
Programowanie w języku Python

Materiały dydaktyczne dla uczestników
kursu

Paweł Sobczak

Konin 2025

Tytuł

Programowanie w języku Python

Materiały dydaktyczne dla uczestników kursu

Autor

Paweł Sobczak

Projekt pn.

„Rozwój studiów o profilu praktycznym i form kształcenia ustawicznego

dostosowanych do potrzeb Wielkopolski Wschodniej”,

realizowany przez Akademię Nauk Stosowanych w Koninie,

jest współfinansowany przez Unię Europejską

ze środków Funduszu na rzecz Sprawiedliwiej Transformacji

w ramach programu Fundusze Europejskie dla Wielkopolski 2021-2027

Wydawca

Akademia Nauk Stosowanych w Koninie

ul. Przyjaźni 1, 62-510 Konin

3

Spis treści

Wprowadzenie .. 4

Komentarz .. 5

Zmienne .. 5

Instrukcja print ... 6

Podstawowe typy zmiennych ... 10

Zmienne tekstowe (str) ... 11

Zmienne logiczne (bool) .. 12

Operatory arytmetyczne ... 12

Operatory relacji ... 13

Operatory logiczne ... 13

Interaktywny program .. 14

Typy sekwencyjne .. 15

Typ napisowy ... 15

Listy .. 16

Krotki ... 20

Zbiory ... 20

Słowniki ... 21

Instrukcje warunkowe if ... 22

Pętla for .. 26

Pętla while .. 29

Funkcje w Pythonie .. 31

Wyjątki ... 33

Elementy programowania obiektowego ... 36

Wprowadzenie do operacji na plikach ... 40

Wprowadzenie do programowania graficznego ... 45

Zadania ... 52

Studium przypadku .. 57

Rozwiązania zadań ... 60

Literatura .. 69

4

Wprowadzenie

Do nauki programowania można wybrać dowolny język, jednak warto postawić na

technologie, które obecnie są wykorzystywane, jest dużo przykładów i materiałów, a sam język

ma niski próg wejścia, tzn. już przy podstawowej wiedzy możemy rozpocząć pisanie

samodzielnych programów. Takim językiem na pewno jest Python, który jest nowoczesnym,

a zarazem uniwersalnym językiem programowania z otwartym dostępem do kodu źródłowego,

zawierającym konstrukcje obiektowe, funkcyjne i proceduralne. Jest jednym z najpowszechniej

używanych języków programowania na świecie, ma wiele zastosowań, gdyż powstała dla niego

olbrzymia liczba bibliotek, które możemy zaimportować do naszego programu.

Oprogramowanie napisane w Pythonie działa na większości powszechnie wykorzystywanych

platformach (Java, .NET, Android, iOS) i systemach operacyjnych (Unix/Linux, Windows

i Mac OS). Python jest bardzo uniwersalnym językiem programowania pozwalającym

implantować aplikacje z interfejsem graficznym (z wykorzystaniem bibliotek: pyGTK, pyQt,

wxPython, pyKDE, pyGNOME, pyFLTK, FxPy, Tkinter) i tekstowym (curses). Pozwala

projektować strony internetowe (Django, Flask, Pyramid, Bottle, Zope2, Web2Py, Web.py)

oraz gry (PyGame, pySDL2, Panda3D), a nawet aplikacje mobilne (kivy). Pozwala na analizę

tekstu (PLY), obliczenia naukowe (NumPy, SciPy, SimPy), przetwarzanie grafiki (Python

Imaging Library (PIL) i pisane skryptów (: Gimp, Blender, VIM, Dia, XUL). Bardzo często

jest wykorzystywany do budowania modeli i systemów sztucznej inteligencji (TensorFlow,

PyTorch, scikit-learn, Keras, NLTK).

Ze względów objętościowych skupimy się jedynie na podstawowych zagadnieniach

z programowania w języku Python, jednak w wystarczającym stopniu, by samodzielnie można

było pisać programy. Skrypt należy potraktować jako pewnego rodzaju wprowadzenie

w świat programowania, przy minimum teorii i dużej liczbie przykładów i ćwiczeń do

samodzielnego rozwiązania. Aby nauczyć się programowania nie wystarczy czytać, należy

pisać i jeszcze raz pisać programy!

Zanim rozpoczniemy poznawać język i pisać programy, należy przygotować sobie środowisko:

▪ pobrać aktualną wersję Pythona ze strony https://www.python.org/downloads/

▪ pobrać środowisko IDE – PyCharm (Community) ze strony, np. dla systemu

Windows: https://www.jetbrains.com/pycharm/download/#section=windows

lub wykorzystać edytor i kompilator online, np. https://www.online-python.com/.

5

Pliki z kodem programu w języku Python zapisuje się z rozszerzeniem py, czyli nazwa.py.

Uruchomienia napisanego kodu programu w PyCharm dokonuje za pomocą przycisku Run lub

poprzez skrót klawiszowy Shift+F10.

Komentarz

Bardzo często podczas pisania programów komputerowych komentuje się pewne

fragmenty kodu lub pewne linie w celu sprawdzenia innego kodu, gdy nie chcemy usuwać

poprzedniej wersji lub chcemy wyjaśnić pewne zapisy w kodzie. Kod programu opatrzony

komentarzem nie jest interpretowany przez kompilator. Stosowanie komentarzy w kodzie jest

dobrą praktyką i ułatwia zrozumienie kodu nawet po czasie lub przez innego programistę.

Wyróżniamy komentarz jednoliniowy, jeżeli linie tekstu poprzedzimy znakiem #, oraz

komentarz blokowy, gdy tekst znajduje się w ””” ”””. Przykład użycia komentarza

przedstawia rys. 1.

Rys. 1. Komentarz jednoliniowy i blokowy w Pythonie

Źródło: Opracowanie własne.

Zmienne

Pierwszym ważnym elementem w programowaniu są zmienne, czyli nazwy (pudełka),

które potrafią przechowywać wartości różnego typu. Operowanie na zmiennych to jedna

z najważniejszych funkcjonalności, jakie oferują języki programowania. Krótko można

napisać, że zmienna to po prostu nazwa, która wskazuje na jakąś wartość (przechowuje jakąś

wartość). Język programowania Python ma kilka wbudowanych typów danych dla zmiennych,

takich jak liczby całkowite, rzeczywiste itp. W Pythonie podczas tworzenia (deklarowania)

6

zmiennej nie trzeba podawać typu danych przechowywanych w zmiennej. Po prostu podaje się

nazwę zmiennej i przypisuje się jej wartość, np. liczba_km = 20.5. Znak równości (=) to

operator przypisania. Na rys. 2. zostały pokazane przykładowe deklaracje zmiennych.

Wartości zmiennych mogą się zmieniać w czasie działania programu.

Rys. 2. Deklaracja zmiennych w języku Python

Źródło: Opracowanie własne.

Klika zasad tworzenia zmiennych:

▪ nazwy zmiennych mogą być dowolnie długie,

▪ mogą zawierać zarówno litery, jak i liczby, ale nie mogą rozpoczynać się od liczby,

▪ choć dozwolone jest użycie wielkich liter, w przypadku nazw zmiennych wygodne

jest stosowanie wyłącznie małych liter,

▪ w przypadku nazw złożonych zalecane jest stosowanie znaku podkreślenia _ lub

metody camelCase (np. ile_osob_w_sklepie, liczbaOsob),

▪ takie same nazwy, ale napisane małymi bądź wielkimi literami, oznaczają różne

zmienne,

▪ nazwy zmiennych nie mogą zawierać spacji,

▪ zmiennym nie można nadawać nazw zastrzeżonych dla instrukcji języka Python

(np. and, for, if, del, while, …itp.).

Instrukcja print

Instrukcja print pozwala wyświetlać na ekranie tekst lub wartości zmiennych.

W ogólności można zapisać print(wartość), gdzie wartością może być tekst ”Programowanie

w Python” lub wartość zmiennej. Przykład użycia instrukcji print przedstawia rys. 3.

W przykładzie zadeklarowano dwie zmienne, w pierwszej kolejności zostaje wyświetlony tekst

7

”Programowanie w Python”, a następnie zostają wyświetlone wartości zmiennych zmienna

i moje_imie. W instrukcji print tekst zasadniczo powinno się zapisywać w ” ”.

Rys. 3. Instrukcja print (kod programu i wynik uruchomienia)

Źródło: Opracowanie własne.

Instrukcja print po każdym wyświetleniu wartości (tekstu lub wartości zmiennych)

przechodzi do nowej linii. Czasami jednak pożądane jest pozostać w bieżącej linii, wówczas

znak nowej linii można zastąpić na inny znak, np. spację: print(wartość, end=" "). Rys. 4

przedstawia przykład zamiany znaku nowej linii na znak spacji w instrukcji print. Print może

również wyświetlić wynik instrukcji (operacji) oraz kilka zmiennych na raz, jak zostało to

pokazane na rys. 5. W tym przykładzie pokazany jest wynik odejmowania zmiennych oraz

połączenie napisów z wartością zmiennej. Tych zmiennych w instrukcji print może być kilka,

a nawet kilkanaście. Można również zastosować odpowiednie formatowanie wyświetlanych

wartości zmiennych, jednak nie będzie to przedmiotem tego skryptu.

Rys. 4. Instrukcja print, zamiana znaku nowej linii na spację

Źródło: Opracowanie własne.

8

Rys. 5. Wykorzystanie instrukcji print

Źródło: Opracowanie własne.

W przypadku zmiennych tekstowych, tzw. łańcuchów, można dokonywać konkatenacji,

czyli łączenia kilku zmiennych tekstowych w jeden. Operator + łączy dwa łańcuchy w jedną

całość, tworząc nowy, dłuższy łańcuch, jak zostało to pokazane na rys. 6.

Rys. 6. Konkatenacja łańcuchów

Źródło: Opracowanie własne.

Bardzo często zdarzają się sytuacje, że w jednej instrukcji print trzeba wyświetlić

zmienne różnych typów, wówczas bardzo pomocna jest notacja f-string, która w łatwy sposób

pozwala wyświetlić zmienne różnego typu w połączeniu z tekstem. Przykład notacji f-string

przedstawia rys. 7. Stosując powyższą notację przed cudzysłów zawierający tekst, wstawia się

literę f, czyli f”tekst”, a poszczególne zmienne w tekście umieszcza się w nawiasach

klamrowych {}, taki zapis w prosty sposób pozwala wyświetlić w instrukcji print zmienne

różnych typów. Modyfikacji wartości zmiennej wykonujemy podobnie, jak byśmy

przypisywali wartość do zmiennej, z tą różnicą, że musimy podać nazwę istniejącej już

9

zmiennej, aby ją zmodyfikować. Możemy również zmiennej przypisać wartość innej zmiennej,

czy też nadpisać wartość innej zmiennej.

nazwaStarejZmiennej = nowaWartośćStarejZmiennej

Rys. 7. Notacja f-string, czyli wyświetlanie zmiennych różnych typów w połączeniu z tekstem

Źródło: Opracowanie własne.

Przykład modyfikacji zmiennej i przypisanie zmiennej wartości innej zmiennej przedstawia rys. 8.

Rys. 8. Zmiana wartości zmiennych

Źródło: Opracowanie własne.

Na ekranie zobaczymy wartości 12, 18, 18, ponieważ na początku zmienna a miała wartość

12, następnie wartość zmiennej a została zmodyfikowana na wartość 18. Zmienna b miała

wartość 100, jednak w linii siódmej do b została przypisana wartość zmiennej a, czyli 18.

