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Bohdana Hladysh 

1. MATEMATYKA W MECHNICE I BUDOWIE MASZYN 

1.1.  WSTĘP 

Tylko państwa, które pielęgnują matematykę, 
mogą być silne i potężne. 

(Stefan Banach) 
Skrypt ten przeznaczony dla studentów kierunków technicznych wyższych uczelni, 

w tym dla kierunków związanych z mechaniką i budową maszyn.  

Materiał przedstawiono bez nadmiernego formalizmu matematycznego, pomijając 

dowody twierdzeń oraz zachowując kolejność tematów. Każdy rozdział składa się z teorii 

i przykładów. Ostatnie uszeregowano od prostego (najlepiej ilustrują teorię) do złożonego, co 

jest jedną z najważniejszych zasad w nauczaniu matematyki. Również jest wiele przykładów 

poświęconych zastosowaniu różnych dziedzin matematyki, które demonstrują o ile trudne bądź 

łatwe ono może być. 

Zawartość poniższych rozdziałów nie jest wyczerpującym źródłem wiedzy zarówno jak 

teoretycznej, tak i praktycznej. Za pomocą podręczników [1-15] oraz różnych stron 

internetowych, np. takich jak Wikipedia Wolna encyklopedia, Khan Academy lub chatGPT 

(w jakości kierunkowskazu dla samokształcenia) można pogłębić wiedzę w zakresie 

matematyki wyższej i jej zastosowania. 

Tekst zasadniczy 

1.2. FUNKCJE CYKŁOMETRYCZNE I ICH WŁASNOŚCI. LICZBA EULERA. 

LOGARTYM NATURALNY 

Ciąg liczbowy. Granica ciągu liczbowego. Liczba Eulera 

Definicja (Nieskończonym) ciągiem liczbowym nazywa się odwzorowanie 𝑎: ℕ → ℝ ze 

zbioru liczb naturalnych ℕ w zbiór liczb rzeczywistych ℝ, mianowicie 

𝑎: 

𝑛
↓

𝑎௡

        
1 2 3
↓ ↓ ↓

𝑎ଵ 𝑎ଶ 𝑎ଷ

   

. . . 𝑛 . . .

. . . ↓ . . .

. . . 𝑎௡ . . .
 

Ciąg oznaczamy przez {𝑎௡}௡ୀଵ
ஶ  lub {𝑎௡}. Element 𝑎௡ nazywamy 𝑛-tym elementem ciągu 

liczbowego {𝑎௡}௡ୀଵ
ஶ . 

Przykład Ciągiem Fibonacciego nazywa się ciąg liczbowy, który jest określony w 

następujący sposób: 𝑓ଵ = 𝑓ଶ = 1, 𝑓௡ାଶ = 𝑓௡ + 𝑓௡ାଵ, 𝑛 ∈ ℕ. Słownie ciąg Fibonacciego 

możemy określić tak: pierwsze dwa elementy ciągu wynoszą 1, wtedy jak każdy następny 

element jest sumą dwóch poprzednich. Bernoulli wskazał na związek liczb Fibonacciego ze 
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złotym stosunkiem [1], tak więc wartości 
௙೙

௙೙షభ
 liczby 𝑓௡ do jej poprzedniczki 𝑓௡ିଵ bardzo szybko 

zbliżają się do liczby 𝜑 =
ଵା√ହ

ଶ
≈ 1,61803399, która opisuje złoty stosunek. Również ciąg 

Fibonacci’ego można spotkać w trochę innej postaci, kiedy 𝑓ଵ = 0, 𝑓ଶ = 1, 𝑓௡ାଶ = 𝑓௡ +

𝑓௡ାଵ, 𝑛 ∈ ℕ, ale po eliminacji pierwszego elementu otrzymamy ten sam ciąg liczbowy, co 

wcześniej. 

Definicja Liczba 𝑔 ∈ ℝ nazywa się granicą (według Cauchy’ego) ciągu liczbowego 

{𝑎௡}, jeśli 

∀𝜀 > 0   ∃𝑁 ∈ ℕ   ∀𝑛 ≥ 𝑁:   ∣ 𝑎௡ − 𝑔 ∣< 𝜀 

Innymi słowy, (1) dla dowolnej małej liczby 𝜀 istnieje numer 𝑁, zaczynając od którego 

odległość między elementami ciągu 𝑎௡ a liczbą 𝑔 jest mniejsza od 𝜀 lub (2) przy zwiększeniu 

numerów elementów ciągu, zmniejsza się odległość między elementami ciągu a liczbą 𝑔.  

Mówimy, że ciąg {𝑎௡} zbieżny do liczby 𝑔. Oznaczamy przez lim
௡→ஶ

𝑎௡ = 𝑔 lub 𝑎௡ → 𝑔, 𝑛 → ∞.  

Definicja Ciąg liczbowy nazywa się rozbieżny do +∞ (−∞), jeśli 

∀𝛼 ∈ ℝ  ∃𝑁 ∈ ℕ   ∀𝑛 ≥ 𝑁:   𝑎௡ > 𝛼     (𝑎௡ < 𝛼) 

Innymi słowy, dla dowolnej liczby 𝛼 ∈ ℝ istnieje numer 𝑁, zaczynając od którego wszystkie 

elementy ciągu 𝑎௡ są większe (mniejsze) od wskazanej liczby 𝛼. Odpowiednia granica istnieje, 

ale nie jest liczbą lim
௡→ஶ

𝑎௡ = ±∞ (tzw. granica niewłaściwa). 

Definicja Ciąg liczbowy, który nie jest zbieżnym oraz nie jest rozbieżnym do +∞ lub 

−∞, nazywa się rozbieżnym. Mówimy, że odpowiednia granica nie istnieje ∄ lim
௡→ஶ

𝑎௡. 

Twierdzenie Zbieżny ciąg liczbowy ma dokładnie jedną granicę oraz jest ograniczony. 

Rozbieżnym do +∞ lub −∞ ma dokładnie jedną granicę. 

 Twierdzenie Jeżeli ciągi liczbowe {𝑎௡}, {𝑏௡} są rozbieżne do +∞ (innymi słowy 

lim
௡→ஶ

𝑎௡ = lim
௡→ஶ

𝑏௡ = +∞), to 

 ∀𝐶 ∈ ℝ:  lim
௡→ஶ

(𝑎௡ ± C) = +∞ 

⟦∞ ± 𝐶⟧ = ∞ 

 lim
௡→ஶ

(𝑎௡ + 𝑏௡) = +∞ 

⟦∞ + ∞⟧ = ∞ 

 ∀𝐶 ≠ 0:  lim
௡→ஶ

஼

௔೙
= 0 

⟦𝐶/∞, 𝐶 ≠ 0⟧ = 0 

 ∀𝐶 > 1:  lim
௡→ஶ

𝐶௔೙ = +∞ 

⟦𝐶ஶ, 𝐶 > 1⟧ = ∞ 

 ∀𝐶, −1 < 𝐶 < 1:  lim
௡→ஶ

𝐶௔೙ = 0 

⟦𝐶ஶ, −1 < 𝐶 < 1⟧ = 0 

 ∀𝐶 > 0: lim
௡→ஶ

(𝑎௡)஼ = +∞ 

⟦∞஼ , 𝐶 > 0⟧ = ∞ 

 ∀𝐶 < 0:  lim
௡→ஶ

(𝑎௡)஼ = 0 

⟦∞஼ , 𝐶 < 0⟧ = 0 
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 ∀𝐶 > 0:  lim
௡→ஶ

(𝐶 ⋅ 𝑎௡) = +∞ 

⟦𝐶 ⋅ ∞, C > 0⟧ = ∞ 

 ∀𝐶 < 0:  lim
௡→ஶ

(𝐶 ⋅ 𝑎௡) = −∞ 

⟦𝐶 ⋅ ∞, C < 0⟧ = −∞ 

 lim
௡→ஶ

(𝑎௡ ⋅ 𝑏௡) = +∞ 

⟦∞ ⋅ ∞⟧ = ∞ 

 lim
௡→ஶ

(𝑎௡)௕೙ = +∞ 

⟦∞ஶ⟧ = ∞ 

Symbolami nieoznaczonymi nazywamy następujące wyrazy, wynikające pod symbolem 

granicy: ⟦∞ − ∞⟧, ቘ
଴

଴
቙, ቘ

ஶ

ஶ
቙, ⟦0 ⋅ ∞⟧, ⟦1ஶ⟧, ⟦∞଴⟧, ⟦0଴⟧. Zaznaczone symbole są nieoznaczone, 

dlatego że w zależności od szczególnego przykładu mogą być różne odpowiedzi, a jak wiemy 

ciąg zbieżny oraz ciąg rozbieżny do +∞ lub −∞ ma tylko jedną granicę. 

