # przejdź po każdej kolumnie liczbowej 

    plt.figure(figsize=(7, 4))  # ustaw rozmiar wykresu 

    sns.histplot(df[col], bins=40, kde=True)  # histogram z linią KDE 

    plt.title(f"Rozkład zmiennej: {col}")  # tytuł 

    plt.xlabel(col)  # podpis osi X 

    plt.ylabel("Liczba obserwacji")  # podpis osi Y 

    plt.show()  # pokaż wykres 
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# ========================================================= 

# 8) OUTLIERY (wartości odstające) – boxploty dla liczb 

# ========================================================= 

 

for col in numeric_cols:  # iteruj po kolumnach liczbowych 

    plt.figure(figsize=(7, 2.5))  # rozmiar wykresu 

    sns.boxplot(x=df[col])  # boxplot pokazuje medianę, kwartyle i wartości 

odstające 

    plt.title(f"Wartości odstające (boxplot): {col}")  # tytuł 

    plt.xlabel(col)  # podpis osi 

    plt.show()  # pokaż wykres 

 

# ========================================================= 

# 9) PORÓWNANIE LICZBOWYCH CECH DLA KLAS (0 vs 1) 

# ========================================================= 

 

""" 

Tutaj sprawdzamy: czy np. BMI różni się między osobami z cukrzycą i bez 

cukrzycy? 

To jest kluczowy element EDA pod ML: "co odróżnia klasy?" 

""" 

 

for col in numeric_cols:  # iteruj po cechach liczbowych 

    plt.figure(figsize=(7, 4))  # rozmiar wykresu 

    sns.boxplot(data=df, x=target_col, y=col)  # boxplot w podziale na 

klasy 0/1 

    plt.title(f"{col} w podziale na klasy (Diabetes_binary)")  # tytuł 

    plt.xlabel("Diabetes_binary (0=brak, 1=cukrzyca)")  # opis osi X 

    plt.ylabel(col)  # opis osi Y 

    plt.show()  # pokaż wykres 

 

# Dodatkowe zestawienie liczbowe (średnie w klasach)  # komentarz 

dydaktyczny 

means_by_class = df.groupby(target_col)[numeric_cols].mean()  # policz 

średnie cech liczbowych w klasach 
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std_by_class = df.groupby(target_col)[numeric_cols].std()  # policz 

odchylenia w klasach 

 

print("\nŚrednie cech liczbowych w klasach:")  # opis 

display(means_by_class)  # pokaż średnie 

 

print("\nOdchylenia standardowe cech liczbowych w klasach:")  # opis 

display(std_by_class)  # pokaż odchylenia 

 

# ========================================================= 

# 10) ZMIENNE BINARNE (0/1) – rozkład i związek z cukrzycą 

# ========================================================= 

 

""" 

Dla zmiennych 0/1 najlepszy jest: 

- countplot (ile jest 0 i 1), 

- wykres udziału (procent), 

- porównanie z targetem (np. odsetek cukrzycy w grupie 0 vs 1). 

""" 

 

for col in binary_cols:  # przejdź po każdej zmiennej binarnej 

    plt.figure(figsize=(7, 4))  # rozmiar wykresu 

    sns.countplot(data=df, x=col, hue=target_col)  # rozkład 0/1 i 

jednocześnie klasy docelowej 

    plt.title(f"{col} vs Diabetes_binary (liczności)")  # tytuł 

    plt.xlabel(col)  # oś X 

    plt.ylabel("Liczba obserwacji")  # oś Y 

    plt.legend(title="Diabetes_binary")  # legenda 

    plt.show()  # pokaż wykres 

 

# Tabela: jaki procent cukrzycy jest w grupie 0 i 1 dla każdej cechy 

binarnej  # komentarz dydaktyczny 

binary_target_rates = {}  # słownik na wyniki 
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for col in binary_cols:  # iteruj po cechach binarnych 

    rate = df.groupby(col)[target_col].mean() * 100  # średnia z 0/1 daje 

odsetek (w %) 

    binary_target_rates[col] = rate  # zapisz do słownika 

 

binary_target_rates_df = pd.DataFrame(binary_target_rates).T  # zamień 

słownik na tabelę 

binary_target_rates_df.columns = ["% cukrzycy gdy cecha=0", "% cukrzycy gdy 

cecha=1"]  # nadaj nazwy kolumn 

 

print("\nOdsetek cukrzycy w grupach 0/1 dla zmiennych binarnych:")  # opis 

display(binary_target_rates_df.sort_values("% cukrzycy gdy cecha=1", 

ascending=False))  # pokaż posortowane 

 