10

Podstawowe typy zmiennych

Jak już zostało wspomniane, język programowania Python nie wymaga podawania typu

zmiennej podczas jej deklaracji, jednak możemy wskazać podstawowe typy zmiennych

w zależności od przechowywanych przez nie wartości, tj. liczby (int, float), tekst (str) i typ

logiczny (bool). W języku tym za pomocą instrukcji type można sprawdzić typ zamiennej lub

wartości

type(nazwaZmiennej).

Rys. 9 pokazuje, jak sprawdzić typ zmiennej lub wartości. Int to zmienne typu

całkowitego (pozwalają przechowywać liczby całkowite), float to zmienne typu

zmiennoprzecinkowego (pozwalają przechowywać liczby rzeczywiste, w których rozdziela się

część całkowitą od dziesiętnej za pomocą kropki .). Nic nie stoi na przeszkodzie, by zmienną

przekonwertować z typu rzeczywistego na całkowity i odwrotnie. Możemy również liczbę

wprowadzoną w postaci napisu przekonwertować na zmienną typu całkowitego lub

rzeczywistego, szerzej ten temat będzie poruszony podczas wprowadzania wartości

z klawiatury (konsoli). Funkcja int() konwertuje zmienną do tupu całkowitego, natomiast

funkcja float() do typu rzeczywistego. Przykładowe konwersje zmiennych przedstawia rys. 10.

Rys. 9. Sprawdzenie typu zmiennej i wartości

Źródło: Opracowanie własne.

Zmienna d na początku ma wartość 3.4, jednak po konwersji do typu całkowitego ma wartość 3.

Z kolei zmienna e to wartość zmiennej b przekonwertowana do typu rzeczywistego, czyli 2.0.

11

Wartość zmiennej f, to wartość 1.5, gdyż napis został przekonwertowany do wartości

rzeczywistej, a linia 11 spowoduje wyświetlenie wartości 4.5 w konsoli. Język Python bardzo

dobrze radzi sobie z konwersją różnych typów zmiennych.

Rys. 10. Konwersja zmiennych

Źródło: Opracowanie własne.

Zmienne tekstowe (str)

Typ str reprezentuje w Pythonie wszelkiego rodzaju teksty/napisy. Tekst możemy

umieścić pomiędzy znakami pojedynczego (' ') lub podwójnego (" ") cudzysłowu – efekt będzie

dokładnie taki sam, np. imie = "Paweł", jezyk = ‘Python’. Zadeklarowaliśmy dwie zmienne

tekstowe. Również wartości zmiennych typu całkowitego lub rzeczywistego można

konwertować do wartości tekstowej za pomocą funkcji str(), jak zostało to pokazane na

rys. 11. W linii drugiej wiek został skonwertowany do napisu.

Rys. 11. Konwersja zmiennej liczbowej do tekstowej

Źródło: Opracowanie własne.

12

Zmienne logiczne (bool)

Wartości logiczne reprezentują logiczną prawdę lub fałsz. W języku programowania

Python istnieją predefiniowane nazwy odpowiednio True dla logicznej prawdy (1) i False dla

logicznego fałszu (0):

p = True # deklaracja wartości logicznej "prawda"

f = False # deklaracja wartości logicznej "fałsz".

W celu przekształcenia dowolnej wartości na wartość logiczną można wykorzystać funkcję

wbudowaną bool(). Dla przykładu:

a = 1

b = 0

bool(a) # True

bool(b) # False.

Konwersja wartości zmiennej a zwróci True, czyli prawdę, a zmiennej b zwróci False, czyli

fałsz.

Operatory arytmetyczne

Żadne obliczenia w programie nie byłyby możliwe, gdyby nie operatory arytmetyczne.

Wyróżniamy następujące operatory arytmetyczne (+, -, *, /, %, **).

Dodawanie + (2 + 4)

Odejmowanie - (11 - 5)

Mnożenie * (2 * 4)

Dzielenie / (6 / 2)

Modulo – reszta z dzielenia % (10 % 3)

Potęgowanie ** (2 ** 2)

Na rys. 12 przedstawiono użycie podstawowych operatorów arytmetycznych

(+, -, * i /). Na razie kod programu nie został zabezpieczony na ewentualność dzielenia przez 0,

13

czyli żeby liczba2 była różna od zera. Takie zabezpieczenie zrobimy po wprowadzeniu

instrukcji warunkowej if i operatorów relacji. Warto już zaznaczyć, że w linii 2 i 3 kodu do

liczb liczba1 i liczba2 została przypisana wartość wczytana z klawiatury, które zostały

skonwertowane do typu liczbowego zmiennoprzecinkowego float, o czym będzie mowa

w dalszej części rozdziału (interaktywny program).

Rys. 12. Operatory arytmetyczne (+, -, *, /)

Źródło: Opracowanie własne.

Operatory relacji

Dostępne operatory relacji, które wykorzystuje się w instrukcji warunkowej if oraz

pętlach, są zebrane poniżej. Wynikiem porównania jest wartość logiczna True dla prawdy lub

False dla fałszu. Przykłady użycia operatorów relacji zostaną pokazane po wprowadzeniu

wspomnianej wyżej instrukcji if.

> większy niż

< mniejszy niż

== równy względem

>= większy lub równy względem

<= mniejszy lub równy względem

!= różny względem

Operatory logiczne

W języku programowania Python wykorzystuje się również operatory logiczne, podobnie

jak operatory relacji najczęściej w połączeniu z instrukcją warunkową if oraz w pętlach. Operator

AND to w logice „i” (koniunkcja), natomiast OR to w logice „lub” (alternatywa), z kolei NOT to

14

zaprzeczenie (negacja). Gdy zanegujemy prawdę True, to otrzymamy fałsz, czyli False, i na

odwrót. Logiczne „lub” zwraca prawdę, gdy przynajmniej jeden z warunków jest prawdziwy,

w przeciwnym razie zwraca fałsz. Z kolei logiczne „i” zwraca prawdę w przypadku, gdy wszystkie

warunki są prawdziwe, w przeciwnym razie zwraca fałsz.

AND

OR

NOT

Interaktywny program

Interaktywny program to program, w którym użytkownik ma możliwość wprowadzania

danych w konsoli w czasie rzeczywistym. Python udostępnia wbudowaną funkcję input, która

umożliwia wprowadzenie danych przez użytkownika. Po wywołaniu funkcji input w konsoli

pokazuje się kursor oczekiwania na wprowadzenie ciągu znaków. Po wprowadzaniu wartości

(ciągu znaków) użytkownik zatwierdza wprowadzoną wartość klawiszem Enter. Wprowadzony

ciąg znaków z klawiatury musi zostać przypisany do jakieś zmiennej. Warto zaznaczyć bardzo

ważną rzecz: jeżeli nawet wczytamy znaki będące liczbą, to należy pamiętać, że to nie jest liczba,

tylko ciąg znaków (string), który należy przekonwertować do wartości liczbowej.

imie = input("Wprowadź imię: ")

Po wywołaniu funkcji input na ekranie pokazuje się napis „Wprowadź imię”: oraz kursor

oczekiwania na wprowadzenie ciągu znaków. Użytkownik wprowadza imię (ciąg znaków), który

zatwierdza klawiszem Enter, wprowadzony ciąg znaków zostaje przypisany do zmiennej imie

(string jest zwracany poprzez funkcję input i przypisany do zmiennej imie). Poniżej podobnie

wprowadzany jest ciąg znaków wiek, który ma być docelowo wartością liczbową, dlatego

dodatkowo jest konwertowany do typu int, czyli wartości liczbowej całkowitej. Gdy chcemy

dokonać konwersji ciągu znaków do wartości zmiennoprzecinkowej, używamy funkcji float.

wiek= int(input("Wprowadź swój wiek: "))

Omawiane wyżej dwa przykłady zostały pokazane rys. 13.

15

Rys. 13. Interaktywny program, czyli wprowadzanie ciągów znaków z konsoli

Źródło: Opracowanie własne.

Typy sekwencyjne

Sekwencyjne typy danych służą do zapamiętywania wielu wartości w pojedynczej

zmiennej, w odróżnieniu od typów prostych, takich jak int, float, które w pojedynczej zmiennej

mogą zachować tylko jedną wartość.

Typ napisowy

Tak naprawdę napisy są sekwencjami znaków. Każdy typ sekwencyjny pozwala na

dostęp do każdego swojego elementu z osobna. Aby uzyskać dostęp do znaku na określonej

pozycji, podajemy nazwę zmiennej oraz indeks (numer porządkowy liczony od lewej, zero

oznacza pierwszy znak napisu) w nawiasach kwadratowych:

imie = ”Paweł”

0 1 2 3 4

P a w e ł

imie[1] # ‘a’

print(imie[4]) # wyświetli znak ł na ekranie konsoli.

Należy zapamiętać, że znaki (elementy) są numerowane od 0, czyli powyższy napis imie

składa się z 5 elementów numerowanych od 0 do 4. Można również numerować elementy

liczbami ujemnymi, jednak celowo nie wprowadzam tego sposobu indeksowania, by nie

zmniejszać czytelności indeksowania typów sekwencyjnych. Aby poznać długość napisu

(liczbę elementów), posługujemy się funkcją len:

len(imie) # 5, numerowane od 0 do 4.

16

Nic nie stoi na przeszkodzie, by zmienić wartość któregoś z elementów zmiennej napisowej,

np. ostatniego imie[4] = ’l’. Od tego momentu zamiast znaku ‘ł’ będzie znak ‘l’. Przykład

odwołania się do pojedynczych znaków napisu oraz długość napisu prezentuje rys. 14.

Rys. 14. Typ napisowy (odwołalnie do pojedynczych znaków, długość napisu)

Źródło: Opracowanie własne.

Dla typu napisowego istnieje szereg przydanych metod, które bardzo ułatwiają pracę

programiście, poniżej zostały zaprezentowane przykładowe metody. Jeżeli nasza zmienna

napisowa to imie = ”Pawel”, to możemy dla niej uruchomić pewne metody:

imie.capitalize() – zmienia pierwszą literę na dużą

imie.count(Pa) – zlicza wystąpienie podciągu Pa w napisie imie

imie.isdigit() – sprawdza czy wszystkie znaki są cyframi

imie.islower() – sprawdza czy wszystkie litery są małe

imie.isupper() – sprawdza czy wszystkie litery są duże

imie.replace(old, new) – zastępuje stary podciąg nowym

imie.strip() – usuwa początkowe i końcowe białe znaki.

Warto zaznaczyć, że uruchomienie metody dla zmiennej znakowej odbywa się przez

podanie nazwy zmiennej, następnie znaku kroki (.) i nazwy metody. Wynika to

z programowania obiektowego, które zostaną przedstawione na szkoleniu.

nazwa_zmiennej.nazwa_metody

Listy

Najpopularniejszym i najczęściej stosowanym typem zmiennych zawierającym więcej

niż jedną wartość są listy (od angielskiego „list”), czasami nazywane też tablicami. Lista to

17

uporządkowany zbiór różnych elementów. Najczęściej wewnątrz listy stosuje się jeden typ

zmiennych, ale nic nie stoi na przeszkodzie, aby w jednej liście umieścić wartości zupełnie

różnych typów (Python na to pozwala, jednak język C/C++ już nie). Zmienne tworzymy,

zapisując pomiędzy nawiasami kwadratowymi („[” i „]”) elementy, które chcemy, aby nasza

lista przetrzymywała. Poniżej została zadeklarowana lista1 złożona z 5 elementów

numerowanych od 0 do 4 zawierająca zmienne różnego typu.

lista1 = [5, 1.28, ”Programowanie”, ”Python”, -2.36]

indeks 0 1 2 3 4

wartość 5 1.28 Programowanie Python -2.36

Jak już zostało to wspominane, listy najczęściej są złożone z elementów tego samego

typu. Poniżej została zaimplementowana lista złożona z liczb całkowity oraz pusta lista, która

nie zawiera na ten moment żadnego elementu.

lista1 = [0, 2, 4, 6, 8]

lista2 = []

lista1 przechowuje 5 elementów, które zostały umieszczone w nawiasach kwadratowych [].