Definicja Liczba Euler’a (zwaną również liczbą Neper’a) nazywa się granica zbieżnego 

ciągu liczbowego {ቀ1 +
ଵ

௡
ቁ

௡

}. Granica w przybliżeniu wynosi 2,718281828459 i oznaczamy 

symbolem 𝑒. Są również inne sposoby dla określenia liczby Euler’a. 

lim
௡→ஶ

൬1 +
1

𝑛
൰

௡

= 𝑒 ≈ 2,7 

Liczba Eulera jest jedną z najważniejszych matematycznych stałych, ponieważ pojawia 

się w każdej dziedzinie matematyki (rachunek różniczkowy i całkowy, równania różniczkowe, 

liczby zespolone, teoria prawdopodobieństwo, statystyka itd.). Również liczba 𝑒 jest często 

spotykana w ekonomii i finansach, bo jest wykorzystywana w zadaniach związanych z 

jakimkolwiek wzrostem. 

Funkcja logarytmiczna  

(w tym logarytm naturalny) 

𝑦 = log௔ 𝑥 , 𝑎 > 0, 𝑎 ≠  1 

Definicja Logarytmem log௔ 𝑏 o podstawie 𝑎 od liczby 𝑏 nazywa się wykładnik potęgi, 

do której należy podnieść podstawę 𝑎 aby otrzymać liczbę logarytmową 𝑏. 

Własności funkcji logarytmicznej 𝑦 = log௔ 𝑥 , 𝑎 > 0, 𝑎 ≠  1: 

 dziedzina: 𝐷௬ = (0; +∞) 

 zbiór wartości: 𝑍𝑊௬ = ℝ 

 miejsca zerowe: 𝑥 = 1 

 parzystość, nieparzystość: brak 

 monotoniczność:  

 0 < 𝑎 < 1:   𝑦 ↘↘  𝑎 > 1:   𝑦 ↗↗ 

 wklęsłość, wypukłość:  

 0 < 𝑎 < 1: 𝑦 wypukła  𝑎 > 1: 𝑦 wklęsła 
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 funkcja logarytmiczna jest odwrotną do funkcji wykładniczej 

 własności logarytmów: niech podstawy logarytmów 𝑎, 𝑏 > 0 i ≠ 1 

 log௔ 𝑢 + log௔𝑣 = log௔(𝑢𝑣), 𝑢 > 0, 𝑣 > 0 

 log௔ 𝑢 − log௔𝑣 = log௔ ቀ
௨

௩
ቁ , 𝑢 > 0, 𝑣 > 0 

 log௔ 𝑢௡ = 𝑛 log௔ 𝑢 , 𝑢 > 0, 𝑛 ∈ ℝ 

 log௔೘ 𝑢 =
ଵ

௠
log௔ 𝑢 , 𝑚 ∈ ℝ 

 log௔ 𝑢 =
୪୭୥್ ௨

୪୭୥್ ௔
 

 log௔ 𝑏 =
ଵ

୪୭୥್ ௔
 

 𝑎୪୭୥ೌ ௨ = 𝑢 

Definicja Logarytmem dziesiętnym od liczby 𝑏 nazywa się logarytm o podstawie 10 od 

tej liczby, oznaczamy przez lg 𝑏 lub log 𝑏. 

Definicja Logarytmem naturalnym od liczby 𝑏 nazywa się logarytm o podstawie 𝑒 od tej 

liczby, oznaczamy przez ln 𝑏 (𝑒 ≈ 2,7 tj. liczba Eulera). 

Przykład Obliczyć  

log௔ 1 , 𝑎 > 0, 𝑎 ≠  1; logହ 125 ; logଵଶହ 5 ; logଶ 64 ; log଼ 64 ; log 10 ; log 100; 

ln 𝑒ହ ; ln ඥ𝑒଻ ; 10୪୭୥ ௕ , 𝑏 > 0; 2 ln 3𝑒 − ln 9 ; 𝑒୪୬ ଶ. 

Rozwiązanie 

 log௔ 1 = log௔ 𝑎଴ = 0 

 logହ 125 = logହ 5ଷ = 3 

 logଵଶହ 5 = logହయ 5 =
ଵ

ଷ
logହ 5 =

ଵ

ଷ
 

 logଶ 64 = logଶ 2଺ = 6 

 log଼ 64 = logଶయ 2଺ =
଺

ଷ
logଶ 2 =

଺

ଷ
= 2 

 log 10 = logଵ଴ 10ଵ = 1 

 log 100 = logଵ଴ 10ଶ = 2 

 ln 𝑒ହ = 5 

 ln √𝑒଻ = ln 𝑒ଵ/଻ =
ଵ

଻
 

 10୪୭୥ ௕ = 10୪୭୥భబ ௕ = 𝑏 

 2 ln 3𝑒 − ln 9 = ln(3𝑒)ଶ − ln 9 = ln
ଽ௘మ

ଽ
= ln 𝑒 = 1 

 𝑒୪୬ = 𝑒୪୭୥೐ ଶ = 2 

Przykład Znaleźć 𝑦 z wymienionych niżej równości 
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 5𝑦 + 2 − 8 ln 𝑥 = 4 

 2௫ − 3௬ + 7 = 0 

 𝑒௬ = 2𝑥ଶ + 5 − log 𝑥 

Rozwiązanie 

 5𝑦 + 2 − 8 ln 𝑥 = 4 

5𝑦 = 8 ln 𝑥 + 2 

𝑦 =
8

5
ln 𝑥 +

2

5
 

 2௫ − 3௬ + 7 = 0 

3௬ = 2௫ + 7 

logଷ 3௬ = logଷ(2௫ + 7) 

𝑦 = logଷ(2௫ + 7) 

 𝑒௬ = 2𝑥ଶ + 5 − log 𝑥 

ln 𝑒௬ = ln(2𝑥ଶ + 5 − log 𝑥) 

𝑦 = ln(2𝑥ଶ + 5 − log 𝑥) 

Funkcje elementarne  

(w tym funkcje cyklometryczne i ich własności) 

Definicja Niech 𝑓: 𝑋 → 𝑌, 𝑔: 𝑌 → 𝑍, wtedy funkcja ℎ(𝑥) = 𝑔൫𝑓(𝑥)൯: 𝑋 → 𝑍 nazywa się 

złożeniem lub superpozycją funkcji 𝑓 i 𝑔. Funkcja 𝑓 nazywa się funkcją wewnętrzną, a 𝑔 – 

zewnętrzną. Funkcja ℎ nazywa się funkcją złożoną. 

Definicja Funkcja 𝑓: 𝑋 → 𝑌 przyjmująca jako swoje wartości wszystkie elementy zbioru 

𝑌, nazywa się surjekcją lub funkcją „na”, tzn. 

∀𝑦 ∈ 𝑌   ∃𝑥 ∈ 𝑋:   𝑦 = 𝑓(𝑥) 

Funkcja 𝑓: 𝑋 → 𝑌, która różnym argumentom przyporządkuje różne wartości, nazywa się  

injekcją lub funkcją różnowartościową, tzn. 

∀𝑥ଵ, 𝑥ଶ ∈ 𝑋, 𝑥ଵ ≠ 𝑥ଶ:   𝑓(𝑥ଵ) ≠ 𝑓(𝑥ଶ) 

Funkcja nazywa się bijekcją lub wzajemnie jednoznaczna, gdy ona jest surjekcją oraz injekcją. 