# ========================================================= 

# 11) ZMIENNE PORZĄDKOWE – rozkłady i związek z targetem 

# ========================================================= 

 

for col in ordinal_cols:  # iteruj po zmiennych porządkowych 

    plt.figure(figsize=(7, 4))  # rozmiar 

    sns.countplot(data=df, x=col, hue=target_col)  # rozkład kategorii i 

podział na target 

    plt.title(f"{col} vs Diabetes_binary (liczności)")  # tytuł 

    plt.xlabel(col)  # oś X 

    plt.ylabel("Liczba obserwacji")  # oś Y 

    plt.legend(title="Diabetes_binary")  # legenda 

    plt.show()  # pokaż 

 

# Średni odsetek cukrzycy w zależności od kategorii porządkowej  # 

komentarz dydaktyczny 

for col in ordinal_cols:  # iteruj po zmiennych porządkowych 

    rate_by_level = df.groupby(col)[target_col].mean() * 100  # odsetek 

cukrzycy na poziomach 

    print(f"\nOdsetek cukrzycy (%) w zależności od {col}:")  # opis 

    display(rate_by_level)  # pokaż 
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# ========================================================= 

# 12) KORELACJE (heatmapa + lista najmocniejszych) 

# ========================================================= 

 

""" 

Korelacja pokazuje, jak silnie zmienne są ze sobą powiązane liniowo. 

Warto pamiętać: korelacja nie oznacza przyczynowości. 

To jednak świetny szybki podgląd zależności w danych. 

""" 

 

corr = df.corr(numeric_only=True)  # policz macierz korelacji (tylko 

liczby) 

 

plt.figure(figsize=(12, 9))  # rozmiar wykresu 

sns.heatmap(corr, cmap="coolwarm", center=0, square=True)  # heatmapa 

korelacji 

plt.title("Macierz korelacji (heatmapa)")  # tytuł 

plt.show()  # pokaż 

 

# Najmocniejsze korelacje ze zmienną docelową  # komentarz dydaktyczny 

corr_with_target = corr[target_col].sort_values(ascending=False)  # sortuj 

korelacje z targetem 

print("\nKorelacje z targetem (od największej):")  # opis 

display(corr_with_target)  # pokaż 

 

# ========================================================= 

# 13) PAIRPLOT (opcjonalnie) – na próbce danych (bo pełny zbiór jest duży) 

# ========================================================= 

 

""" 

Pairplot jest bardzo fajny, ale kosztowny obliczeniowo. 

Dlatego robimy go na losowej próbce danych. 

""" 

 

df_sample = df.sample(n=min(SAMPLE_N, len(df)), 

random_state=RANDOM_STATE)  # weź próbkę danych 
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sns.pairplot(df_sample[[target_col] + numeric_cols], hue=target_col, 

diag_kind="hist")  # pairplot na cechach liczbowych 

plt.show()  # pokaż 

 

# ========================================================= 

# 14) PODSUMOWANIE EDA – wnioski (szablon do uzupełnienia) 

# ========================================================= 

 

""" 

W tym miejscu (w skrypcie) warto dopisać 5–10 zdań wniosków, np.: 

- czy klasy są zbalansowane? 

- które cechy najbardziej różnią się między 0 i 1? 

- czy są outliery w BMI / PhysHlth / MentHlth? 

- jakie cechy mają najwyższą korelację z targetem? 

- jakie problemy jakości danych zauważyliśmy? 

""" 

 

Przykład budowy modelu uczenia maszynowego – regresja logistyczna krok 

po kroku 

W niniejszym podrozdziale przedstawiony został kompletny, praktyczny przykład 

budowy modelu uczenia maszynowego w języku Python, z wykorzystaniem regresji 

logistycznej. Celem tego przykładu nie jest uzyskanie najlepszego możliwego modelu 

predykcyjnego, lecz zrozumienie całego procesu tworzenia modelu ML, od przygotowanych 

wcześniej danych aż do użycia wytrenowanego modelu do predykcji dla nowych przypadków. 

Regresja logistyczna została wybrana jako pierwszy model, ponieważ jest stosunkowo prosta, 

dobrze interpretowalna i często wykorzystywana jako punkt odniesienia w projektach 

analitycznych. 