Można wyświetlić wszystkie elementy listy lub pojedynczy element. Można również dokonać

zmiany wartości elementu w liście.

print(lista1) # [0, 2, 4, 6, 8]

print(lista1[2]) # 4

lista1[2] = 5 # element o indeksie 2 będzie miał wartość 5

print(lista1) # [0, 2, 5, 6, 8]

Indeksowanie list jest identyczne jak indeksowanie typu napisowego i zaczyna się od 0.

Również w innych językach programowania np. C/C++ tablice indeksuje się od 0. Nasza lista1

składa się z 5 elementów indeksowanych od 0 do 4, gdzie pierwszy element to 0, a ostatni (4)

wartość 8. Nie ma indeksu o wartości 5! Jest to bardzo ważne przy pracy z listami, by nie wyjść

poza zakres listy.

18

✔ Dodawanie elementu do listy

Aby dodać element do listy, używamy funkcji append, której jako parametr podajemy

wartość, jaką chcemy dodać do naszej listy, np.

print(lista1) # [0, 2, 5, 6, 8]

lista1.append(10) # dodanie elementu 10 do listy

print(lista1) # [0, 2, 5, 6, 8, 10].

Czyli do wyżej omawianej lista1 został dodany kolejny element o wartości 10. Element ten

został dodany na końcu listy.

✔ Usunięcie elementu po indeksie

Aby usunąć jakiś element z listy, należy użyć instrukcji del od angielskiego słowa

„delete”, czyli właśnie usuwać. Instrukcja del usunie element z listy o określonym indeksie.

Należy zwrócić szczególną uwagę na indeks elementu, którego chcemy usunąć, by nie

odwoływać się do elementu, który nie istnieje.

lista2 = [7, 2, 4, 6, 1] # [7, 2, 4, 6, 1]

del lista2[2] # usuniecie elementu z listy o indeksie 2

print(lista2) # [7, 2, 6, 1]

Powyżej został utworzona nowa lista2 złożona z 5 elementów indeksowana od 0 do 4.

Następnie został usunięty element o indeksie numer 2, czyli element 4, po czym zostały

wyświetlone elementy listy. Warto zwrócić uwagę, że po takim działaniu nasza lista uległa

skróceniu, a więc i numeracja indeksów uległa zmianie. W tej chwili ostatni element tablicy

ma numer 3. Użycie indeksu o wartości 4 spowoduje błąd w programie.

✔ Dodanie elementu w dowolne miejsce

Jeśli chcemy dodać element w konkretnym miejscu na liście, musimy znać numer elementu

(indeks), przed którym chcemy wstawić nową wartość. Dodanie elementu do listy na konkretnej

pozycji wykonuje się przez funkcję insert, która przyjmuje dwa parametry. Pierwszy parametr

19

funkcji insert to indeks miejsca, przed którym chcemy wstawić nowy element, a drugi to

element, który chcemy dodać do naszej listy.

lista2.insert(2, 4) # dodanie elementu do listy o wartości 4 na pozycji 2

print(lista2) # [7, 2, 4, 6, 1]

✔ Sprawdzenie czy element występuje na liście

W celu sprawdzenia, czy dany element występuje w liście, stosujemy polecenie:

lista3 = [0, 2, 4, 6, 8] # [0, 2, 4, 6, 8]

print(2 in lista3) # Wyświetli True, bo element 2 jest na liście.

Podobnie jak w typie napisowym istnieje kilka przydatnych metod do obsługi list.

Przykłady poniżej:

list(s) konwertuje sekwencję s na listę

s.append(x) dodaje nowy element x na końcu listy s

s.count(x) zlicza wystąpienie x w liście s

s.index(x) zwraca najmniejszy indeks i, gdzie s[i] == x

s.pop(i) zwraca i-ty element z listy i usuwa go z listy s

s.remove(x) odnajduje wartość x i usuwa go z listy s

s.reverse() odwraca w miejscu kolejność elementów listy s.

Przykładowe operacje na liście zostały zebrane na rys. 15.

Rys. 15. Przykładowe operacje na listach

Źródło: Opracowanie własne.

20

Krotki

Innym typem zmiennych, który może przetrzymywać więcej niż jedną wartość, są tak

zwane krotki. Krotki są bardzo podobne do list z jedną bardzo ważną różnicą – dane

w krotkach są niezmienne. Czyli raz utworzona krotka już do końca ma takie elementy, jakie

zostały podane przy jej implementacji. Krotki deklaruje się tak samo jak listy, tylko zamiast

nawiasów kwadratowych używa się zwykłych ().W przypadku krotek, tak samo jak i w listach,

możemy wyświetlać pojedyncze elementy za pomocą instrukcji print lub wszystkie, również

indeksujemy je od zera.

krotka1 = (1, 3, 5, 7, 9)

print(krotka1) # (1, 3, 5, 7, 9)

print(krotka1[1]) # wyświetlamy element 1 czyli 3

Krotki są bardzo przydatnym typem danych wszędzie tam, gdzie kolejność elementów

ma znaczenie, a bardzo nie chcemy, żeby program mógł zmieniać zawartość naszej zmiennej.

Zastosowanie krotki może mieć miejsce w zdefiniowaniu parametrów konfiguracyjnych

naszego programu, np. połączenie z bazą danych, login do bazy, hasło itp. Przykład

wyświetlenia elementów krotki pokazany jest na rys. 16.

Rys. 16. Wyświetlanie elementów krotki

Źródło: Opracowanie własne.

Zbiory

Trzecim typem zmiennych mogących posiadać więcej niż jedną wartość są zbiory, mają

pewną bardzo ciekawą właściwość, która może być bardzo pomocna przy rozwiązywaniu

niektórych problemów: jej elementy nie mogą się powtarzać. Dodatkową cechą zbiorów jest

to, że są nieuporządkowane, a co za tym idzie, nie możemy wyświetlać dowolnego ich elementu

21

w taki sposób, jak w przypadku list czy krotek. Można za to dodawać i usuwać elementy ze

zbiorów. Zbiory tworzymy za pomocą nawiasów klamrowych {}.

zbior1 = {2, 4, 6, 8, 10} # tworzymy zbiór elementów

print(zbior1) # {2, 4, 6, 8, 10}

zbior1.add(1) # dodajemy do zbior1 wartość 1

zbior1.add(3)) # dodajemy do zbior1 wartość 3

print(zbior1) # {1, 2, 3, 4, 6, 8, 10}

zbior.remove(10) # usuwamy ze zbioru wartość 10

print(zbior) # {1, 2, 3, 4, 6, 8}

zbior2 = set() # tworzymy zbiór pusty

zbior2= {5, 3, 1} # przypisujemy lamenty do zbioru

Za pomocą metody add można dodać elementy do zbioru, z kolei za pomocą remove można

usunąć element ze zbioru. Funkcja len (np. len(zbior2)) zwróci liczbę elementów w zbiorze.

Słowniki

Ostatnim z typów danych mogących mieć więcej niż jedną wartość są słowniki.

Słowniki są zupełnie innym typem danych od dotychczas opisywanych. Pierwszy element jest

nazywany kluczem, a drugi wartością. Jednemu elementowi (kluczowi) jest przypisana jakaś

wartość. Warto zauważyć, że kolejność elementów w słownikach nie ma znaczenia, ponieważ

dane w nich i tak wyszukuje się po kluczu. Słowniki można modyfikować, czyli można do nich

dodawać nowe elementy i usuwać już istniejące. Jedyna zasada to taka, że klucze nie mogą się

powtarzać. W słowniku wszystko może być kluczem, tak samo jak i wszystko może być

wartością. Możliwe są zatem takie przykładowe konstrukcje:

 na_slowa = {1:'jeden', 2:'dwa', 3:'trzy', 4:'cztery', 5:'pięć'}

print(na_slowa) # {1:'jeden', 2:'dwa', 3:'trzy', 4:'cztery', 5:'pięć'}

na_cyfry = {'jeden':1, 'dwa':2, 'trzy':3, 'cztery':4, 'pięć':5}

print(na_cyfry) # {'jeden':1, 'dwa':2, 'trzy':3, 'cztery':4, 'pięć':5}

22

Powyższe konstrukcje pozwalają zamieniać napisy na liczby i odwrotnie. Słowniki, tak

samo jak zbiory, tworzymy przy użyciu nawiasów klamrowych. Pierwszy element to klucz,

drugi to wartość. Klucz jest oddzielony od wartości dwukropkiem (:), a poszczególne pary

klucz-wartość przecinakami (,).

print(na_slowa[3]) # wyświetli 'trzy'

print(na_cyfry['trzy']) # wyświetli 3

Aby dodać nowy element do słownika, po prostu wpisujemy w nawiasy kwadratowe

klucz, którego chcemy użyć i przypisujemy mu wartość:

na_slowa[6]=' sześć' # dodanie do słownika pary o kluczu 6 i wartości 'sześć'

print(na_slowa) # {1: 'jeden', 2: 'dwa', 3: 'trzy', 4: 'cztery', 5: 'pięć', 6: 'sześć'}

Usuwanie elementów ze słownika wygląda podobnie jak w przypadku list, ale zamiast

indeksu elementu podajemy klucz, który chcemy usunąć wykorzystując metodę pop.

na_slowa.pop(3) # usunięcie elementu ze słownika na_slowa o kluczu 3

print(na_slowa) # {1: 'jeden', 2: 'dwa', 4: 'cztery', 5: 'pięć'}

na_cyfry.pop('trzy') # usunięcie elementu ze słownika na_cyfry o kluczu ‘trzy’

print(na_cyfry) # {'cztery': 4, 'dwa': 2, 'jeden': 1, 'pięć': 5}

Instrukcje warunkowe if

Praktycznie prawie w każdym programie są podejmowane pewne decyzje, są pewne

warunki, które wpływają na pracę programu. Do podejmowania decyzji w programowaniu

służy instrukcja warunkowa if, czyli w języku angielskim „jeśli”. Fragment kodu programu

wykona się tylko wtedy, gdy będzie spełniony warunek (warunek będzie prawdziwy, czyli

będzie miał wartość logiczną True). Sytuacji takich jest bardzo dużo, np. dzielenie zostanie

wykonane tylko wtedy, gdy dzielnik będzie różny od zera. Instrukcja if posiada również

opcjonalną, dodatkową część w postaci instrukcji else, czyli „w przeciwnym wypadku”.

Dodatkowa cześć else nie jest obowiązkowa, ale bardzo często jest przydatna, gdy chcemy,

by program sprawdził jakiś warunek i wykonał jakiś kod, jeśli warunek jest prawdziwy lub

23

wykonał inny kawałek kodu, jeśli warunek był nieprawdziwy (fałszywy). Użycie instrukcji

if – else wygląda w Pythonie następująco:

if (wyrażenie warunkowe):

instrukcja 1

instrukcja 2

...

else:

instrukcja 1

instrukcja 2

...