Definicja Funkcja 𝑓ିଵ: 𝑌 → 𝑋 nazywa się funkcją odwrotną do funkcji 𝑓, jeżeli są 

spełnione poniższe warunki 

∀𝑥 ∈ 𝑋:   𝑓ିଵ൫𝑓(𝑥)൯ = 𝑥

∀𝑦 ∈ 𝑌:   𝑓൫𝑓ିଵ(𝑦)൯ = 𝑦
 

W przypadku, gdy taka funkcja 𝑓ିଵ istnieje, funkcja 𝑓 nazywa się odwracalna. 

Twierdzenie Funkcja jest odwracalna wtedy i tylko wtedy, gdy ona jest bijekcją. 
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Definicja Podstawowymi funkcjami elementarnymi nazywają się takie funkcje: potęgowa 

(w tym stała), wykładnicza, logarytmiczna, trygonometryczne i cyklometryczne, tzn. 

 funkcja potęgowa: 𝑦 = 𝑥௔, 𝑎 ∈ ℝ; 

 funkcja wykładnicza: 𝑦 = 𝑎௫ , 𝑎 > 0, 𝑎 ≠  1; 

 funkcja logarytmiczna: 𝑦 = log௔ 𝑥 , 𝑎 > 0, 𝑎 ≠  1; 

 funkcje trygonometryczne: 𝑦 = sin 𝑥 , 𝑦 = cos 𝑥 , 𝑦 = tg 𝑥 , 𝑦 = ctg 𝑥; 

 funkcje cyklometryczne: 𝑦 = arcsin 𝑥 , 𝑦 = arccos 𝑥 , 𝑦 = arctg 𝑥 , 𝑦 = arcctg 𝑥. 

Definicja Funkcjami elementarnymi nazywają się funkcje, które można otrzymać z 

podstawowych funkcji elementarnych za pomocą skończonej liczby takich działań jak suma, 

różnica, iloczyn, iloraz oraz złożenie. 

Funkcje cyklometryczne: 𝑦 = arcsin 𝑥 , 𝑦 = arccos 𝑥 , 𝑦 = arctg 𝑥 , 𝑦 = arcctg 𝑥 

Definicja Funkcje cyklometryczne to są funkcje odwrotne do funkcji 

trygonometrycznych ograniczonych do pewnych przedziałów 

 𝑦 = arcsin 𝑥: funkcja sin 𝑥 , 𝑥 ∈ 〈−
గ

ଶ
;

గ

ଶ
〉 jest wzajemnie jednoznaczna, z czego 

wynika, że istnieje funkcja odwrotna w zaznaczonym przedziale, którą oznaczamy 

przez 𝑦 = arcsin 𝑥. Własności: 

 dziedzina 𝐷ୟ୰ୡୱ୧୬ ௫ = 〈−1; 1〉 

 zbiór wartości 𝑍𝑊ୟ୰ୡୱ୧୬ ௫ = 〈−
గ

ଶ
;

గ

ଶ
〉 

 parzystość, nieparzystość: funkcja 𝑦 = arcsin 𝑥 nieparzysta 

 monotoniczność: rosnąca 

 wklęsłość, wypukłość: 

 𝑥 ∈ ⟨−1; 0): funkcja y = arcsin 𝑥 wklęsła 

 (0; 0) tj. punkt przegięcia 

 𝑥 ∈ (0; 1⟩: funkcja 𝑦 = arcsin 𝑥 wypukła 

 𝑦 = arccos 𝑥: funkcja cos 𝑥 , 𝑥 ∈ 〈0; 𝜋〉 jest wzajemnie jednoznaczna, z czego 

wynika, że istnieje funkcja odwrotna w zaznaczonym przedziale, którą oznaczamy 

przez 𝑦 = arccos 𝑥. Własności: 

 dziedzina 𝐷ୟ୰ୡୡ୭ୱ ௫ = 〈−1; 1〉 

 zbiór wartości 𝑍𝑊ୟ୰ = 〈0; 𝜋〉 

 parzystość, nieparzystość: brak 

 monotoniczność: malejąca 

 wklęsłość, wypukłość: 
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 𝑥 ∈ ⟨−1; 0): funkcja 𝑦 = arccos 𝑥 wypukła 

 ቀ0;
గ

ଶ
ቁ tj. punkt przegięcia 

 𝑥 ∈ (0; 1⟩: funkcja 𝑦 = arccos 𝑥 wklęsła 

 𝑦 = arctg 𝑥: funkcja tg 𝑥 , 𝑥 ∈ ቀ−
గ

ଶ
;

గ

ଶ
ቁ jest wzajemnie jednoznaczna, z czego 

wynika, że istnieje funkcja odwrotna w zaznaczonym przedziale, którą oznaczamy 

przez 𝑦 = arctg 𝑥. Własności: 

 dziedzina 𝐷ୟ୰ୡ୲୥ ௫ = ℝ 

 zbiór wartości 𝑍𝑊ୟ୰ୡ୲୥ ௫ = ቀ−
గ

ଶ
;

గ

ଶ
ቁ 

 parzystość, nieparzystość: funkcja 𝑦 = arctg 𝑥 nieparzysta 

 monotoniczność: rosnąca 

 wklęsłość, wypukłość: 

 𝑥 ∈ (−∞; 0): funkcja 𝑦 = arctg 𝑥 wypukła  

 (0; 0) tj. punkt przegięcia 

 𝑥 ∈ (0; +∞): funkcja 𝑦 = arctg 𝑥 wklęsła 

 𝑦 = arcctg 𝑥: funkcja ctg 𝑥 , 𝑥 ∈ (0; 𝜋) jest wzajemnie jednoznaczna, z czego 

wynika, że istnieje funkcja odwrotna w zaznaczonym przedziale, którą oznaczamy 

przez 𝑦 = arcctg 𝑥. Własności: 

 dziedzina 𝐷ୟ୰ୡୡ୲୥ ௫ = ℝ 

 zbiór wartości 𝑍𝑊ୟ୰ୡୡ୲୥ ௫ = (0; 𝜋) 

 parzystość, nieparzystość: brak 

 monotoniczność: malejąca 

 wklęsłość, wypukłość: 

 𝑥 ∈ (−∞; 0): funkcja 𝑦 = arcctg 𝑥 wklęsła  

 ቀ0;
గ

ଶ
ቁ tj. punkt przegięcia 

 𝑥 ∈ (0; +∞): funkcja 𝑦 = arcctg 𝑥 wypukła 

Inne własności funkcji cyklometrycznych: 

arcsin(−𝑥) = − arcsin 𝑥 

arccos(−𝑥) = 𝜋 − arccos 𝑥 

arctg(−𝑥) = − arctg 𝑥 

arcctg(−𝑥) = 𝜋 − arcctg 𝑥 

arcsin(sin 𝑥) = 𝑥, 𝑥 ∈ 〈−
𝜋

2
;
𝜋

2
〉 

sin(arcsin 𝑥) = 𝑥, 𝑥 ∈ 〈−1; 1〉 

arccos(cos 𝑥) = 𝑥, 𝑥 ∈ 〈0; 𝜋〉 

cos(arccos 𝑥) = 𝑥, 𝑥 ∈ 〈−1; 1〉 
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arctg(tg 𝑥) = 𝑥, 𝑥 ∈ ቀ−
𝜋

2
;
𝜋

2
ቁ 

tg(arctg 𝑥) = 𝑥, 𝑥 ∈ ℝ 

arcctg(ctg 𝑥) = 𝑥, 𝑥 ∈ (0; 𝜋) 

ctg(arcctg 𝑥) = 𝑥, 𝑥 ∈ ℝ 

 

1.3. LICZBY ZESPOLONE I ICH WŁASNOŚCI 

Definicje podstawowe 

Zbiory liczb (poniższe symbole wykorzystują się tylko i wyłącznie dla wymienionych 

dalej zbiorów liczb): 

 naturalnych ℕ = {1; 2; 3; 4; … } 

 naturalnych z zerem ℕ଴ = {0; 1; 2; 3; 4; … } 

 całkowitych ℤ = {… ; −4; −3; −2; −1; 0; 1; 2; 3; 4; … } 

 wymiernych  ℚ = ቄ
௠

௡
ቚ𝑚 ∈ ℤ, 𝑛 ∈ ℕቅ 

 rzeczywistych ℝ = (−∞; +∞) 

 niewymiernych ℝ\ℚ = {𝑥 ∈ ℝ|𝑥 ∉ ℚ} 

 zespolonych ℂ = {𝑎 + 𝑏𝑖|𝑎, 𝑏 ∈ ℝ} 

W zbiorze liczb rzeczywistych nie wszystkiego da się znaleźć. Na przykład, nie możemy 

obliczyć pierwiastków parzystego stopnia lub logarytmów od liczb ujemnych, często 

wielomian 𝑛-go stopnia ma mniej niż 𝑛 miejsc zerowych. 