W ramach przykładu pokazano wszystkie kluczowe etapy pracy z modelem uczenia 

maszynowego. Dane zostały podzielone na zbiory treningowe i testowe, z zachowaniem 

proporcji klas, aby zapewnić rzetelną ocenę jakości modelu. Następnie zastosowano 

balansowanie klas metodą SMOTE, co pozwala lepiej radzić sobie z problemem 

niezbalansowanych danych, typowym dla zagadnień medycznych. Kolejnym krokiem było 
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skalowanie cech, które jest istotne w przypadku regresji logistycznej i wpływa na stabilność 

procesu uczenia. 

W podrozdziale zaprezentowano również ocenę jakości modelu przy użyciu 

najważniejszych metryk klasyfikacji, takich jak accuracy, precision, recall oraz F1-score,  

a także wizualizacje w postaci macierzy pomyłek oraz krzywych ROC i Precision–Recall. 

Szczególną uwagę poświęcono świadomemu wyborowi progu decyzyjnego, pokazując, że 

domyślna wartość 0.5 nie zawsze jest najlepszym rozwiązaniem, zwłaszcza w problemach 

związanych ze zdrowiem. 

Na końcu przedstawiono praktyczny aspekt wykorzystania modelu: zapis 

wytrenowanego modelu do pliku, jego ponowne wczytanie oraz użycie do predykcji dla danych 

wprowadzonych przez użytkownika. Dzięki temu przykład ten stanowi pełne studium 

przypadku uczenia maszynowego, pokazujące, jak teoria i narzędzia Pythona przekładają się 

na rzeczywisty proces budowy i użycia modelu. 

 

# ========================================================= 

# WZORCOWY PROJEKT ML (Regresja Logistyczna) – DIABETES BRFSS 2015 

# ========================================================= 

# Cel: 

# 1) Wczytać dane (CSV) 

# 2) Przygotować X i y 

# 3) Podzielić dane na train i test 

# 4) Zbalansować tylko TRAIN (SMOTE) 

# 5) Zeskalować dane (StandardScaler) 

# 6) Wytrenować LogisticRegression 

# 7) Sprawdzić metryki i zrobić wykresy (CM, ROC, PR) 

# 8) Zapisać model do pliku i wczytać go z powrotem 

# 9) Zapytać użytkownika o parametry i zdiagnozować cukrzycę 

# ========================================================= 

 

# --------------------------- 

# 0) INSTALACJE (tylko w Colabie, jeśli brakuje pakietu) 

# --------------------------- 
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# Jeśli w Colabie nie masz imbalanced-learn, odkomentuj tę linię.  # 

komentarz 

# !pip -q install imbalanced-learn  # instalacja biblioteki do SMOTE 

(balansowanie) 

 

# --------------------------- 

# 1) IMPORTY 

# --------------------------- 

 

import pandas as pd  # praca z danymi tabelarycznymi (DataFrame) 

import numpy as np  # obliczenia numeryczne 

import matplotlib.pyplot as plt  # wykresy 

import seaborn as sns  # wykresy statystyczne 

from pathlib import Path  # ścieżki do plików 

 

from sklearn.model_selection import train_test_split  # podział danych na 

train/test 

from sklearn.preprocessing import StandardScaler  # skalowanie cech 

from sklearn.linear_model import LogisticRegression  # model regresji 

logistycznej 

 

from sklearn.metrics import accuracy_score  # accuracy 

from sklearn.metrics import precision_score  # precision 

from sklearn.metrics import recall_score  # recall 

from sklearn.metrics import f1_score  # F1 

from sklearn.metrics import confusion_matrix  # macierz pomyłek 

from sklearn.metrics import classification_report  # raport klasyfikacji 

from sklearn.metrics import roc_curve  # punkty krzywej ROC 

from sklearn.metrics import roc_auc_score  # AUC 

from sklearn.metrics import precision_recall_curve  # krzywa precision-

recall 

from sklearn.metrics import average_precision_score  # AP (pole pod PR) 

 

from imblearn.over_sampling import SMOTE  # SMOTE do balansowania klas 
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import pickle  # zapis/wczytanie modelu jako plik binarny 

 

sns.set_theme(style="whitegrid")  # ładny styl wykresów 

 

# --------------------------- 

# 2) WCZYTANIE DANYCH 

# --------------------------- 

 

FILE_PATH = Path("diabetes_binary_health_indicators_BRFSS2015 (3) (1) 

(1).csv")  # ścieżka do pliku CSV 

df = pd.read_csv(FILE_PATH)  # wczytaj dane z CSV do DataFrame 

 

print("Wymiary danych (wiersze, kolumny):", df.shape)  # szybka informacja 

o rozmiarze danych 

print("Pierwsze 3 wiersze danych:")  # opis 

display(df.head(3))  # podgląd danych 

 

# --------------------------- 

# 3) MINIMALNA KONTROLA JAKOŚCI (bez powtarzania pełnej EDA) 

# --------------------------- 

 

""" 

W EDA sprawdzaliśmy dane dokładniej. 