W części „wyrażenie warunkowe” wpisujemy to, co chcemy, aby nasz program sprawdził (czyli

stawiamy pewien warunek). Wyrażenie warunkowe może być zapisane w nawiasach, jednak

nie jest to wymagane. Po części wyrażenie warunkowe musimy wpisać dwukropek, co oznacza,

że dalej występują instrukcje, które mają być wykonane, jeśli warunek jest prawdziwy. Warto

zaznaczyć, że instrukcji może być dowolna ilość, ale wszystkie instrukcje muszą być wcięte

względem instrukcji if. W ten sposób Python rozpoznaje, które instrukcje ma wykonać po

sprawdzeniu prawdziwości wyrażenia. Tak samo po instrukcji else musimy wstawić

dwukropek, a instrukcje muszą być wcięte. Np. w języku programowania C/C++ wcięcia to

tylko dobra praktyka programisty, a operacje (instrukcje) blokuje się za pomocą klamer{}.

Działanie instrukcji if – else odzwierciedla rys. 17.

24

Rys. 17. Instrukcja warunkowa if – else

Źródło: Opracowanie własne.

Poniżej prosty przykład użycia instrukcji if (rys. 18). Program wczytuje liczbę

z konsoli i konwertuje ją do typu całkowitego. Następnie sprawdzany jest warunek, jeśli

wprowadzona liczba jest większa od 10, wówczas w konsoli wyświetla się komunikat 'Wpisałeś

cyfrę większą niż dziesięć', gdy jednak jest mniejsza lub równa 10, to nic się nie dzieje. Kolejną

instrukcją jest instrukcja print wyświetlająca komunikat 'Koniec programu' niezależnie od tego,

czy warunek był prawdziwy, czy fałszywy.

Rys. 18. Przykład użycia instrukcji warunkowej if

Źródło: Opracowanie własne.

Na rys. 19 została pokazana zmodyfikowana wersja programu z rys. 18. Modyfikacja

polegała na dodaniu dodatkowej cześci else, która wykona się, gdy warunek jest nieprawdziwy,

tzn. gdy wprowadzona cyfra jest mniejsza od 10. Program ma jeszcze jeden defekt,

25

nieprawidłowo się zachowa, gdy wprowadzimy cyfrę równą 10. W celu usunięcia ww. defektu

musimy dodać jeszcze jedną instrukcję if, jak zostało to pokazane na rys. 20.

Rys. 19. Przykład użycia instrukcji warunkowej if – else

Źródło: Opracowanie własne.

Jak widać na rys. 20, można zagnieżdżać instrukcje warunkowe, czyli w instrukcji

warunkowej umieścić kolejną instrukcję. Linie 5 i 6 kodu z rys. 20 można połączyć w jedną linię.

Zamiast pisać else:, a następnie if(), można od razu zapisać elif, jak zostało to pokazane na rys. 21.

Rys. 20. Przykład użycia zagnieżdżonej instrukcji warunkowej if – else

Źródło: Opracowanie własne.

Rys. 21. Przykład użycia instrukcji elif

Źródło: Opracowanie własne.

26

Pętla for

Poznanie instrukcji iteracyjnych (pętli) pozwala programiście rozwiązywać trudniejsze

zadania, problemy. Obok instrukcji warunkowej, znajomość pętli jest konieczna do pisania

programów. Pisząc programy, bardzo często zdarzy się, że będziemy chcieli wykonać jakieś

zadanie (instrukcję) więcej niż jeden raz. Korzystając z pętl, możemy określoną operację

(instrukcję) wykonywać z góry określoną liczbę razy, np. 1000, 20000, 3 miliony lub tak długo,

jak warunek jest prawdziwy. Ideę działania instrukcji iteracyjnych (pętli) przedstawia rys. 22.

Pierwszą pętlą, którą omówimy, jest pętla for. Pętla ta ma kilka postaci. Pierwsza to

pętla for z zakresem range. Ma następującą postać:

for i in range(101):

<instrukcje>

Rys. 22. Idea działania pętli

Źródło: Opracowanie własne.

W tej konstrukcji, funkcja range przyjmuje parametr i zwraca kolejno cyfry z zakresu

<0; wartość), czyli w naszym wypadku <0; 101). Pisząc prościej, pętla wykona się 101 razy,

a w każdym obiegu pętli parametr (zmienna) i będzie przyjmować odpowiednio wartości:

27

0, 1, 2, 3, 4, …, 100. Warto zwrócić uwagę, jakie wartość przyjmie parametr i. Znak mniejszości

< oznacza, że zaczynamy od 0 włącznie i kończymy na 101 (czyli wartości zapisanej

w nawiasie), ale bez tej wartości, bowiem jest nawias otwarty). Po podaniu wartości funkcji

range() stawia się :, a następnie wypisuje się instrukcje, które mają być wykonane w pętli.

Wszystkie instrukcje, które mają być wykonywane w pętli, muszą być wcięte w stosunku do

instrukcji for, podobnie jak to było w przypadki instrukcji if. Funkcja range może przyjmować

następujące postacie:

✔ bez zakresu początkowego range(10) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],

✔ z zakresem początkowym i końcowy range(1,10) # [1, 2, 3, 4, 5, 6, 7, 8, 9],

✔ z zakresem początkowym, końcowym i krokiem range(1,10,2) # [1, 3, 5, 7, 9].

Rys. 23. Przykład użycia pętli for in range

Źródło: Opracowanie własne.

W ogólności składnia pętli for jest następująca:

for <nazwa_zmiennej> in <obiekt> :

 instrukcja1

instrukcja2

instrukcja3

Zamiast <nazwa_zmiennej> wstawiamy dowolną nazwę, która będzie wykorzystywana

do przechowywania kolejnych elementów pobieranych z <obiekt>. Pętle for dla przykładu

28

możemy wykorzystać do wypisania wszystkich elementów z listy. Pętla wykona się tyle razy,

ile elementów jest na liście. Przykład użycia pętli for do odczytu wszystkich elementów listy

przedstawia rys. 24.

Rys. 24. Przykład użycia pętli for z elementami listy

Źródło: Opracowanie własne.

W tym przykładzie pętla for pobiera kolejne elementy z listy, „wrzuca” je do zmiennej

zm i następnie przechodzi do wykonywania instrukcji, które jak zawsze są wypisane

po dwukropku i we wcięciu. W tym konkretnym przypadku jest to instrukcja print, która

wyświetla poszczególne elementy z listy.

Zdarzają się sytuacje, że oprócz wyświetlenia elementów listy potrzebujemy wyświetlić

indeksy poszczególnych elementów. W takiej sytuacji stosujemy pętle for w postaci enumerate:

for indeks, wartość in enumerate(lista):

print(indeks, wartość)

Rys. 25. Pętla for dla list (wyświetlenie indeksów i wartości elementów listy

Źródło: Opracowanie własne.

Warto przypomnieć, że listy numeruje się od 0. Przykład jak odczytywać indeksy

i wartości poszczególnych elementów listy za pomocą instrukcji for pokazany jest na rys. 25.

Podobnie pętlę for można wykorzystać do pracy ze słownikami.

for key in slownik:

 <instrukcje>

29

Pętla for również pozwala wykonać operacje na słownikach, zawracając jego klucz (key). Gdy

znamy klucz do słownika, to możemy wyświetlić wartość pod wskazanym kluczem. Przykład

wykorzystania pętli for do pracy ze słownikami pokazuje rys. 26.

Rys. 26. Przykład użycia pętli for dla słowników

Źródło: Opracowanie własne.

Pętle można zagnieżdżać (czyli w pętli może umieszczać kolejne pętle) i łączyć z innymi

instrukcjami, np. instrukcją warunkową if, jak pokazano na rys. 27.

Rys. 27. Przykład połączenia pętli for i instrukcji warunkowej if

Źródło: Opracowanie własne.

Powyższy przykład wyświetla elementy listy, jednak tylko te, które są większe od 5.

Pętla while

Pęta for wykonuje się z góry określoną liczbę razy albo dla wszystkich elementów

z listy, słownika, jednak jesteśmy wstanie określić, ile razy ta pętla się wykona.

W programowaniu są jednak takie sytuacje, że nie wiemy z góry, ile razy mają się wykonać

instrukcje w pętli, wówczas możemy wykorzystać pętlę while, która będzie się wykonywać tak

długo, jak warunek w niej będzie prawdziwy. Pętla while, czyli „dopóki”, tak samo jak

instrukcja if, sprawdza pewien warunek oraz ma podane instrukcje do wykonania. Różnica

pomiędzy instrukcją if a while jest taka, że instrukcja if wykona operacje w niej zawarte jeden

raz, gdy warunek jest prawdziwy, a pętla while tak długo, jak warunek będzie prawdziwy. Czyli

pętla while sprawdza warunek, wykonuje instrukcje, znowu sprawdza warunek, znowu

30

wykonuje instrukcje i robi to tak długo, dopóki warunek jest prawdziwy. Jeśli warunek będzie

fałszywy (nieprawdziwy) instrukcje nie zostaną wykonane ani razu, a program przejdzie do

dalszej części programu. Szkielet pętli while wygląda następująco:

while (warunek):

instrukcje 1

instrukcje 2

Warto znowu przypomnieć, że instrukcje, które mają być zawarte w pętli muszą być

wcięte w stosunku do słowa kluczowego while. Przykład użycia pętli while jest pokazany na

rys. 28.

Rys. 28. Przykład wykorzystania pętli while

Źródło: Opracowanie własne.

Na początku zmienna a ma wartość 5, ona posłuży do sterowania pętlą, która będzie

wykonywała się tak długo, jak wartość zmiennej będzie większa niż 0. Mamy zwarte dwie

instrukcje w pętli: wyświetlamy wartość zmiennej i zmniejszamy wartość zmiennej

o 1. Omawiając pętle while warto wspomnieć o dwóch instrukcjach: continue i break.

Instrukcja continue – pomija wykonanie instrukcji i powoduje przejście do kolejnej iteracji

(obrotu pętli), z kolei instrukcja break – powoduje przerwanie wykonywanie całej pętli.

Powyższe instrukcje można stosować zarówno z pętlą for, jak i while. Rys. 29 pokazuje jak

działa instrukcja continue, w tym przypadku na ekranie konsoli zostaną wyświetlone liczby

0 i 2 z listy liczby. Pozostałe liczby nie zostaną wyświetlone, gdyż operacja continue przerywa

obieg pętli, gdy liczba x będzie mniejsza od 0.

31

Rys. 29. Przykład wykorzystania instrukcji continue

Źródło: Opracowanie własne.

Na rys. 30 pokazany jest przykład użycia instrukcji break, która w tym konkretnym

przypadku spowoduje, że w konsoli zostaną wyświetlone jedynie liczby -2 i -1, gdyż break

przerywa działanie całej pętli, gdy x przyjmie wartość równą 0.

Rys. 30. Przykład wykorzystania instrukcji break

Źródło: Opracowanie własne.