Definicja Jednostką urojoną nazywa się taka liczba 𝑖, że 𝑖ଶ = −1. Liczba 𝑎 + 𝑏𝑖, 

gdzie 𝑎, 𝑏 ∈ ℝ nazywa się liczbą zespoloną. Zbiór liczb zespolonych oznaczamy przez ℂ. Dla 

liczby zespolonej 𝑧 = 𝑎 + 𝑏𝑖 ∈ ℂ liczbę Re 𝑧 = 𝑎 nazywamy częścią rzeczywistą, a liczbę 

Im 𝑧 = 𝑏 częścią urojoną. Liczba zespolona 𝑧 = 𝑎 + 𝑏𝑖, która ma zerową część rzeczywistą 

(tzn. 𝑎 = 0), nazywa się czysto urojona. Natomiast liczba zespolona, dla której część urojona 

jest zerowa (tzn. 𝑏 = 0), będzie również liczbą rzeczywistą. Dwie liczby zespolone nazywamy 

równymi, gdy są równe ich części rzeczywiste i urojone. 

Tak więc, poprawnym jest zapis relacji zbiorów liczb ℕ ⊂ ℕ଴ ⊂ ℤ ⊂ ℚ ⊂ ℝ ⊂ ℂ. 

Równoważną jest definicja liczb zespolonych jako zbiór par uporządkowanych (𝑎; 𝑏), 

gdzie 𝑎, 𝑏 ∈ ℝ, tzn. ℂ = {(𝑎; 𝑏)|𝑎, 𝑏 ∈ ℝ}. 

Potęgowanie jednostki urojonej 𝑖:  

⎩
⎨

⎧
𝑖ସ௞ = 1, 𝑘 ∈ ℤ

𝑖ସ௞ାଵ = 𝑖, 𝑘 ∈ ℤ

𝑖ସ௞ାଶ = −1, 𝑘 ∈ ℤ

𝑖ସ௞ାଷ = −𝑖, 𝑘 ∈ ℤ

 

Dlatego 𝑖଴ = 1, 𝑖ଵ = 𝑖, 𝑖ଶ = −1, 𝑖ଷ = −𝑖, 𝑖ସ = 1, 𝑖ହ = 𝑖, 𝑖଺ = −1, 𝑖଻ = −𝑖, 𝑖଼ = 1, itd. 
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Przykład Obliczyć 𝑖ଵ଴, 𝑖ଵଶ, 𝑖ଶହ, 𝑖ଷ଴, 𝑖ସଵ, 𝑖଺ହ, 𝑖଼ଷ. 

Rozwiązanie 

𝑖ଵ଴ = (𝑖ଶ)ହ = (−1)ହ = −1 

𝑖ଵଶ = (𝑖ଶ)଺ = (−1)଺ = 1 

𝑖ଶହ = (𝑖ଶ)ଵ଴ ⋅ 𝑖 = (−1)ଵ଴ ⋅ 𝑖 = 𝑖 

𝑖ଷ଴ = (𝑖ଵ଴)ଷ = (−1)ଷ = −1 

𝑖ସଵ = (𝑖ଵ଴)ସ ⋅ 𝑖 = (−1)ସ ⋅ 𝑖 = 𝑖 

𝑖଺ହ = (𝑖ଶ)ଷଶ ⋅ 𝑖 = (−1)ଷଶ ⋅ 𝑖 = 𝑖 

𝑖଼ଷ = (𝑖ଶ)ସ଴ ⋅ 𝑖ଷ = 1 ⋅ (−𝑖) = −𝑖 

Interpretacja geometryczna liczb zespolonych [2] 

Interpretując liczbę zespoloną jako parę uporządkowaną, otrzymamy punkt na tzw. 

płaszczyźnie zespolonej, w której oś pozioma odpowiada za część rzeczywistą (oznaczamy 

przez Re 𝑧 i nazywamy dalej osią rzeczywistą), a oś pionowa – za część urojoną (oznaczamy 

przez Im 𝑧 i nazywamy dalej osią urojoną). Każda niezerowa liczba zespolona 𝑧 ∈ ℂ, 𝑧 ≠ 0 

określa i również może być określona za pomocą takich wartości: 

 argument główny Arg 𝑧 = 𝜑 – miara kąta skierowanego 𝜑 ∈ ⟨0; 2𝜋) pomiędzy 

dodatnim kierunkiem osi rzeczywistej a odcinkiem, łączącym punkty 𝑂(0; 0) i 

naszą liczbę zespoloną 𝑧 = (𝑎; 𝑏); 

 moduł |𝑧| – odległość od punktu 𝑂(0; 0) do naszej liczby zespolonej 𝑧 = (𝑎; 𝑏). 

Argument główny nie może być określony dla zerowej liczby zespolonej. 

Generalnie argument liczby zespolonej może być wyznaczony z dokładnością do 2𝜋. 

Inaczej mówiąc, argumentami liczby zespolonej 𝑧, które oznaczamy przez arg 𝑧, nazywają się 

kąty arg 𝑧 = Arg 𝑧 + 2𝜋𝑘, 𝑘 ∈ ℤ. Tak więc, każda niezerowa liczba zespolona ma 

nieskończenie wiele argumentów arg 𝑧 i tylko jeden argument główny Arg 𝑧. 

Pojęcia modułu określone zarówno jak dla liczby niezerowej, tak i dla zerowej liczby 

zespolonej (i wynosi 0). 

Z definicji modułu (zgodnie z twierdzeniem Pitagorasa) wynika poniższy wzór: 

𝑧 = (𝑎; 𝑏) ⟹ |𝑧| = ඥ𝑎ଶ + 𝑏ଶ 

Działanie na liczbach zespolonych: niech 𝑧ଵ = 𝑎ଵ + 𝑏ଵ𝑖,  𝑧ଶ = 𝑎ଶ + 𝑏ଶ𝑖, 𝑘 ∈  ℝ 

 dodawanie/odejmowanie liczb zespolonych: sumą liczb zespolonych 𝑧ଵ i 𝑧ଶ jest 

liczba zespolona 

𝑧ଵ ± 𝑧ଶ = (𝑎ଵ ± 𝑎ଶ) + (𝑏ଵ ± 𝑏ଶ)𝑖 
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 mnożenie liczb zespolonych przez stałą rzeczywistą: iloczynem liczby zespolonej 