Tutaj robimy tylko krótką kontrolę, żeby modelowanie było bezpieczne: 

- czy są braki danych? 

- czy target ma tylko 0/1? 

- czy typy są liczbowe? 

""" 

 

print("\nBraki danych w całym zbiorze (suma):", df.isna().sum().sum())  # 

suma braków w całym zbiorze 

print("Unikalne wartości w Diabetes_binary:", 

df["Diabetes_binary"].unique())  # sprawdź klasy 0/1 
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# --------------------------- 

# 4) WYBÓR ZMIENNEJ DOCELOWEJ I CECH 

# --------------------------- 

 

target_col = "Diabetes_binary"  # nazwa kolumny, którą chcemy przewidywać 

(0/1) 

 

X = df.drop(columns=[target_col])  # X = cechy (wszystko oprócz targetu) 

y = df[target_col]  # y = target (0/1) 

 

feature_names = list(X.columns)  # zapamiętaj nazwy cech (ważne do eksportu 

i późniejszego użycia) 

 

print("\nLiczba cech (kolumn wejściowych):", X.shape[1])  # ile cech mamy w 

modelu 

print("Nazwy cech:", feature_names)  # pokaż nazwy cech 

 

# --------------------------- 

# 5) PODZIAŁ NA TRAIN / TEST 

# --------------------------- 

 

""" 

To jest kluczowa zasada: 

- model uczy się tylko na TRAIN 

- ocena jakości jest na TEST (danych niewidzianych) 

 

Używamy stratify=y, aby proporcje klas były podobne w train i test. 

""" 

 

X_train, X_test, y_train, y_test = train_test_split(  # wykonaj podział 

    X,  # cechy 

    y,  # target 

    test_size=0.2,  # 20% danych na test 

    random_state=42,  # powtarzalność 

    stratify=y  # zachowaj proporcje klas 
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) 

 

print("\nRozmiary zbiorów:")  # opis 

print("X_train:", X_train.shape, "X_test:", X_test.shape)  # pokaż wymiary 

print("y_train:", y_train.shape, "y_test:", y_test.shape)  # pokaż wymiary 

 

# --------------------------- 

# 6) BALANSOWANIE KLAS (SMOTE) – TYLKO NA TRAIN 

# --------------------------- 

 

""" 

Dane są niezbalansowane (zwykle więcej osób bez cukrzycy niż z cukrzycą). 

SMOTE tworzy „syntetyczne” przykłady klasy mniejszościowej. 

UWAGA: SMOTE robimy TYLKO na TRAIN, bo inaczej „przeciekamy” informacją do 

testu. 

""" 

 

smote = SMOTE(random_state=42)  # utwórz obiekt SMOTE 

X_train_res, y_train_res = smote.fit_resample(X_train, y_train)  # 

zbalansuj train 

 

print("\nRozkład klas przed SMOTE (train):")  # opis 

print(y_train.value_counts())  # ile było klas w train 

 

print("\nRozkład klas po SMOTE (train):")  # opis 

print(pd.Series(y_train_res).value_counts())  # ile jest klas po SMOTE 

 

# --------------------------- 

# 7) SKALOWANIE DANYCH (StandardScaler) 

# --------------------------- 

 

""" 

Regresja logistyczna działa lepiej, gdy cechy mają podobną skalę. 

StandardScaler robi: 
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- odejmuje średnią 

- dzieli przez odchylenie standardowe 

 

BARDZO WAŻNE: 

- scaler FIT na TRAIN (po SMOTE) 

- scaler TRANSFORM na TRAIN i TEST 

""" 

 

scaler = StandardScaler()  # utwórz scaler 

 

X_train_scaled = scaler.fit_transform(X_train_res)  # dopasuj scaler do 

train i przeskaluj train 

X_test_scaled = scaler.transform(X_test)  # przeskaluj test tym samym 

scalerem (bez fit!) 