Funkcje w Pythonie

Do tej pory korzystaliśmy tylko z gotowych funkcji (tak na naprawdę metod, ale o tym

później), których Python dostarcza olbrzymią ilość. W tym miejscu jednak nauczymy się

tworzyć własne funkcje. Jest to bardzo proste i jednocześnie bardzo przyśpiesza tworzenie

nowych programów, ponieważ raz napisany kod można bardzo łatwo i szybko wykorzystać

ponownie. Nową funkcję deklarujemy używając słowa kluczowego def od podania jej nazwy

oraz parametrów, jakie funkcja będzie pobierać, jeśli w ogóle jakieś ma pobierać:

def <nazwa funkcji>():

 instrukcje 1

 instrukcje 2

32

Jeżeli funkcja ma zwracać wartość, to wówczas będzie miała postać:

def <nazwa funkcji>():

 instrukcje 1

 instrukcje 2

 return wartość

Poniżej mamy przykład funkcji suma, która dodaje dwie liczby. Argumentami funkcji

są właśnie sumowane liczby (x, y). Funkcja nic nie zwraca, a jedynie wyświetla wynik

sumowania liczb.

def suma(x, y):

z = x + y

print(z)

Tę samą funkcję można również napisać w taki sposób, by zamiast wyświetlania sumy

liczb zwracała wynik.

def suma(x, y):

 z = x + y

 return z

Należy jednak pamiętać, że jeżeli funkcja zwraca wartość, to należy ją przypisać do

jakieś zmiennej. Poniżej przykład wywołania funkcji zwracające wartość:

a = 3

b = 2

c = suma(a, b)

print(c)

33

Funkcja w tym konkretnym przypadku zwraca wartość 5, gdyż sumuje dwie liczby zapisane

w zmiennych a i b (3, 2). Do zmiennej c zostanie przypisana wartość zwracana przez funkcję,

a funkcja print na ekranie wyświetli wartość 5. Funkcję wywołujemy tak samo jak każdą inną,

czyli używając jej nazwy, a w nawiasy wpisując parametry. Parametrami funkcji mogą być

zarówno zmienne, jak i stałe. W większości przypadków funkcja zwraca jeden wynik, jednak

należy pamiętać, że w Pythonie funkcja może zwrócić ich wiele jednocześnie. Zostało to

pokazane na przykładzie poniżej.

def licz(x, y):

 z = x - y

 m = x ** y

 r = x + y

 return z, m, r

Poniżej wywołanie funkcji z argumentami:

wynik = licz(10, 5)

 print(wynik[0], wynik[1], wynik[2])

Wywołanie funkcji wymaga podania wartości dla wszystkich parametrów – jeżeli nie

podamy wartości dla wszystkich parametrów formalnych, wystąpi błąd. Możemy tego uniknąć,

podając domyślne wartości argumentów – więcej o tym wątku zostanie powiedziane podczas

szkolenia.

Wyjątki

Do tej pory zawsze zakładaliśmy, że nasz kod programu działa poprawnie (np. dzieląc

liczby zakładaliśmy, że nikt nie będzie chciał dzielić przez zero). Co się jednak dzieje, kiedy

coś pójdzie nie tak? W takich sytuacjach ”wyrzucany” jest wyjątek. Wyjątek jest obiektem

specjalnego typu, który powoduje awaryjne przerwanie wykonania programu. Dla przykładu:

wyjątek jest ”wyrzucany”, kiedy, na przykład, staramy się odwołać do nieistniejącego elementu

w liście lub będziemy próbować dzielić przez zero itd. Jeżeli spróbujemy wykonać kod:

34

lista = [1, 2, 3, 4]

print (lista[5])

to wówczas pojawi się wyjątek, jak pokazano na rys. 31.

Rys. 31. Przykład wyjątku podczas odwołania się do nieistniejącego elementu w liście

Źródło: Opracowanie własne.

Jak widać na rys. 31, ostatnia linia informuje, jakiego rodzaju błąd wystąpił.

„IndexError” jest typem wyjątku, który oznacza, że numer indeksu, do którego próbujemy się

odwołać, jest niepoprawny. Z kolei po dwukropku następuje słowny opis błędu, który w tym

przypadku informuje, że podaliśmy zbyt dużą cyfrę jako indeks listy. „Wyrzucony” wyjątek

może zostać przez program złapany i obsłużony. Kiedy wyjątek jest „wyrzucany”, wykonanie

programu jest przerywane i wyjątek jest wyrzucany tak długo, aż zostanie obsłużony lub dopóki

nie będzie już nic powyżej, i wtedy program kończy swoje działanie z błędem. Wyjątki

obsługuje się specjalną składnią, która wygląda następująco:

try:

 instrukcja1

 instrukcja2

 ...

except:

 instrukcja1

 instrukcja2

Dla naszego powyższego przykładu, obsługa wyjątku wygadałaby następująco:

35

try:

a[3]

except:

print('poza zakresem listy')

Taki kod zadziała, „wyrzucany” wyjątek zostanie obsłużony, jednak lepiej zapisać obsługę wyjątku

w bardziej ogólnej formie (niezależnie od wartości indeksu i z konkretnym typem wyjątku):

lista = [1, 2, 3, 4]

indeks = 5

try:

 print(lista[indeks])

except IndexError:

 print(lista[len(lista)-1])

Konstrukcja „try … except …” może mieć na końcu dołożoną opcjonalną część „else”,

która będzie wywoływana, jeśli kod wewnątrz sekkcji „try” zostanie wykonany poprawnie bez

wyrzucania wyjątku.

try:

 print(tablica[indeks])

 except IndexError:

print(tablica[len(tablica)-1])

 else:

print("Kod w bloku try został wykonany poprawnie")

Można jeszcze dołożyć jedną opcje (finally), która wykona się niezależnie, czy

powstanie wyjątek, czy też nie.

try:

 print(tablica[indeks])

 except IndexError:

 print(tablica[len(tablica)-1])

 else:

36

 print("Kod w bloku try został wykonany poprawnie")

 finally:

print("Ten print wykona się zawsze bez względu na to czy

powstanie wyjątek czy nie")

Elementy programowania obiektowego

Programowanie obiektowe różni się od tradycyjnego programowania proceduralnego,

gdzie dane i procedury nie są ze sobą bezpośrednio związane. Programowanie obiektowe ma

ułatwić pisanie, konserwację i wielokrotne użycie programów lub ich fragmentów.

W programowaniu obiektowym programista może deklarować własne typy zmiennych, tak

zwane klasy, które mają w sobie pola, czyli własności, oraz zachowanie, czyli metody. Na

podstawie wzorca (szablonu), jakim jest klasa programista tworzy nowe obiekty.

Klasy definiujemy według następującego schematu:

 class NaszaNowaKlasa:

 pola

 metody

 Z kolei obiekty tworzymy według następującego schematu:

NazwaObiektu = NazwaKlasy(argumenty)

Ważnym elementem używania obiektów jest notacja obiektowa. Do pól i metod

obiektów dostajemy się, pisząc nazwę zmiennej dowiązanej do obiektu, kropkę i nazwę

atrybutu obiektu.

nazwaObiektu.nazwaMetody()

nazwaObiektu.nazwaMetody(argumenty)

Kolejnym ważnym elementem klasy jest zmienna self.

Wewnątrz metod zmienna self odnosi się do samego obiektu.

• Dzięki temu możliwy jest dostęp do pól obiektu, np. self.a.

37

• W momencie wywołania metody obiektu, zostaje on automatycznie wstawiony jako

pierwszy argument metody i użytkownik podaje o jeden mniej argument niż metoda

wymaga.

Przykład klasy przedstawiony jest poniżej:

class Wektor():

def __init__(self, x, y):

 self.a = x

 self.b = y

print "wektor został stworzony!"

 w1 = Wektor(5, 7) # wektor został stworzony

Tak jak zmienna self daje dostęp do pól obiektu, tak metoda __init__ jest wywoływana

automatycznie w momencie tworzenia obiektu. Metoda ta powinna wykonywać wszystkie

operacje potrzebne do zainicjowania nowego obiektu, w szczególności powinna nadawać

wartości jego polom. Oprócz specjalnej metody __init__ programista może tworzyć własne

metody. Metoda jest to funkcja zdefiniowana wewnątrz klasy.

class NazwaKlasy:

 def NazwaMetody(self, atrybuty):

 [ciało metody]

Wywołanie metody odbywa się następująco:

NazwaObiektu = NazwaKlasy(atr1, …, atrN) # tworzenie obiektu

NazwaObiektu.NazwaMetody(atrybuty) # wywołanie metody na obiekcie

Przykładowe zadanie z rozwiązaniem

Napisz program, który posłuży do przechowania studentów w liście. Utwórz klasę Student:

• Pola: imię, nazwisko, oceny

38

• Metody: dodajOcene(ocena), wypiszOceny(), policzSrednia()

Utwórz menu: 1 – dodaj studenta, 2 – pokaż studentów, 3 – usuń studenta, 4 – dodaj ocenę

studentowi, 5 – wypisz oceny studenta, 6 – średnia studenta, 7 – koniec.

Przykład klasy Student pokazany jest na rys. 32, natomiast dalsza część programu

z powyższego zadania przedstawiona jest na rys. 33 i rys. 34.

Rys. 32. Przykład klasy Student

Źródło: Opracowanie własne.

39

Rys. 33. Obsługa programu z klasą Student (cz. 1)

Źródło: Opracowanie własne.

40

Rys. 33. Obsługa programu z klasą Student (cz. 2)

Źródło: Opracowanie własne.

Programowanie obiektowe ma wiele aspektów, które zostaną bardziej szczegółowo

omówione podczas szkolenia, min. hermetyzacja, dziedziczenie i wiele innych.

Wprowadzenie do operacji na plikach

Zmienne stanowią pewien sposób przechowywania informacji i uzyskiwania do nich

dostępu w trakcie wykonywania programu, jednak po wyłączeniu programu informacje ulatują.

Dlatego warto zapisać dane w taki sposób, aby można je było później odzyskać. Do takiego

41

trwałego zapisu można wykorzystać pliki. Pliki można otworzyć na kilka sposobów (z różnymi

atrybutami) w zależności od potrzeby.

• Odczytywanie danych z plików tekstowych

text_file = open("odczyt.txt", "r")

text_file.close()

Powyższe instrukcje pozwalają na otwarcie pliku o nazwie odczyt.txt z atrybutem r,

czyli do odczytu. Po tej instrukcji możemy czytać dane z pliku. Po zakończeniu czytania należy

plik zamknąć. Plik możemy czytać na kilka sposobów, np. linia po linii. Poniżej został

przedstawiony przykładowy kod programu, który czyta trzy linie pliku o nazwie odczyt.txt,

a następnie wyświetla je na ekranie. W tym przykładzie czytamy plik po jednym wierszu naraz.

text_file to taki uchwyt do pliku.

text_file = open("odczyt.txt", "r")

print(text_file.readline())

print(text_file.readline())

print(text_file.readline())

text_file.close()

Możemy również wczytać cały pliku do listy, a następnie wyświetlić je linia po linii.

Metoda readline() czyta jedną linie, z kolei readlines() czyta wszystkie linie z pliku.

text_file = open("odczyt.txt", "r")

lines = text_file.readlines()

print(lines) # wszystkie linie od razu

print(len(lines)) # liczba linii

for line in lines: # tak długo jak są linie

print(line) # linia po linii

text_file.close()

42

Tak naprawdę można to zrobić bez instrukcji readlines(). Przykład kodu jest

zaprezentowany poniżej.

text_file = open("odczyt.txt", "r")

for line in text_file:

print(line)

text_file.close()

Wybrane tryby dostępu do pliku tekstowego:

F = open("plik.txt","tryb")

– „r” – odczyt danych z pliku tekstowego; jeśli plik nie istnieje, zasygnalizuje błąd,

– „w” – zapis danych do pliku tekstowego; jeśli plik już istnieje, jego zawartość

zostaje zastąpiona przez nowe dane, jeśli nie istnieje, zostaje utworzony,

– „a” – dopisanie danych na końcu pliku tekstowego; jeśli plik istnieje, nowe dane

zostają do niego dopisane, jeśli plik nie istnieje, jest tworzony.

• Zapisywanie łańcuchów znaków do pliku

text_file = open("zapisz.txt", "w")

text_file.write("Wiersz 1\n")

text_file.write("To jest wiersz 2\n")

text_file.write("Ten tekst tworzy wiersz 3\n")

text_file.close()

Metoda write() zapisuje łańcuch znaków do pliku. Warto wiedzieć, że metoda write()

nie wstawia automatycznie znaku nowego wiersza na końcu łańcucha, który zapisuje. Należy

samemu wstawić znaki nowego wiersza tam, gdzie są potrzebne. Podobnie jak readlines(),

metoda writelines() obsługuje listę łańcuchów, lecz zamiast wczytywać zawartość pliku

tekstowego do listy, zapisuje listę łańcuchów do pliku.