𝑧ଵ a stałej 𝑘 ∈  ℝ jest liczba zespolona 

𝑘 ⋅ 𝑧ଵ = 𝑘𝑎ଵ + 𝑘𝑏ଵ𝑖 

 mnożenie liczb zespolonych: iloczynem dwóch liczb zespolonych 𝑧ଵ i 𝑧ଶ jest 

liczba zespolona 

𝑧ଵ ⋅ 𝑧ଶ = (𝑎ଵ𝑎ଶ − 𝑏ଵ𝑏ଶ) + (𝑎ଵ𝑏ଶ + 𝑎ଶ𝑏ଵ)𝑖 

dlatego że 𝑧ଵ ⋅ 𝑧ଶ = (𝑎ଵ + 𝑏ଵ𝑖)(𝑎ଶ + 𝑏ଶ𝑖) = 𝑎ଵ𝑎ଶ + 𝑎ଵ𝑏ଶ𝑖 + 𝑎ଶ𝑏ଵ𝑖 + 𝑏ଵ𝑏ଶ𝑖ଶ =

⟦𝑖ଶ = −1⟧ = 𝑎ଵ𝑎ଶ + 𝑎ଵ𝑏ଶ𝑖 + 𝑎ଶ𝑏ଵ𝑖 − 𝑏ଵ𝑏ଶ = (𝑎ଵ𝑎ଶ − 𝑏ଵ𝑏ଶ) + (𝑎ଵ𝑏ଶ + 𝑎ଶ𝑏ଵ)𝑖 

 sprzężenie liczb zespolonych: sprzężeniem liczby zespolonej 𝑧 = 𝑎 + 𝑏𝑖 nazywa 

się liczba zespolona  

 𝑧 ഥ = 𝑎 − 𝑏𝑖 

 dzielenie liczb zespolonych przez zespolonych: ilorazem dwóch liczb zespolonych 

jest liczba zespolona 

𝑧ଵ

𝑧ଶ
=

𝑎ଵ𝑎ଶ + 𝑏ଵ𝑏ଶ

𝑎ଶ
ଶ + 𝑏ଶ

ଶ +
−𝑎ଵ𝑏ଶ + 𝑎ଶ𝑏ଵ

𝑎ଶ
ଶ + 𝑏ଶ

ଶ 𝑖, 𝑧ଶ ≠ 0 

dlatego że       
௭భ

௭మ
=

௭భ⋅ ௭మ തതതതത

௭మ⋅ ௭మ തതതതത
=

௔భା௕భ௜

௔మା௕మ௜
=

(௔భା௕భ௜)(௔మି௕మ௜)

(௔మା௕మ௜)(௔మି௕మ௜)
=

(௔భ௔మା௕భ௕మ)ା(ି௔భ௕మା௔మ௕భ)௜

௔మ
మା௕మ

మ = 

=
௔భ௔మା௕భ௕మ

௔మ
మା௕మ

మ +
ି௔భ௕మା௔మ௕భ

௔మ
మା௕మ

మ 𝑖  

Przykład Dla podanych liczb zespolonych 𝑧ଵ = (1; −2) i 𝑧ଶ = ൫−3; √5൯ obliczyć 

3𝑧ଵ + 𝑧ଶ,  𝑧ଵതതതത, 𝑧ଵ ⋅  𝑧ଵതതതത, |𝑧ଵ|, 𝑧ଵ ⋅ 𝑧ଶ,
𝑧ଵ

𝑧ଶ
. 

Rozwiązanie 

3𝑧ଵ + 𝑧ଶ = 3(1; −2) + ൫−3; √5൯ = (3; −6) + ൫−3; √5൯ = ൫0; √5 − 6൯ 

lub 

𝑧ଵ = (1; −2) = 1 − 2𝑖 

𝑧ଶ = ൫−3; √5൯ = −3 + √5𝑖 

3𝑧ଵ + 𝑧ଶ = 3(1 − 2𝑖) − 3 + √5𝑖 = ൫√5 − 6൯𝑖 = ൫0; √5 − 6൯ 

 𝑧ଵതതതത = 1 + 2𝑖 = (1; 2) 

𝑧ଵ ⋅  𝑧ଵതതതത = (1 − 2𝑖)(1 + 2𝑖) = 1 + 2𝑖 − 2𝑖 − 4𝑖ଶ = 1 − 4(−1) = 5 = (5; 0) 

|𝑧ଵ| = ඥ1ଶ + (−2)ଶ = √5 

𝑧ଵ ⋅ 𝑧ଶ = (1 − 2𝑖)൫−3 + √5𝑖൯ = −3 + √5𝑖 + 6𝑖 − 2√5𝑖ଶ = −3 + ൫√5 + 6൯𝑖 − 2√5(−1)

= 2√5 − 3 + ൫√5 + 6൯𝑖 = ൫2√5 − 3; √5 + 6൯ 
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𝑧ଵ

𝑧ଶ
=

1 − 2𝑖

−3 + √5𝑖
=

(1 − 2𝑖)൫−3 − √5𝑖൯

൫−3 + √5𝑖൯൫−3 − √5𝑖൯
=

−3 − √5𝑖 + 6𝑖 + 2√5𝑖ଶ

9 + 5

=
−3 − 2√5 + ൫6 − √5൯𝑖

14
=

−3 − 2√5

14
+

6 − √5

14
𝑖 = ቆ

−3 − 2√5

14
;
6 − √5

14
ቇ 

Własności modułu liczby zespolonej: niech 𝑧 = (𝑎; 𝑏), 𝑧ଵ, 𝑧ଶ ∈ ℂ, 𝜑 = arg 𝑧 

 |𝑧ଵ ⋅ 𝑧ଶ| = |𝑧ଵ| ⋅ |𝑧ଶ| 

 |𝑧ଵ + 𝑧ଶ| ≤ |𝑧ଵ| + |𝑧ଶ|, w tym |𝑧ଵ + 𝑧ଶ| = |𝑧ଵ| + |𝑧ଶ| ⟺ 𝑧ଵ = 𝑧ଶ 

 cos 𝜑 =
௔

|௭|
=

௔

√௔మା௕మ
 

 sin 𝜑 =
௕

|௭|
=

௕

√௔మା௕మ
 

Własności sprzężenia liczby zespolonej: niech 𝑧 = 𝑎 + 𝑏𝑖 ∈  ℂ 

 𝑧 = (𝑎; 𝑏) ⟹ 𝑧̅ = (𝑎; −𝑏) 

   𝑧 ഥ  തതതത = 𝑧 

 | 𝑧 ഥ | = |𝑧| = √𝑎ଶ + 𝑏ଶ 

Postać trygonometryczna liczby zespolonej: niech 𝑧 = 𝑎 + 𝑏𝑖 ∈  ℂ, 𝜑 = Arg 𝑧, wtedy z 

własności modułu wynika, że  

𝑎 = |𝑧| cos 𝜑

𝑏 = |𝑧| sin 𝜑
⟹ 𝑧 = |𝑧| cos 𝜑 + 𝑖|𝑧| sin 𝜑 = |𝑧|(cos 𝜑 + 𝑖 sin 𝜑) 

ostatnia postać nazywa się postacią trygonometryczną liczby zespolonej 𝑧. 

Przykład Przedstawić liczby zespolone w postaci trygonometrycznej 

 𝑧ଵ = 5√2 − 5√2𝑖  𝑧ଶ = 1 + √3𝑖  𝑧ଷ = 7𝑖 

Rozwiązanie 

 𝑧ଵ = 5√2 − 5√2𝑖 

|𝑧ଵ| = ට൫5√2൯
ଶ

+ ൫−5√2൯
ଶ

= √50 + 50 = 10 

𝑧ଵ = 𝑎 + 𝑏𝑖 ⟹ 𝑎 = 5√2, 𝑏 = −5√2 

cos 𝜑 =
𝑎

|𝑧ଵ|
=

5√2

10
=

√2

2

sin 𝜑 =
𝑏

|𝑧ଵ|
=

−5√2

10
= −

√2

2

⟹ 𝜑 = Arg 𝑧ଵ =
7𝜋

4
∈ ⟨0; 2𝜋) 

𝑧ଵ = 10 ൬cos
7𝜋

4
+ 𝑖 sin

7𝜋

4
൰ 

 𝑧ଶ = 1 + √3𝑖 

|𝑧ଶ| = ට1ଶ + ൫√3൯
ଶ

= √4 = 2 
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𝑧ଶ = 𝑎 + 𝑏𝑖 ⟹ 𝑎 = 1, 𝑏 = √3 

cos 𝜑 =
𝑎

|𝑧ଶ|
=

1

2

sin 𝜑 =
𝑏

|𝑧ଶ|
=

√3

2

⟹ 𝜑 = Arg 𝑧ଶ =
𝜋

3
∈ ⟨0; 2𝜋) 