 

print("\nWymiary po skalowaniu:")  # opis 

print("X_train_scaled:", X_train_scaled.shape)  # wymiary train 

print("X_test_scaled:", X_test_scaled.shape)  # wymiary test 

 

# --------------------------- 

# 8) TRENING MODELU: REGRESJA LOGISTYCZNA 

# --------------------------- 

 

""" 

Regresja logistyczna: 

- uczy się zależności między cechami a klasą 0/1 

- zwraca też prawdopodobieństwo (predict_proba) 

 

Ustawiamy max_iter=1000, aby model miał czas „dojść do rozwiązania”. 

""" 

 

model = LogisticRegression(max_iter=1000, random_state=42)  # utwórz model 

model.fit(X_train_scaled, y_train_res)  # naucz model na zbalansowanym 

train 
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# --------------------------- 

# 9) PREDYKCJA (TEST) + PRAWDOPODOBIEŃSTWA 

# --------------------------- 

 

y_pred = model.predict(X_test_scaled)  # przewidywana klasa (0/1) 

y_proba = model.predict_proba(X_test_scaled)[:, 1]  # prawdopodobieństwo 

klasy 1 (cukrzyca) 

 

# --------------------------- 

# 10) METRYKI JAKOŚCI MODELU 

# --------------------------- 

 

""" 

W medycznych przykładach szczególnie ważny bywa recall (czułość): 

- ile prawdziwych przypadków cukrzycy wykryliśmy? 

 

Ale pokazujemy pełen pakiet metryk: 

- accuracy, precision, recall, f1 

- confusion matrix 

- classification report 

""" 

 

acc = accuracy_score(y_test, y_pred)  # accuracy 

prec = precision_score(y_test, y_pred, zero_division=0)  # precision 

rec = recall_score(y_test, y_pred, zero_division=0)  # recall 

f1 = f1_score(y_test, y_pred, zero_division=0)  # f1 

 

print("\n=== METRYKI (na zbiorze testowym) ===")  # nagłówek 

print(f"Accuracy : {acc:.4f}")  # accuracy 

print(f"Precision: {prec:.4f}")  # precision 

print(f"Recall   : {rec:.4f}")  # recall 

print(f"F1-score : {f1:.4f}")  # f1 

 

print("\n=== RAPORT KLASYFIKACJI ===")  # nagłówek 
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print(classification_report(y_test, y_pred, digits=4))  # raport 

klasyfikacji 

 

# --------------------------- 

# 11) MACIERZ POMYŁEK + HEATMAPA 

# --------------------------- 

 

cm = confusion_matrix(y_test, y_pred)  # policz macierz pomyłek 

 

plt.figure(figsize=(7, 5))  # rozmiar wykresu 

sns.heatmap(  # heatmapa 

    cm,  # macierz 

    annot=True,  # pokaż liczby 

    fmt="d",  # format liczb (integer) 

    cmap="Blues",  # kolory 

    xticklabels=["brak cukrzycy (0)", "cukrzyca (1)"],  # etykiety osi X 

    yticklabels=["brak cukrzycy (0)", "cukrzyca (1)"]  # etykiety osi Y 

) 

plt.title("Macierz pomyłek (Confusion Matrix)")  # tytuł 

plt.xlabel("Klasa przewidziana")  # oś X 

plt.ylabel("Klasa rzeczywista")  # oś Y 

plt.show()  # pokaż wykres 

 

# --------------------------- 

# 12) KRZYWA ROC + AUC 

# --------------------------- 

 

auc = roc_auc_score(y_test, y_proba)  # policz AUC 

fpr, tpr, thresholds = roc_curve(y_test, y_proba)  # punkty ROC 

 

plt.figure(figsize=(7, 5))  # rozmiar 

plt.plot(fpr, tpr, lw=2, label=f"ROC (AUC = {auc:.4f})")  # krzywa ROC 

plt.plot([0, 1], [0, 1], linestyle="--", lw=2, label="Losowy 

klasyfikator")  # przekątna 
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plt.title("Krzywa ROC")  # tytuł 

plt.xlabel("False Positive Rate (FPR)")  # oś X 

plt.ylabel("True Positive Rate (TPR)")  # oś Y 

plt.legend()  # legenda 

plt.show()  # pokaż 

 

# --------------------------- 

# 13) KRZYWA PRECISION–RECALL + AVERAGE PRECISION (AP) 

# --------------------------- 

 

precision, recall, pr_thresholds = precision_recall_curve(y_test, 

y_proba)  # policz PR curve 

ap = average_precision_score(y_test, y_proba)  # pole pod krzywą PR 

 

plt.figure(figsize=(7, 5))  # rozmiar 

plt.plot(recall, precision, lw=2, label=f"PR curve (AP = {ap:.4f})")  # 

wykres PR 

plt.title("Krzywa Precision–Recall")  # tytuł 

plt.xlabel("Recall")  # oś X 

plt.ylabel("Precision")  # oś Y 

plt.legend()  # legenda 

plt.show()  # pokaż 

 