43

text_file = open("zapisz_to.txt", "w")

lines = ["Wiersz 1\n",

"To jest wiersz 2\n",

"Ten tekst tworzy wiersz 3\n"]

text_file.writelines(lines)

text_file.close()

Wybrane metody do obsługi pliku

• close() – zamyka plik; odczytywanie danych z zamkniętego pliku oraz zapisywanie

do niego jest niemożliwe, dopóki nie zostanie ponownie otwarty,

• readline() – metoda zwraca wszystkie znaki od pozycji bieżącej do końca wiersza,

• readlines() – odczytuje wszystkie wiersze pliku i zwraca je jako elementy listy,

• write(dane) – zapisuje łańcuch dane do pliku,

• writelines(dane) – zapisuje łańcuchy będące elementami listy dane do pliku.

Przykład programu z obsługą plików

Napisz program do wprowadzania studentów w zakresie informacji (imię, nazwisko, grupa).

Program ma przechowywać dane w pliku txt, ma umożliwiać dodawanie, usuwanie, zmianę

oraz pokazywanie listy studentów. Usuwanie oraz zmianę mogą wykonywać np. po nazwisku.

Program wyposażony jest w interaktywne menu (1 – dodaj, 2 – pokaz, 3 – usuń, 4 – zmień,

5 – wyjście).

Przykładowa realizacja zadania z obsługą plików jest pokazana na rys. 34 i rys. 35.

W przypadku zapisu do pliku bardziej złożonych informacji, np. list, słowników, a nawet baz

danych, służy biblioteka pickle. Moduł pickle umożliwia „marynowanie” i przechowywanie

w pliku bardziej złożonych danych. Przykład marynowania danych zostanie pokazany podczas

zajęć.

44

Rys. 34. Program z obsługą plików (cz. 1)

Źródło: Opracowanie własne.

45

Rys. 35. Program z obsługą plików (cz. 2)

Źródło: Opracowanie własne.

Wprowadzenie do programowania graficznego

Do tej pory wszystkie programy, które pisaliśmy, wykorzystywały do interakcji

z użytkownikiem tryb tekstowy (konsolowy). Możemy jednak zaimplementować graficzny

interfejs użytkownika (ang. graphical user interface – GUI), który udostępnia wizualny sposób

interakcji użytkownika z komputerem. Elementy GUI to: ramki, przyciski, pola wejściowe

i tekstowe, pola wyboru, przyciski opcji i inne. Do obsługi trybu graficznego można

wykorzystać bibliotekę tkinter.

from tkinter import *

root = Tk() # okno główne aplikacji

root.mainloop() # pętla obsługi zdarzeń

46

Przykład programu z interfejsem graficznym jest pokazany na rys. 36.

Rys. 36. Program z interfejsem graficznym

Źródło: Opracowanie własne.

Kod, który realizuje aplikację z rys. 36 został pokazany poniżej. Więcej informacji

o tworzeniu aplikacji graficznych w języku Python zostanie przekazanych podczas szkolenia.

from tkinter import *

class Kontakt:

 def __init__(self, imie, nazwisko, telefon, email):

 self.imie = imie

 self.nazwisko = nazwisko

 self.telefon = telefon

 self.email = email

listaKontaktow = []

def dodajKontakt():

 imie = entry_Imie.get()

47

 nazwisko = entry_Nazwisko.get()

 telefon = entry_Telefon.get()

 email = entry_Email.get()

 kontakt = Kontakt(imie, nazwisko, telefon, email)

 listaKontaktow.append(kontakt)

 entry_Imie.delete(0,END)

 entry_Nazwisko.delete(0,END)

 entry_Telefon.delete(0,END)

 entry_Email.delete(0,END)

 entry_Imie.focus()

 pokazKontakty()

def pokazKontakty():

 listbox_ListaKontaktow.delete(0, END)

 for x, y in enumerate(listaKontaktow):

 listbox_ListaKontaktow.insert(x, f"{y.imie} {y.nazwisko}")

def usunKontakt():

 index = listbox_ListaKontaktow.index(ACTIVE)

 listaKontaktow.pop(index)

 pokazKontakty()

def pokazSzczegoly():

 index = listbox_ListaKontaktow.index(ACTIVE)

 label_SzczegolyKontaktu_ImieV.config(text=listaKontaktow[index].imie)

48

 label_SzczegolyKontaktu_NazwiskoV.config(text=listaKontaktow[index].nazwisko)

 label_SzczegolyKontaktu_TelefonV.config(text=listaKontaktow[index].telefon)

 label_SzczegolyKontaktu_EmailV.config(text=listaKontaktow[index].email)

def edytujKontakt():

 index = listbox_ListaKontaktow.index(ACTIVE)

 entry_Imie.delete(0, END)

 entry_Nazwisko.delete(0, END)

 entry_Telefon.delete(0, END)

 entry_Email.delete(0, END)

 entry_Imie.insert(0, listaKontaktow[index].imie)

 entry_Nazwisko.insert(0, listaKontaktow[index].nazwisko)

 entry_Telefon.insert(0, listaKontaktow[index].telefon)

 entry_Email.insert(0, listaKontaktow[index].email)

 button_DodajKontakt.config(text="Zmien kontakt", command=zmienKontakt)

def zmienKontakt():

 # pobierz index zaznaczonego kontaktu

 index = listbox_ListaKontaktow.index(ACTIVE)

 # pobierz z formularza: imie, nazwisko, telefon, mail

 imie = entry_Imie.get()

 nazwisko = entry_Nazwisko.get()

 telefon = entry_Telefon.get()

 email = entry_Email.get()

 # wyedytuj dane obiektu

 listaKontaktow[index].imie = imie

49

 listaKontaktow[index].nazwisko = nazwisko

 listaKontaktow[index].telefon = telefon

 listaKontaktow[index].email = email

 # wyczyść pola formularza

 entry_Imie.delete(0, END)

 entry_Nazwisko.delete(0, END)

 entry_Telefon.delete(0, END)

 entry_Email.delete(0, END)

 # ustaw kursow na polu Imię

 entry_Imie.focus()

 # przywróć przycisk do ustawień pierwotnych

 button_DodajKontakt.config(text="Dodaj kontakt", command=dodajKontakt)

 # odśwież listboxa

 pokazKontakty()

root = Tk()

root.geometry("700x300")

root.title("Książka telefoniczna")

ramkaLewa = Frame(root)

ramkaPrawa = Frame(root)

ramkaDolna = Frame(root)

ramkaLewa.grid(row=0, column=0, pady=(20,20), padx=10)

ramkaPrawa.grid(row=0, column=1, sticky=N, pady=(20,20))

ramkaDolna.grid(row=1, column=0, columnspan=2, sticky=W, padx=10)

50

label_ListaKontaktow = Label(ramkaLewa, text="Lista kontaktów")

listbox_ListaKontaktow = Listbox(ramkaLewa, width=25, height=7)

button_PokazSzczegoly = Button(ramkaLewa, text="Pokaż szczegóły kontaktu",

command=pokazSzczegoly)

button_UsunKontakt = Button(ramkaLewa, text="Usuń kontakt", command=usunKontakt)

button_EdytujKontakt = Button(ramkaLewa, text="Edytuj kontakt",

command=edytujKontakt)

label_ListaKontaktow.grid(row=0, column=0, columnspan=3)

listbox_ListaKontaktow.grid(row=1, column=0, columnspan=3)

button_PokazSzczegoly.grid(row=2, column=0)

button_UsunKontakt.grid(row=2, column=1)

button_EdytujKontakt.grid(row=2, column=2)

label_NowyKontakt = Label(ramkaPrawa, text="Nowy kontakt")

label_Imie = Label(ramkaPrawa, text="Imię:")

label_Nazwisko = Label(ramkaPrawa, text="Nazwisko:")

label_Telefon = Label(ramkaPrawa, text="Telefon:")

label_Email = Label(ramkaPrawa, text="Email:")

entry_Imie = Entry(ramkaPrawa)

entry_Nazwisko = Entry(ramkaPrawa, width=30)

entry_Telefon = Entry(ramkaPrawa)

entry_Email = Entry(ramkaPrawa)

button_DodajKontakt = Button(ramkaPrawa, text="Dodaj kontakt",

command=dodajKontakt)

button_DodajKontakt = Button(ramkaPrawa, text="Dodaj kontakt",

command=lambda:test())

label_NowyKontakt.grid(row=0, column=0, columnspan=2)

label_Imie.grid(row=1, column=0, sticky=W)

label_Nazwisko.grid(row=2, column=0, sticky=W)

label_Telefon.grid(row=3, column=0, sticky=W)

51

label_Email.grid(row=4, column=0, sticky=W)

entry_Imie.grid(row=1, column=1, sticky=W)

entry_Nazwisko.grid(row=2, column=1, sticky=W)

entry_Telefon.grid(row=3, column=1, sticky=W)

entry_Email.grid(row=4, column=1, sticky=W)

button_DodajKontakt.grid(row=5, column=0, columnspan=2)

label_SzczegolyKontaktu = Label(ramkaDolna, text="Szczegóły Kontaktu")

label_SzczegolyKontaktu_Imie = Label(ramkaDolna, text="Imie")

label_SzczegolyKontaktu_ImieV = Label(ramkaDolna, text="...", width=10)

label_SzczegolyKontaktu_Nazwisko = Label(ramkaDolna, text="Nazwisko")

label_SzczegolyKontaktu_NazwiskoV = Label(ramkaDolna, text="...", width=10)

label_SzczegolyKontaktu_Telefon = Label(ramkaDolna, text="Telefon")

label_SzczegolyKontaktu_TelefonV = Label(ramkaDolna, text="...", width=10)

label_SzczegolyKontaktu_Email = Label(ramkaDolna, text="Email")

label_SzczegolyKontaktu_EmailV = Label(ramkaDolna, text="...", width=10)

label_SzczegolyKontaktu.grid(row=0, column=0, columnspan=8, sticky=W)

label_SzczegolyKontaktu_Imie.grid(row=1, column=0)

label_SzczegolyKontaktu_ImieV.grid(row=1, column=1)

label_SzczegolyKontaktu_Nazwisko.grid(row=1, column=2)

label_SzczegolyKontaktu_NazwiskoV.grid(row=1, column=3)

label_SzczegolyKontaktu_Telefon.grid(row=1, column=4)

label_SzczegolyKontaktu_TelefonV.grid(row=1, column=5)

label_SzczegolyKontaktu_Email.grid(row=1, column=6)

label_SzczegolyKontaktu_EmailV.grid(row=1, column=7)

root.mainloop()

Zaprezentowany materiał pozwoli już napisać ciekawe programy, pozostałe zagadnienia

zostaną omówione podczas szkolenia.

52

Zadania

Zadanie 1

Utwórz przykładowy komentarz jednoliniowy i wielowierszowy (blokowy).

Zadanie 2

Utwórz zmienne o dowolnej nazwie, którym przypiszesz wartości: 80, 27.5, Kurs Python.

Zadanie 3

Napisz program, który wykona sumę cen produktów dla konkretnego zamówienia.

Cennik:

• chleb (5,40zł / 1 szt.),

• masło (6,50 zł / 1 szt.),

• pierniki (13,09 / 1 kg),

• sok (4,5 / 1 litr).

Zamówienie: 2 szt. chleba + 3 szt. masła + 1,5 kg pierników + 1 sok.

Zadanie 4

Samochód na 100 km spala 5,2 l paliwa. Ile spali paliwa po przejechaniu 479 km? Wykorzystaj

zmienne i operatory w języku Python w celu obliczenia zadania.