𝑧ଶ = 2 ቀcos
𝜋

3
+ 𝑖 sin

𝜋

3
ቁ 

 𝑧ଷ = 7𝑖 

|𝑧ଷ| = ඥ0ଶ + 7ଶ = √49 = 7 

𝑧ଷ = 𝑎 + 𝑏𝑖 ⟹ 𝑎 = 0, 𝑏 = 7 

cos 𝜑 =
𝑎

|𝑧ଷ|
=

0

7
= 0

sin 𝜑 =
𝑏

|𝑧ଷ|
=

7

7
= 1

⟹ 𝜑 = Arg 𝑧ଶ =
𝜋

2
∈ ⟨0; 2𝜋) 

𝑧ଷ = 7 ቀcos
𝜋

2
+ 𝑖 sin

𝜋

2
ቁ 

Postać wykładnicza liczby zespolonej: niech 𝑧 = 𝑎 + 𝑏𝑖 ∈ ℂ, 𝜑 = Arg 𝑧, wtedy ze 

wzorów Eulera 
sin 𝜑 =

௘೔ കି௘ష೔ ക

ଶ௜

cos 𝜑 =
௘೔കା௘ష೔ക

ଶ

 wynika tzw. postać wykładnicza liczby zespolonej, która 

wygląda następująco 

𝑧 = |𝑧|𝑒௜ఝ 

Przykład Przedstawić liczbę zespoloną w postaci wykładniczej 

 𝑧ଵ = 5√2 − 5√2𝑖  𝑧ଶ = 1 + √3𝑖  𝑧ଷ = 7𝑖 

Rozwiązanie 

 𝑧ଵ = 5√2 − 5√2𝑖 

𝜑 = Arg 𝑧ଵ =
7𝜋

4
 

|𝑧ଵ| = 10 

𝑧ଵ = |𝑧ଵ|𝑒௜ఝ = 10 exp ൬
7𝜋𝑖

4
൰ 

 𝑧ଶ = 1 + √3𝑖 

𝜑 = Arg 𝑧ଶ =
𝜋

3
 

|𝑧ଶ| = 2 

𝑧ଶ = |𝑧ଶ|𝑒௜ఝ = 2 exp ൬
𝜋𝑖

3
൰ 
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 𝑧ଷ = 7𝑖 

𝜑 = Arg 𝑧ଷ =
𝜋

2
 

|𝑧ଷ| = 7 

𝑧ଷ = |𝑧ଷ|𝑒௜ఝ = 7 exp ൬
𝜋𝑖

2
൰ 

Działanie na liczbach zespolonych: dla potęgowania i pierwiastkowania liczb 

zespolonych obowiązują wzory de Moivre’a, które po połączeniu ze wzorami Eulera wyglądają 

następująco: 

 potęgowanie: niech 𝑛 ∈ ℤ, wtedy 

𝑧 = |𝑧|(cos 𝜑 + 𝑖 sin 𝜑) ⟹ 𝑧௡ = |𝑧|௡(cos 𝑛𝜑 + 𝑖 sin 𝑛𝜑) 

𝑧 = |𝑧|𝑒௜ఝ ⟹ 𝑧௡ = |𝑧|௡𝑒௜௡  

 pierwiastkowanie: niech 𝑛 ∈ ℕ, wtedy pierwiastków 𝑛-go stopnia z liczby 

zespolonej 𝑧 istnieje dokładnie 𝑛 sztuk {𝑧௞|𝑘 = 0, 𝑛 − 1തതതതതതതതതത}, mianowicie 

𝑧 = |𝑧|(cos 𝜑 + 𝑖 sin 𝜑) ⟹ 𝑧௞ = ඥ|𝑧|
೙

൬cos
𝜑 + 2𝜋𝑘

𝑛
+ 𝑖 sin

𝜑 + 2𝜋𝑘

𝑛
൰,  

𝑘 = 0, 𝑛 − 1തതതതതതതതതത 

𝑧 = |𝑧|𝑒௜ఝ ⟹ 𝑧௞ = ඥ|𝑧|
೙

exp ൬𝑖
𝜑 + 2𝜋𝑘

𝑛
൰ , 𝑘 = 0, 𝑛 − 1തതതതതതതതതത 

Przykład Obliczyć zaznaczone potęgi liczb zespolonych 

 𝑧ଵ = (1; 2), 𝑧ଵ
ଶ, 𝑧ଵ

ଷ 

 𝑧ଶ = 3𝑒గ௜ , 𝑧ଶ
ହ, 𝑧ଶ

ଶ௡, 𝑧ଶ
ଶ௡ାଵ, 𝑛 ∈ ℕ 

 𝑧ଷ = cos
గ

ଷ
+ 𝑖 sin

గ

ଷ
, 𝑧ଷ

ଶ, 𝑧ଷ
ଷ 

Rozwiązanie 

 𝑧ଵ = (1; 2), 𝑧ଵ
ଶ, 𝑧ଵ

ଷ 

𝑧ଵ = (1; 2) = 1 + 2𝑖 

𝑧ଵ
ଶ = (1 + 2𝑖)ଶ = 1 + 4𝑖 + 4𝑖ଶ = −3 + 4𝑖 = (−3; 4) 

𝑧ଵ
ଷ = 𝑧ଵ

ଶ𝑧ଵ = (−3 + 4𝑖)(1 + 2𝑖) = −3 − 6𝑖 + 4𝑖 + 8𝑖ଶ = −11 − 2𝑖

= (−11; −2) 

 𝑧ଶ = 3𝑒గ௜ , 𝑧ଶ
ହ, 𝑧ଶ

ଶ௡, 𝑧ଶ
ଶ௡ାଵ, 𝑛 ∈ ℕ 

𝑧ଶ
ହ = 3ହ𝑒ହగ௜ = 243(cos 5𝜋 + 𝑖 sin 5𝜋) = 243(−1 + 𝑖 ⋅ 0) = −243 

𝑧ଶ
ଶ௡ = 3ଶ௡𝑒ଶగ௡௜ = 9௡(cos 2𝜋𝑛 + 𝑖 sin 2𝜋𝑛) = 9௡(1 + 𝑖 ⋅ 0) = 9௡ 
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𝑧ଶ
ଶ௡ାଵ = 3ଶ௡ାଵ𝑒(ଶ௡ାଵ)గ௜ = 3ଶ௡ାଵ(cos(2𝑛 + 1)𝜋𝑛 + 𝑖 sin(2𝑛 + 1)𝜋𝑛)

= 3ଶ௡ାଵ(−1 + 𝑖 ⋅ 0) = −3ଶ௡ାଵ = −3 ⋅ 9௡ 

 𝑧ଷ = cos
గ

ଷ
+ 𝑖 sin

గ

ଷ
, 𝑧ଷ

ଶ, 𝑧ଷ
ଷ 

𝑧ଷ
ଶ = cos

2𝜋

3
+ 𝑖 sin

2𝜋

3
= cos

𝜋

3
+ 𝑖 sin

𝜋

3
= −

1

2
+ 𝑖

√3

2
= ቆ−

1

2
;
√3

2
ቇ 

𝑧ଷ
ଷ = cos

3𝜋

3
+ 𝑖 sin

3𝜋

3
= cos 𝜋 + 𝑖 sin 𝜋 = −1 = (−1; 0) 

Przykład Znaleźć wszystkie pierwiastki zaznaczonych stopni liczb zespolonych 

 𝑧ଵ = 8𝑒గ௜ , √𝑧ଵ
య   𝑧ଶ = 1, √𝑧ଶ

ర  

Rozwiązanie 

 𝑧ଵ = 8𝑒గ௜ , √𝑧ଵ
య  

𝑧ଵ = 8𝑒గ௜ = 8(cos 𝜋 + 𝑖 sin 𝜋) = 8(−1 + 0) = −8 

𝑧ଵ = 8𝑒గ௜ ⟹ |𝑧ଵ| = 8, 𝜑 = 𝜋 

ඥ𝑧ଵ
య = √8

య
exp ൬𝑖

𝜋 + 2𝜋𝑘

3
൰ , 𝑘 = 0,2തതതത 

𝑘 = 0 ⟹ ඥ𝑧ଵ
య = √8

య
exp ቀ𝑖

𝜋

3
ቁ = 2 exp ൬

𝜋𝑖

3
൰ = 2 ቆ

1

2
+

√3

2
𝑖ቇ = 1 + 𝑖√3

𝑘 = 1 ⟹ ඥ𝑧ଵ
య = √8

య
exp ൬𝑖

𝜋 + 2𝜋

3
൰ = 2 exp(𝜋𝑖) = 2(−1 + 0 ⋅ 𝑖) = −2

𝑘 − 2 ⟹ ඥ𝑧ଵ
య = √8

య
exp ൬𝑖

𝜋 + 4𝜋

3
൰ = 2 exp ൬

5𝜋𝑖

3
൰ = 2 ቆ

1

2
−

√3

2
𝑖ቇ = 1 − 𝑖√3

 