# --------------------------- 

# 14) ROZKŁAD PRAWDOPODOBIEŃSTW (czy model rozróżnia klasy?) 

# --------------------------- 

 

plt.figure(figsize=(8, 5))  # rozmiar 

sns.histplot(y_proba[y_test == 0], bins=40, kde=True, label="Brak cukrzycy 

(0)")  # rozkład proba dla klasy 0 

sns.histplot(y_proba[y_test == 1], bins=40, kde=True, label="Cukrzyca 

(1)")  # rozkład proba dla klasy 1 

plt.title("Rozkład przewidywanego prawdopodobieństwa klasy 1")  # tytuł 

plt.xlabel("P(y=1) = prawdopodobieństwo cukrzycy")  # oś X 
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plt.ylabel("Liczba przypadków")  # oś Y 

plt.legend()  # legenda 

plt.show()  # pokaż 

 

# --------------------------- 

# 15) ZAPIS MODELU DO PLIKU (eksport) 

# --------------------------- 

 

""" 

W praktyce nie zapisujemy tylko samego modelu. 

Musimy zapisać też: 

- scaler (bo bez niego nowe dane będą w innej skali) 

- listę cech i ich kolejność (żeby użytkownik podawał dane w tej samej 

kolejności) 

""" 

 

artifact = {  # tworzymy „paczkę” do zapisu 

    "model": model,  # wytrenowany model 

    "scaler": scaler,  # dopasowany scaler 

    "feature_names": feature_names  # kolejność cech 

} 

 

MODEL_FILE = "logreg_diabetes_model.pkl"  # nazwa pliku binarnego 

 

with open(MODEL_FILE, "wb") as f:  # otwórz plik do zapisu binarnego 

    pickle.dump(artifact, f)  # zapisz paczkę do pliku 

 

print("\nModel zapisany do pliku:", MODEL_FILE)  # potwierdzenie 

 

# --------------------------- 

# 16) WCZYTANIE MODELU (import) – test, czy wszystko działa 

# --------------------------- 

 

with open(MODEL_FILE, "rb") as f:  # otwórz plik binarny do odczytu 



 

108 
 

    loaded_artifact = pickle.load(f)  # wczytaj paczkę 

 

loaded_model = loaded_artifact["model"]  # wyciągnij model 

loaded_scaler = loaded_artifact["scaler"]  # wyciągnij scaler 

loaded_feature_names = loaded_artifact["feature_names"]  # wyciągnij listę 

cech 

 

# Krótki test: predykcja na pierwszych 5 rekordach testu  # komentarz 

test_scaled_again = loaded_scaler.transform(X_test)  # przeskaluj test tak 

jak wcześniej 

test_pred_again = loaded_model.predict(test_scaled_again[:5])  # przewidź 

klasy dla 5 pierwszych 

 

print("\nTest po imporcie (pierwsze 5 predykcji):", test_pred_again)  # 

pokaż wynik 

 

# --------------------------- 

# 17) „DIAGNOZA” – zapytaj użytkownika o cechy i przewidź cukrzycę 

# --------------------------- 

 

""" 

To jest prosty „interfejs tekstowy”. 

Użytkownik wpisuje wartości cech (tak jak w danych), a my: 

1) tworzymy wiersz danych w odpowiedniej kolejności 

2) skalujemy go scalerem 

3) liczymy predykcję i prawdopodobieństwo 

 

WAŻNE: To jest przykład edukacyjny, nie narzędzie medyczne. 

""" 

 

def ask_float(name, hint):  # funkcja pomocnicza do wczytywania liczb 

    value = float(input(f"{name} ({hint}): "))  # pobierz wartość od 

użytkownika 

    return value  # zwróć wartość 
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print("\n=== WPROWADŹ DANE PACJENTA (jak w zbiorze) ===")  # nagłówek 

 

user_data = {}  # słownik na dane od użytkownika 

 