Zadanie 5

Napisz program, który prosi użytkownika o podanie imienia, i następnie wypisze na ekran

powitanie po imieniu użytkownika, np. „Witaj Paweł na programowaniu z Pythona”.

Zadanie 6

Napisz program, który obliczy pole trójkąta na podstawie danych podanych przez użytkownika

z konsoli, tj. wysokość (h) i długość podstawy tego trójkąta (a). Uwzględnij fakt, że wysokość

i długość podstawy mogą być liczbami niecałkowitymi. Wzór na obliczeni pola:

�∆ =
�

�
�ℎ.

53

Zadanie 7

Napisz program obliczający średnią z pięciu liczb podanych przez użytkownika. Liczby mogą

być typu zmiennoprzecinkowego.

Zadanie 8

Napisz interaktywny sklep z trzema produktami:

Chleb – 6,50 zł

Sok – 4,00 zł

Pączek – 5,50 zł

Użytkownik będzie pytany o liczbę dla każdej z ww. pozycji asortymentowej, liczba musi być

całkowita (int). Wypisz podsumowanie zakupów, czyli co zostało kupione, ile sztuk i jaka

wartość. Wypisz, ile należy zapłacić całkowicie za złożone zamówienie.

Zadanie 9

Napisz program do nauki tabliczki mnożenia. Program ma wylosować dwie liczby z zakresu

(1-10), po czym ma zapytać użytkownika, jaki będzie wynik mnożenia tych liczb. Użytkownik

podaje swój wynik. Natomiast po podaniu wyniku przez użytkownika, program wyświetla swój

wynik. Na razie nie sprawdzamy, czy wynik podany przez użytkownika jest poprawny.

Na przykład:

Ile to jest 3 * 7 ?

Odpowiedz użytkownika: 21

Odpowiedź komputera: 21

Zadanie 10

Napisz program, który będzie obliczał potęgę. Potęga zostanie obliczona na podstawie

pobranych danych od użytkownika tj. podstawa i wykładnika (podstawawykladnik).

Zadanie 11

Zaprojektuj program, który wczyta od użytkownika dowolny tekst. Program za zadanie

wypisać:

54

• Ile prowadzono znaków,

• Ile jest spacji w wprowadzonym tekście.

Na przykład: „Programowanie w Pythonie”

Liczba znaków: 24

Liczba spacji: 2

Zadanie 12

Napisz program, który 5 razy poprosi o podanie imienia. Podane imiona będą zapisywane do

listy. Wypisz dla wszystkich imion z listy poniższy komunikat:

Cześć <tutaj imię z listy>

Zadanie 13

Napisz program, w którym zadeklarujesz dwie listy, które będą przechowywały po 4 dowolne

liczby. Na przykład:

lista1 = [1, 3, 2, 5]

lista2 = [4, 5, 1, 8]

Program powinien wyświetlić sumę wszystkich liczb z obu list (29).

Zadanie 14

Napisz program, w którym użytkownik podaje 7 dowolnych liczb całkowitych i dodaje je do

listy. Program ma za zadanie:

• wyświetlić wszystkie liczby,

• policzyć sumę wszystkich liczb

• policzyć średnią

• odwrócić kolejność elementów w liście.

Zadanie 15

Napisz program, który 5 razy poprosi użytkownika o wprowadzenie dowolnych liczb

całkowitych. Program za zadanie zliczyć, ile wprowadzono liczb unikatowych. Pomocne mogą

okazać się zbiory.

55

Zadanie 16

Wykorzystując poznane typy sekwencyjne, zaprojektuj kod dla poniższej funkcjonalności:

Utwórz zmienne z wartościami:

• zmienna1 = ”jeden”

• zmienna2 = ”pięć”

• zmienna3= ”siedem”

Oblicz sumę ww. zmiennych. Suma zmiennych to 13. W rozwiązaniu problemu pomocne mogą

okazać się słowniki.

Zadanie 17

Zaprojektuj program, który dowolną liczbę 4-cyfrową zamieni na interpretację słowną np.

• 9112 # dziewięć jeden jeden dwa

• 5842 # pięć osiem cztery dwa

W rozwiązaniu problemu pomocne mogą okazać się słowniki.

Zadanie 18

Napisz program do nauki tabliczki mnożenia. Program ma wylosować dwie liczby z zakresu

(1-10), po czym ma zapytać użytkownika, jaki będzie wynik mnożenia tych liczb. Użytkownik

podaje swój wynik. Natomiast po podaniu wyniku przez użytkownika, program wyświetla swój

wynik. Program ma również sprawdzić, czy wynik podany przez użytkownika jest poprawny.

Na przykład:

Ile to jest 3 * 7 ?

Odpowiedź użytkownika: 23

Odpowiedź komputera: 21

Użytkowniku poddałeś błędny wynik!

Zadanie 19

Napisz program, który sprawdza, czy wprowadzona liczba jest liczbą parzystą, czy nieparzystą.

Wykorzystaj instrukcję modulo, czyli resztę z dzielenia %.

56

Zadanie 20

Utwórz 2 zmienne, przypisując im dowolne – różne wartości liczbowe. Napisz program, który

wskaże największą wartość. Rozszerz program, dodając dodatkową zmienną (trzecią)

i przypisz jej dowolną wartość różną od powyższych, który następnie wskaże największą

wartość.

Zadanie 21

Utwórz 3 zmienne i przypisz im dowolne wartości liczbowe, np. a = 10 b = 2 c = 9. Wypisz

wartości zmiennych od największej do najmniejszej w konsoli.

Zadanie 22

Napisz program, który oblicza wartość współczynnika BMI wg wzoru (waga / wzrost**2).

Wzrost podawany jest w metrach. Jeżeli wynik jest w przedziale (18,5–24,9), to wypisuje

w konsoli „waga prawidłowa”, jeżeli poniżej to „niedowaga”, jeżeli powyżej to „nadwaga”.

Zadanie 23

Napisz program, który spośród liczb 1-100 wyświetli tylko te, które są podzielne przez 6.

Zadanie 24

Napisz program, który pobiera od użytkownika np. 10 liczb i oblicza sumę tylko tych liczb,

które są nieparzyste.

Zadanie 25

Utwórz listę i dodaj do niej w pętli 8 imion. Następnie, wypisz imiona z listy zgodnie

z poniższym wzorem: Witaj <imię z listy>.

Zadanie 26

Napisz własny mechanizm obliczania potęgi (bez użycia operatora potęgowania **).

Użytkownik podaje podstawę i wykładnik potęgi. W celu napisania powyższego mechanizmu

wykorzystaj pętle. Warto jeszcze przypomnieć, że wszystko, co jest podniesione do potęgi 0,

jest równe 1, a wykładnikiem potęgi są liczby większe bądź równe 0.

57

Zadanie 27

Napisz program, który oblicza silnie. Użytkownik podaje dowolną liczbę całkowitą dodatnią,

a program zwraca wartość silni z podanej liczby. Np. 5! = 1 * 2 * 3 * 4 * 5 = 120.

Zadanie 28

Napisz grę: komputer losuje liczbę z przedziału 1-100. Użytkownik ma za zadanie odgadnąć,

co to za liczba poprzez podawanie kolejnych wartości. Jeżeli podana liczba jest większa od

wylosowanej – wyświetlany jest komunikat „podałeś za dużą liczbę”, a jeśli mniejsza od

wylosowanej – wyświetlony jest komunikat „podałeś za małą liczbę”, natomiast gdy podałeś

równą wylosowanej – wyświetlony jest komunikat „Gratulacje” i gra zostaje zakończona.

Studium przypadku

Równanie kwadratowe

Napisz program, który rozwiązuje równanie kwadratowe, tzn. oblicza pierwiastki równania

kwadratowego. Równanie kwadratowe zapisane w postaci ogólnej wygląda następująco:

��� +
� + � = 0,

gdzie a, b i c to współczynniki liczbowe i dodatkowo a ≠ 0 (by równanie było kwadratowe).

W pierwszym kroku oblicza się deltę:

∆ =
� − 4��.

Dalsze kroki rozwiązywania równania kwadratowego zależy od wartości ∆:

✔ jeżeli ∆ > 0, to równanie kwadratowe ma dwa rozwiązania (dwa pierwiastki

rzeczywiste)

�� =
���√∆

��
 �� =

���√∆

��
,

✔ jeżeli ∆ = 0, to równanie kwadratowe ma jedno rozwiązania (tzw. pierwiastek

podwójny)

58

� =
��

��
,

✔ jeżeli ∆ < 0, to nie istnieją pierwiastki rzeczywiste (równanie posiada jedynie

pierwiastki zespolone).

Przepis na rozwiązanie problemu (w naszym przykładzie obliczenie pierwiastków

równania kwadratowego) nazywa się algorytmem, który możemy zapisać w postaci słownej

lub za pomocą schematów blokowych. Algorytm możemy zapisać również w postaci

pseudokodu, więcej na ten temat zostanie przekazane podczas zajęć. Przykładowy schemat

blokowy algorytmu rozwiązującego równanie kwadratowe pokazany jest na rys. 37. Opis

słowny algorytmu w postaci kroków przedstawiony jest poniżej:

1. START – początek algorytmu

2. Wczytujemy dane wejściowe - współczynniki a, b i c równania kwadratowego

3. Sprawdzamy, czy współczynnik a równania jest równy 0

4. Jeżeli a = 0, to wypisujemy „To nie jest równanie kwadratowe”

5. Jeżeli a ≠ 0, to obliczamy wartość delty

6. Sprawdzamy, czy Δ jest mniejsza od 0

7. Jeżeli Δ < 0 wypisujemy informację, równanie nie ma pierwiastków (rzeczywistych)

8. Sprawdzamy czy Δ jest równa 0

9. Jeżeli Δ = 0 obliczamy wartość pierwiastka podwójnego x

10. Gdy Δ = 0, po obliczeniu x, wypisujemy jego wartość

11. Jeżeli Δ ≠ 0, a wcześniej Δ nie była mniejsza od 0 (do tego miejsca docieramy, gdy nie

został spełniony żaden z poprzednich warunków (Δ < 0 i Δ = 0), czyli gdy Δ > 0.

Obliczamy wartości dwóch rozwiązań równania: x1 i x2

12. Wypisujemy obliczone wartości obu rozwiązań

13. STOP – wspólny dla wszystkich dróg, koniec algorytmu.

Korzystając ze schematu blokowego lub opisu słownego (listy kroków), możemy

przejść do implementacji algorytmu w języku Python. Oczywiście wersji programów może być

tyle, ilu jest programistów.

59

Rys. 37. Przykłady schemat blokowy rozwiązania równania kwadratowego

Źródło: https://stypendium-zawodowe2018.wex.pl/stabilny.html

 from math import sqrt #użycie funkcji sqrt z bibl. math

Program rozwiązuje równie kwadratowe

print("Program rozwiązuje równanie kwadratowe.")

a = float(input("Podaj wartość a: "))

b = float(input("Podaj wartość b: "))

c = float(input("Podaj wartość c: "))

if a == 0:

 print("To nie jest równanie kwadratowe")

60

else:

 delta = (b ** 2) - (4 * a * c)

 if delta < 0:

 print("Równanie nie ma pierwiastków (rzeczywistych)")

 elif delta == 0:

 x = -b/(2*a)

 print(f"Wartość pierwiastka podwójnego x = {x}")

 else:

 pdelta = sqrt(delta)

 x1 = (-b - pdelta)/(2*a)

 x2 = (-b + pdelta) / (2 * a)

 print(f"Wartość pierwiastków x1 = {x1}, x2 = {x2}")

Rozwiązania zadań

Zadanie 1

przykład użycia instrukcji print

print("Witaj Świecie!")