 𝑧ଶ = 1, √𝑧ଶ
ర  

𝑧ଶ = 1 = 1(cos 𝜋 + 𝑖 sin 𝜋) ⟹ |𝑧ଶ| = 1, 𝜑 = 0 

ඥ𝑧ଶ
ర = √1

ర
൬cos

0 + 2𝜋𝑘

4
+ 𝑖 sin

0 + 2𝜋𝑘

4
൰ , 𝑘 = 0,3തതതത 

𝑘 = 0 ⟹ ඥ𝑧ଶ
ర = cos 0 + 𝑖 sin 0 = 1

𝑘 = 1 ⟹ ඥ𝑧ଶ
ర = cos

𝜋

2
+ 𝑖 sin

𝜋

2
= 𝑖

𝑘 = 2 ⟹ ඥ𝑧ଶ
ర = cos 𝜋 + 𝑖 sin 𝜋 = −1

𝑘 = 3 ⟹ ඥ𝑧ଶ
ర = cos

3𝜋

2
+ 𝑖 sin

3𝜋

2
= −𝑖

 

Wielomiany zespolone i ich miejsca zerowe 

Definicja Wielomianem o zespolonych współczynnikach 𝑛-go stopnia (𝑛 ∈ ℕ) zmiennej 

𝑧 nazywa się wielomian postaci 𝑤௡(𝑧) = 𝑎௡𝑧௡ + 𝑎௡ିଵ𝑧௡ିଵ + ⋯ + 𝑎ଶ𝑧ଶ + 𝑎ଵ𝑧 + 𝑎଴, gdzie 

𝑎௜ ∈ ℂ, 𝑖 = 0, 𝑛തതതതത oraz 𝑎௡ ≠ 0. Liczby 𝑎௜ ∈ ℂ, 𝑖 = 1, 𝑛തതതതത zwane współczynnikami, 𝑎଴ ∈ ℂ – 
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wyrazem wolnym. Liczba zespolona 𝑧଴ nazywa się miejscem zerowym wielomianu zespolonego 

𝑤௡(𝑧) jeżeli 𝑤௡(𝑧଴) = 0. 

Jeśli współczynniki wielomianu zespolonego 𝑎 ∈ ℝ są liczbami rzeczywistymi, to 

otrzymamy wielomian o współczynnikach rzeczywistych, który (gdy nie będzie zaznaczono 

innego) nadal będzie nazywał się wielomianem zespolonym, co oznacza, że jest on 

wielomianem zmiennej zespolonej. Innymi słowy, 

 wielomian zespolony (wielomian zmiennej zespolone) – tj. o współczynnikach 

zespolonych lub rzeczywistych; 

 wielomian rzeczywisty (wielomian zmiennej rzeczywistej) – tj. 

o współczynnikach rzeczywistych. 

 Twierdzenie Jeśli liczba zespolona 𝑧 = 𝑎 + 𝑖𝑏 jest miejscem zerowym wielomianu o 

współczynnikach rzeczywistych, to jej sprzężenie  𝑧 ഥ = 𝑎 − 𝑖𝑏 również będzie miejscem 

zerowym tego wielomianu. 

Innymi słowy, miejsca zerowe wielomianu o współczynnikach rzeczywistych, części 

urojone których nie są zerowe, tworzą tzw. pary 𝑧ଵ,ଶ = 𝑎 ± 𝑖𝑏. 

Twierdzenie Wielomian zespolony 𝑛-go stopnia  

𝑤௡(𝑥) = 𝑎௡𝑧௡ + 𝑎௡ିଵ𝑧௡ିଵ + ⋯ + 𝑎ଶ𝑧ଶ + 𝑎ଵ𝑧 + 𝑎଴ 

ma dokładnie 𝑛 miejsc zerowych 𝑧ଵ, 𝑧ଶ, 𝑧ଷ … , 𝑧௡ spośród liczb zespolonych oraz może być 

przepisany w postaci  

𝑤௡(𝑧) = 𝑎௡(𝑧 − 𝑧ଵ)(𝑧 − 𝑧ଶ)(𝑧 − 𝑧ଷ) … (𝑧 − 𝑧௡) 

W przypadku wielomianów zmiennej rzeczywistej w odpowiednim przedstawieniu mogą 

być nie tylko czynniki liniowe, a również kwadratowe. 

Rozwiązywać równania 𝑤௡(𝑧) = 0 w zbiorze liczb zespolonych można na dwa sposoby: 

(1) pamiętając, że z liczby zespolonej istnieje 𝑛 pierwiastków 𝑛-go stopnia; (2) pamiętając, że 

−1 = 𝑖ଶ, liczba rozwiązań równania 𝑤௡(𝑧) = 0 wynosi dokładnie 𝑛 oraz w przypadku 

wielomianu o współczynnikach rzeczywistych zespolone miejsca zerowe tworzą tzw. pary 𝑧,  𝑧ഥ . 

Przykład Rozwiązać równania w zbiorach liczb ℕ, ℕ଴, ℤ, ℚ, ℝ, ℂ (w tym z zbiorze liczb 

zespolonych) 

 𝑧ଶ − 1 = 0 

 𝑧ଶ + 1 = 0 

 𝑧ଶ − 2𝑧 + 10 = 0 

 𝑧ସ − 16 = 0 

 𝑧ଶ − 2𝑧 + 4 = 0 

 𝑧(𝑧ଶ − 2)(2𝑧 − 1)(𝑧ଶ + 9) = 0 

 𝑧ଶ + 𝑖𝑧 + 6 = 0 

 𝑧ଶ − 3𝑖𝑧 + 10 = 0 

Rozwiązanie 
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 𝑧ଶ − 1 = 0 

𝑧ଶ = 1 

𝑧 = ±1 

ℕ, ℕ଴: 1 

ℤ, ℚ, ℝ, ℂ: ±1 

 𝑧ଶ + 1 = 0 

𝑧ଶ = −1 

𝑧 = √−1 = √cos 𝜋 + 𝑖 sin 𝜋 = cos
𝜋 + 2𝜋𝑘

2
+ 𝑖 sin

𝜋 + 2𝜋𝑘

2
, 𝑘 = 0,1തതതത 

𝑘 = 0 ⟹ 𝑧 = cos
𝜋

2
+ 𝑖 sin

𝜋

2
= 𝑖

𝑘 = 1 ⟹ 𝑧 = cos
3𝜋

2
+ 𝑖 sin

3𝜋

2
= −𝑖

 

𝑧 = ±𝑖 

ℕ, ℕ଴, ℤ, ℚ, ℝ: ∅ 

ℂ: ±𝑖 

Inaczej, 𝑧 = 𝑖 jest miejscem zerowym wielomianu ⟹  𝑧 ഥ = −𝑖 również 

będzie miejscem zerowym tego wielomianu, czyli w zbiorze liczb zespolonych 

otrzymujemy rozwiązania równania 𝑧 = ±𝑖. 