# Każda linia poniżej pyta o jedną cechę.  # komentarz 

user_data["HighBP"] = ask_float("HighBP", "0 lub 1 (wysokie ciśnienie)")  # 

HighBP 

user_data["HighChol"] = ask_float("HighChol", "0 lub 1 (wysoki 

cholesterol)")  # HighChol 

user_data["CholCheck"] = ask_float("CholCheck", "0 lub 1 (badanie 

cholesterolu)")  # CholCheck 

user_data["BMI"] = ask_float("BMI", "np. 18–50 (wskaźnik BMI)")  # BMI 

user_data["Smoker"] = ask_float("Smoker", "0 lub 1 (czy palił >=100 

papierosów)")  # Smoker 

user_data["Stroke"] = ask_float("Stroke", "0 lub 1 (czy miał udar)")  # 

Stroke 

user_data["HeartDiseaseorAttack"] = ask_float("HeartDiseaseorAttack", "0 

lub 1 (choroba serca/zawał)")  # HeartDiseaseorAttack 

user_data["PhysActivity"] = ask_float("PhysActivity", "0 lub 1 (aktywność 

fizyczna)")  # PhysActivity 

user_data["Fruits"] = ask_float("Fruits", "0 lub 1 (czy je owoce)")  # 

Fruits 

user_data["Veggies"] = ask_float("Veggies", "0 lub 1 (czy je warzywa)")  # 

Veggies 

user_data["HvyAlcoholConsump"] = ask_float("HvyAlcoholConsump", "0 lub 1 

(duże spożycie alkoholu)")  # HvyAlcoholConsump 

user_data["AnyHealthcare"] = ask_float("AnyHealthcare", "0 lub 1 

(ubezpieczenie/opieka)")  # AnyHealthcare 

user_data["NoDocbcCost"] = ask_float("NoDocbcCost", "0 lub 1 (czy koszt 

blokował wizytę)")  # NoDocbcCost 

user_data["GenHlth"] = ask_float("GenHlth", "1–5 (ogólny stan zdrowia)")  # 

GenHlth 

user_data["MentHlth"] = ask_float("MentHlth", "0–30 (dni gorszego zdrowia 

psych.)")  # MentHlth 

user_data["PhysHlth"] = ask_float("PhysHlth", "0–30 (dni gorszego zdrowia 

fiz.)")  # PhysHlth 
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user_data["DiffWalk"] = ask_float("DiffWalk", "0 lub 1 (trudność w 

chodzeniu)")  # DiffWalk 

user_data["Sex"] = ask_float("Sex", "0 lub 1 (płeć jak w danych)")  # Sex 

user_data["Age"] = ask_float("Age", "1–13 (przedziały wieku jak w 

danych)")  # Age 

user_data["Education"] = ask_float("Education", "1–6 (poziom edukacji)")  # 

Education 

user_data["Income"] = ask_float("Income", "1–8 (przedziały dochodu)")  # 

Income 

 

# Zbuduj DataFrame z jednym wierszem, w poprawnej kolejności cech.  # 

komentarz 

user_df = pd.DataFrame([user_data], columns=loaded_feature_names)  # jedna 

obserwacja jako DataFrame 

 

# Skaluj dane tak jak trenowaliśmy model.  # komentarz 

user_scaled = loaded_scaler.transform(user_df)  # przeskaluj dane 

użytkownika 

 

# Przewidź klasę i prawdopodobieństwo.  # komentarz 

user_pred = loaded_model.predict(user_scaled)[0]  # przewidywana klasa 

(0/1) 

user_prob = loaded_model.predict_proba(user_scaled)[0, 1]  # 

prawdopodobieństwo klasy 1 

 

print("\n=== WYNIK MODELU ===")  # nagłówek 

print("Predykcja (0=brak cukrzycy, 1=cukrzyca):", int(user_pred))  # pokaż 

klasę 

print(f"Prawdopodobieństwo cukrzycy (klasa 1): {user_prob:.4f}")  # pokaż 

prawdopodobieństwo 

 

# Dodatkowy komunikat dla czytelności   

if user_pred == 1:  # jeśli model przewiduje cukrzycę 

    print("Model sugeruje: WYSOKIE RYZYKO (klasa 1).")  # komunikat 

else:  # jeśli model przewiduje brak cukrzycy 

    print("Model sugeruje: NISKIE RYZYKO (klasa 0).")  # komunikat 



 

111 
 

 

# ========================================================= 

# 18) ZMIANA PROGU DECYZYJNEGO (threshold) 

# ========================================================= 

 

""" 

Domyślnie klasyfikator przewiduje klasę 1, gdy prawdopodobieństwo >= 0.50. 

W praktyce (zwłaszcza w medycynie) często chcemy: 

- zwiększyć recall (wykryć więcej chorych), 

kosztem precision (więcej fałszywych alarmów). 