"""

Programowanie

w

Pytonie

jest

fajne"""

print("Do pracy ...")

Zadanie 2

wiek = 80

cenaCukierkow = 27.5

kurs_programowania = "Kurs Python."

Zadanie 3

cenaChleba = 5.40

cenaMasla = 6.50

cenaPierniki = 13.09

cenaSok = 4.5

61

zamowienie = 2*cenaChleba + 3*cenaMasla + 1.5*cenaPierniki + 1*cenaSok

print(f"Zamówienie: 2 szt. chleba + 3 szt. masła + 1,5 kg pierników + 1 sok

ma wartość: {zamowienie} zł")

Zadanie 4

ile_na_100 = 5.2

droga = 479

spalanie = (droga/100)*ile_na_100

print(f"Po przejechaniu {droga} km samochód spali {spalanie} litrów

paliwa.")

Zadanie 5

imie = input("Podaj imie: ")

print(f"Witaj {imie} na programowaniu z Pythona.")

Zadanie 6

print("Program oblicza pole trójkąta!")

h = float(input("Podaj wyskość trójkąta: "))

a = float(input("Podaj długość podstawy trójkąta: "))

pole = 0.5*a*h

print(f"Pole trójkąta o wykości {h} i długości podstawy {a} wynosi: {pole} ")

Zadanie 7

print("Program oblicza średnią z pięciu zadeklarownych liczb.")

l1 = 1.0

l2 = 2.0

l3 = 3.0

l4 = 4.0

l5 = 5.0

suma = l1 + l2 + l3 + l4 + l5

srednia = suma/5.0

print(f"Średnia z liczb: {l1}, {l2}, {l3}, {l4}, {l5}, to: {srednia}")

Zadanie 8

print("Sklep")

chleb = 6.50

sok = 4.00

paczek = 5.50

62

ile_chlebow = int(input("Ile sztuk chleba chcesz zamówić? "))

ile_sokow = int(input("Ile sztuk soków chcesz zamówić? "))

ile_paczkow = int(input("Ile pączków chcesz zamówić? "))

wartosc_chleb = ile_chlebow * chleb

wartosc_sok = ile_sokow * sok

wartosc_paczkow = ile_paczkow * paczek

print("")

print(f"Zamówiłeś {ile_chlebow} chlebów o wartości: {wartosc_chleb}")

print(f"Zamówiłeś {ile_sokow} soków o wartości: {wartosc_sok}")

print(f"Zamówiłeś {ile_paczkow} pączków o wartości: {wartosc_paczkow}")

zamownienie = wartosc_chleb + wartosc_sok + wartosc_paczkow

print(f"Całkowita wartość zamówienia, to: {zamownienie}")

Zadanie 9

import random #biblioteka do liczb pseudolosowych

l1=random.randint(1,10) #losowanie liczby całkowitej z zakresu <1,10>

l2=random.randint(1,10)

wynik=l1*l2

liczba_u=input(f"Ile to jest {l1} * {l2} ?")

print(f"Odpowiedź użytkownika: {liczba_u}")

print(f"Odpowiedź komputera: {wynik}")

Zadanie 10

print("Potęgowanie liczb.")

pod=float(input("Podaj podstawę: "))

wyk=float(input("Podaj wykładnik: "))

wy=pod**wyk

print(f"Wynik wynosi: {wy}.")

Zadanie 11

tekst = input("Wprowadź tekst: ")

ile_znakow = len(tekst) #len() sprawdza długość napisu

ile_spacji = tekst.count(" ") #tekst.count(" ") zlicza liczbę wystąpień

spacji w napisie tekst

print(f"Liczba znaków: {ile_znakow}")

print(f"Liczba spacji: {ile_spacji}")

63

Zadanie 12

lista=[] #przykład bez pętli

print("Dodawanie do listy imion!")

lista.append(input("Podaj 1 imie: "))

lista.append(input("Podaj 2 imie: "))

lista.append(input("Podaj 3 imie: "))

lista.append(input("Podaj 4 imie: "))

lista.append(input("Podaj 5 imie:"))

print("Lista imion: ")

print(lista)

print("")

print(f"Cześć {lista[0]}")

print(f"Cześć {lista[1]}")

print(f"Cześć {lista[2]}")

print(f"Cześć {lista[3]}")

print(f"Cześć {lista[4]}")

Zadanie 13

#Program sumuje wszystkie liczby z obu list, wersja bez pętli.

lista1 = [1, 3, 2, 5]

lista2 = [4, 5, 1, 8]

suma =

lista1[0]+lista1[1]+lista1[2]+lista1[3]+lista2[0]+lista2[1]+lista2[2]+lista

2[3]

print(f"Suma liczb to {suma}")

Zadanie 14

#Wersja programu z pętlą

lista=[]

suma = 0

for i in range(1,8):

 lista.append(int(input(f"Podaj {i} liczbę: ")))

 suma = suma + i

print()

print("Elementy listy: ")

print(lista)

64

print()

srednia=suma/len(lista)

print(f"Suma liczb to {suma}")

print(f"Średnia liczb to {srednia}")

print()

print("Elementy listy w odwrotnej kolejności: ")

for i in range(6, -1, -1):

 print(lista[i], end=", ")

Zadanie 15

#Zbiory z założenia przechowują unikatowe dane

#Wersja bez pętli

zbior = set()

zbior.add(int(input("Podaj liczbę: ")))

zbior.add(int(input("Podaj liczbę: ")))

zbior.add(int(input("Podaj liczbę: ")))

zbior.add(int(input("Podaj liczbę: ")))

zbior.add(int(input("Podaj liczbę: ")))

ile = len(zbior) #ilość elementów zbioru = liczba unikatowych liczb

print(f"Unikatowych liczb jest {ile}")

Zadanie 16

zmienna1 = "jeden"

zmienna2 = "pięć"

zmienna3 = "siedem"

slownik={"jeden":1, "pięć":5, "siedem":7}

suma=slownik[zmienna1] + slownik[zmienna2] + slownik[zmienna3]

print(f"Suma liczb: {suma} ")

Zadanie 17

slownik = {"1":"jeden", "2":"dwa", "3":"trzy", "4":"cztery", "5":"pięć",

"6":"sześć", "7":"siedem", "8":"osiem", "9":"dziewięć"}

liczba = input("Podaj liczbe 4 cyforową :")

65

print(f"{slownik[liczba[0]]} {slownik[liczba[1]]} {slownik[liczba[2]]}

{slownik[liczba[3]]}")

Zadanie 18

import random # biblioteka do generowania liczb pseudolosowych

l1=random.randint(1,10) # losowanie liczby z zakresu <1, 10>

l2=random.randint(1,10)

wynik=l1*l2

liczba_g=int(input(f"Ile to jest {l1} * {l2} ?"))

print(f"Odpowiedź użytkownika: {liczba_g}")

print(f"Odpowiedź komputera: {wynik}")

if wynik == liczba_g:

 print("Użytkowniku podałeś prawidłowy wynik!")

else:

 print("Użytkowniku podałeś błędny wynik!")

Zadanie 19

liczba = int(input("Wprowadź liczbę: "))

if liczba % 2 == 0:

 print("Wprowadzona liczba jest parzysta!")

else:

 print("Wprowadzona liczba jest nieparzysta!")

Zadanie 20

wersja 2 zmienne

zm1 = 5.0

zm2 = 2.0

print (f"Wartość zm1 = {zm1}, a zm2 = {zm2}")

if zm1 > zm2:

 print(f"Zmienna pierwsza ma większą wartość: {zm1}!")

else:

 print(f"Zmienna druga ma większą wartość: {zm2}!")

wersja 3 zmienne (założenie zmienne są różne!)

z1 = 2.0

66

z2 = 3.0

z3 = 10.0

print (f"Wartość z1 = {z1}, z2 = {z2}, z3 = {z3}")

if z1 > z2:

 if z1 > z3:

 print("Zmienna z1 największa!")

 else:

 print("Zmienna z3 największa!")

elif z2 > z3:

 print("Zmienna z2 jest największa!")

else:

 print("Zmienna z3 jest największa!")

Zadanie 21

#wersja bez wbudwanych funkcji

a = 10

b = 2

c = 9

if a > b and a >c:

 print(a, end=" ")

 if b > c:

 print(b, c)

 else:

 print(c, b)

elif b > c and b > c:

 print(b, end=" ")

 if a > c:

 print(a, c)

 else:

 print(c, a)

elif c > a and c > b:

 print(c, end=" ")

 if a > b:

 print(a, b)

 else:

 print(b, a)

67

Zadanie 22

waga = float(input("Podaj swoją wagę [kg]: "))

wzrost = float(input("Podaj swój wzrost [m]: "))

bmi = waga/(wzrost**2)

print(f"Twoje BMI: {bmi}")

print()

if bmi >= 18.5 and bmi <=24.9:

 print("Waga prawidłowa!")

elif bmi <18.5:

 print("Niedowaga!")

else:

 print("Nadwaga!")

Zadanie 23

print("Program wyświetla liczby podzielne przez 6 z zakresu od <1,100>. ")

for i in range (1,101):

 if i%6 == 0:

 print(i, end=", ")

Zadanie 24

suma = 0

for i in range(1, 11):

 liczba = int(input(f"Podaj {i} liczbę: "))

 if liczba % 2 == 1:

 suma = suma + liczba

print(f"Suma liczb nieparzystych, to: {suma}")

Zadanie 25

imiona = []

for i in range (8):

 imiona.append(input("Podaj imie: "))

print()

for i in imiona:

 print(f"Witaj {i}.")

68

Zadanie 26

podstawa = int(input("Podaj podstawę: "))

wykladnik = int(input("Podaj wykładnik: "))

potega = 1

if wykladnik >= 0:

 for i in range(wykladnik):

 potega=potega*podstawa

 print(f"{podstawa}^{wykladnik}={potega}")

else:

 print("Nieprawidłowa wartość wykładnika!")

Zadanie 27

liczba = int(input("Podaj z jakiej liczby chcesz obliczyć silnie: "))

silnia = 1

if liczba >= 0:

 for i in range(1,liczba+1):

 silnia=silnia*i

 print(f"{liczba}! = {silnia}")

else:

 print("Wyznaczenie silni dotyczy liczb dodatnich oraz zera.")

Zadanie 28

import random

los = random.randint(1,100)

while True:

 liczba = int(input("Podaj wylosowaną liczbę: "))

 if liczba > los:

 print("Podałeś za dużą liczbę.")

 elif liczba < los:

 print("Podałeś za małą liczbę.")

 elif liczba == los:

 print("Gratulacje!")

 break

69

Literatura

Ceder N., Python. Szybko i prosto, Helion, Gliwice 2019.

Dawson M., Python dla każdego. Podstawy programowania, Helion, Gliwice 2014.

Gaddis T., Python dla zupełnie początkujących, Helion, Gliwice 2019.

Jaworski M., Lipiński S., Python. Kurs programowania na prostych przykładach, Helion,

Gliwice 2018.

Jaworski M., Python. Ćwiczenia praktyczne, Helion, Gliwice 2019.

Lech P., Python. Podstawy programowania, WNT, Warszawa 2015.

Lutz M., Python. Wprowadzenie, Helion, Gliwice 2020.

Matthes E., Python. Instrukcje dla programisty, Helion, Gliwice 2023.

Miles R. Python. Zacznij programować!, Helion, Gliwice 2018.

Sarbicki G., Python. Kurs dla nauczycieli i studentów, Helion, Gliwice 2020.

Zajączkowski S., Python. Ćwiczenia praktyczne, Helion, Gliwice 2017.