 

Dlatego uczymy się wybierać próg (threshold) świadomie. 

""" 

 

# --------------------------- 

# 18.1) Obliczamy precision i recall dla różnych progów 

# --------------------------- 

 

precisions, recalls, thr = precision_recall_curve(y_test, y_proba)  # 

policz PR dla wielu progów 

 

thr_safe = np.append(thr, 1.0)  # dodaj próg 1.0, żeby długości tablic 

pasowały (thr jest o 1 krótsze) 

 

# --------------------------- 

# 18.2) Wykres: precision i recall w zależności od progu 

# --------------------------- 

 

plt.figure(figsize=(8, 5))  # rozmiar wykresu 

plt.plot(thr_safe, precisions, label="Precision")  # precision vs threshold 

plt.plot(thr_safe, recalls, label="Recall")  # recall vs threshold 

plt.title("Precision i Recall w zależności od progu (threshold)")  # tytuł 

plt.xlabel("Threshold (próg decyzji)")  # oś X 

plt.ylabel("Wartość metryki")  # oś Y 

plt.legend()  # legenda 

plt.show()  # pokaż wykres 
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# --------------------------- 

# 18.3) Prosty wybór progu: maksymalizacja F1 

# --------------------------- 

 

""" 

Wybór progu można robić na wiele sposobów. 

Najprostszy i bardzo edukacyjny wariant: 

- wybieramy threshold, który daje najwyższy F1 na zbiorze testowym. 

 

Uwaga dydaktyczna: 

W idealnym świecie próg wybieramy na walidacji, a test zostawiamy „na 

koniec”. 

Tutaj robimy to prosto, żeby zrozumieć ideę. 

""" 

 

f1_scores = (2 * precisions * recalls) / (precisions + recalls + 1e-12)  # 

oblicz F1 dla każdego punktu (bez dzielenia przez zero) 

best_idx = np.argmax(f1_scores)  # indeks najlepszego F1 

best_threshold = thr_safe[best_idx]  # próg odpowiadający najlepszemu F1 

 

print("\n=== WYBÓR PROGU (na podstawie najlepszego F1) ===")  # nagłówek 

print("Najlepszy threshold:", round(float(best_threshold), 4))  # pokaż 

próg 

print("F1 dla tego progu:", round(float(f1_scores[best_idx]), 4))  # pokaż 

F1 

 

# --------------------------- 

# 18.4) Predykcja z nowym progiem + metryki 

# --------------------------- 

 

y_pred_thr = (y_proba >= best_threshold).astype(int)  # zamień 

prawdopodobieństwa na klasy używając nowego progu 

 

acc_thr = accuracy_score(y_test, y_pred_thr)  # accuracy dla progu 
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prec_thr = precision_score(y_test, y_pred_thr, zero_division=0)  # 

precision dla progu 

rec_thr = recall_score(y_test, y_pred_thr, zero_division=0)  # recall dla 

progu 

f1_thr = f1_score(y_test, y_pred_thr, zero_division=0)  # f1 dla progu 

 

print("\n=== METRYKI DLA NOWEGO PROGU ===")  # nagłówek 

print(f"Accuracy : {acc_thr:.4f}")  # accuracy 

print(f"Precision: {prec_thr:.4f}")  # precision 

print(f"Recall   : {rec_thr:.4f}")  # recall 

print(f"F1-score : {f1_thr:.4f}")  # f1 

 

print("\n=== RAPORT KLASYFIKACJI DLA NOWEGO PROGU ===")  # nagłówek 

print(classification_report(y_test, y_pred_thr, digits=4))  # raport 

 

# --------------------------- 

# 18.5) Confusion Matrix dla nowego progu 

# --------------------------- 

 

cm_thr = confusion_matrix(y_test, y_pred_thr)  # macierz pomyłek dla progu 

 

plt.figure(figsize=(7, 5))  # rozmiar 

sns.heatmap(  # heatmapa 

    cm_thr,  # macierz 

    annot=True,  # liczby 

    fmt="d",  # int 

    cmap="Greens",  # kolor 

    xticklabels=["brak cukrzycy (0)", "cukrzyca (1)"],  # etykiety X 

    yticklabels=["brak cukrzycy (0)", "cukrzyca (1)"]  # etykiety Y 

) 

plt.title("Macierz pomyłek (nowy threshold)")  # tytuł 

plt.xlabel("Klasa przewidziana")  # oś X 

plt.ylabel("Klasa rzeczywista")  # oś Y 

plt.show()  # pokaż wykres 
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