 𝑧ଶ − 2𝑧 + 10 = 0 

𝑧ଶ − 2𝑧 + 10 = 0 

Δ = −36 = (6𝑖)ଶ 

𝑧ଵ,ଶ =
2 ± √Δ

2
=

2 ± 6𝑖

2
= 1 ± 3𝑖 

ℕ, ℕ଴, ℤ, ℚ, ℝ: ∅ 

ℂ: 1 ± 3𝑖 

 𝑧ସ − 16 = 0 

𝑧ସ − 16 = 0 

𝑧ସ = 16 

(𝑧ଶ)ଶ = 16 

𝑧ଶ = ±4 

𝑧ଶ = 4
𝑧 = ±2

∨
𝑧ଶ = −4

𝑧ଶ = (2𝑖)ଶ

𝑧 = ±2𝑖
 

ℕ, ℕ଴: 2 
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ℤ, ℚ, ℝ: ±2 

ℂ: ±2; ±2𝑖 

 

 𝑧ଶ − 2𝑧 + 4 = 0 

𝑧ଶ − 2𝑧 + 4 = 0 

Δ = −12 = ൫2√3𝑖൯
ଶ
 

𝑧 =
2 ± 2√3𝑖

2
= 1 ± √3𝑖 

ℕ, ℕ଴, ℤ, ℚ, ℝ: ∅ 

ℂ: 1 ± √3𝑖 

 𝑧(𝑧ଶ − 2)(2𝑧 − 1)(𝑧ଶ + 9) = 0 

𝑧(𝑧ଶ − 2)(2𝑧 − 1)(𝑧ଶ + 9) = 0 

𝑧 = 0 ∨
𝑧ଶ − 2 = 0

𝑧ଶ = 2

𝑧 = ±√2

∨
2𝑧 − 1 = 0

𝑧 =
1

2

∨

𝑧ଶ + 9 = 0
𝑧ଶ = −9

𝑧ଶ = (3𝑖)ଶ

𝑧 = ±3𝑖

 

ℕ: ∅ 

ℕ଴: 0 

ℤ: 0 

ℚ: 0,
1

2
 

ℝ: 0,
1

2
, ±√2 

ℂ: 0;
1

2
; ±√2; ±3𝑖 

 𝑧ଶ + 𝑖𝑧 + 6 = 0 

𝑧ଶ + 𝑖𝑧 + 6 = 0 

Δ = 𝑖ଶ − 24 = −25 = (5𝑖)ଶ 

𝑧 =
−𝑖 ± 5𝑖

2
 

𝑧 =
−𝑖 − 5𝑖

2
𝑧 = −3𝑖

∨ 𝑧 =
−𝑖 + 5𝑖

2
𝑧 = 2𝑖

 

ℕ, ℕ଴, ℤ, ℚ, ℝ: ∅ 

ℂ: −3𝑖; 2𝑖 

 𝑧ଶ − 3𝑖𝑧 + 10 = 0 
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𝑧ଶ − 3𝑖𝑧 + 10 = 0 

Δ = 9𝑖ଶ − 40 = −49 = (7𝑖)ଶ 

𝑧 =
3𝑖 ± 7𝑖

2
 

𝑧 =
3𝑖 − 7𝑖

2
𝑧 = −2𝑖

∨ 𝑧 =
3𝑖 + 7𝑖

2
𝑧 = 5𝑖

 

ℕ, ℕ଴, ℤ, ℚ, ℝ: ∅ 

ℂ: −2𝑖; 5𝑖 

Przykład Rozłożyć wielomiany zespolone na czynniki liniowe 

 𝑤(𝑧) = 𝑧ଶ − 1 

 𝑤(𝑧) = 𝑧ଶ + 1 

 𝑤(𝑧) = 𝑧ଶ − 2𝑧 + 10 

 𝑤(𝑧) = 𝑧ସ − 16 

 𝑤(𝑧) = 𝑧ଶ − 2𝑧 + 4 

 𝑤(𝑧) = (𝑧ଷ − 2𝑧)(2𝑧 − 1)(𝑧ଶ + 9) 

 𝑤(𝑧) = 𝑧ଶ + 𝑖𝑧 + 6 

 𝑤(𝑧) = 𝑧ଶ − 3𝑖𝑧 + 10 

Rozwiązanie 

 𝑤(𝑧) = 𝑧ଶ − 1 

Miejsca zerowe wielomianu: 1 

⟹ 𝑤(𝑧) = (𝑧 − 1)(𝑧 + 1) 

 𝑤(𝑧) = 𝑧ଶ + 1 

Miejsca zerowe wielomianu: ±𝑖 

⟹ 𝑤(𝑧) = (𝑧 − 𝑖)(𝑧 + 𝑖) 

 𝑤(𝑧) = 𝑧ଶ − 2𝑧 + 10 

Miejsca zerowe wielomianu: 1 ± 3𝑖 

⟹ 𝑤(𝑧) = (𝑧 − 1 − 3𝑖)(𝑧 − 1 + 3𝑖) 

 𝑤(𝑧) = 𝑧ସ − 16 

Miejsca zerowe wielomianu: ±2; ±2𝑖 

⟹ 𝑤(𝑥) = (𝑧 − 2)(𝑧 + 2)(𝑧 − 2𝑖)(𝑧 + 2𝑖) 

 𝑤(𝑧) = 𝑧ଶ − 2𝑧 + 4 

Miejsca zerowe wielomianu: 1 ± 𝑖√3 

⟹ 𝑤(𝑧) = (𝑧 − 1 − 𝑖√3)(𝑧 − 1 + 𝑖√3) 
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 𝑤(𝑧) = (𝑧ଷ − 2𝑧)(2𝑧 − 1)(𝑧ଶ + 9) 

𝑤(𝑧) = 𝑧(𝑧ଶ − 2)(2𝑧 − 1)(𝑧ଶ + 9) 

Miejsca zerowe wielomianu: 0; ±√2;
ଵ

ଶ
; ±3𝑖 

𝑤௡(𝑧) = 𝑎௡𝑧௡ + ⋯ + 𝑎ଵ𝑧 + 𝑎଴

𝑤(𝑧) = 2𝑧଺ + ⋯
⟹ 𝑎଺ = 2 ⟹

𝑤௡(𝑧) = 𝑎௡(𝑧 … ) …

𝑤(𝑧) = 2(𝑧 … ) …
 

⟹ 𝑤(𝑧) = 2𝑧൫𝑧 − √2൯൫𝑧 + √2൯ ൬𝑧 −
1

2
൰ (𝑧 − 3𝑖)(𝑧 + 3𝑖) 

 𝑤(𝑧) = 𝑧ଶ + 𝑖𝑧 + 6 

Miejsca zerowe wielomianu: −3𝑖; 2𝑖 

⟹ 𝑤(𝑧) = (𝑧 + 3𝑖)(𝑧 − 2𝑖) 

 𝑤(𝑧) = 𝑧ଶ − 3𝑖𝑧 + 10 

Miejsca zerowe wielomianu: −2𝑖; 5𝑖 

⟹ 𝑤(𝑧) = (𝑧 + 2𝑖)(𝑧 − 5𝑖) 

1.4. RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ I JEGO 

ZASTOSOWANIE TECHNICZNE 

Podstawowe pojęcia i twierdzenia 

Definicja Pochodną funkcji 𝑓(𝑥) w punkcie 𝑥଴ nazywa się granica ilorazu różnicowego 

lim
∆௫→଴

∆௙

∆௫
= lim

௫→௫బ

௙(௫)ି௙(௫బ)

௫ି௫బ
 (o ile istnieje i skończona), gdzie ∆𝑥 = 𝑥 − 𝑥଴ – to jest przyrost 

argumentu, wtedy jak ∆𝑓 = 𝑓(𝑥) − 𝑓(𝑥଴) – przyrost funkcji. Innymi słowy, pochodną nazywa 

się granica ilorazu przyrostu funkcji do przyrostu argumentu przy tym, że przyrost argumentu 

dąży do zera o ile taka granica istnieje i skończona. Pochodną funkcji 𝑓(𝑥) w punkcie 𝑥଴ 

oznaczamy przez 𝑓ᇱ(𝑥଴) lub 
ௗ௙

ௗ௫
|௫ୀ௫బ

. 

Definicja Funkcja, która ma pochodną w punkcie 𝑥଴ nazywa się różniczkowalna w 

punkcie 𝑥଴. Funkcja, która różniczkowalna w każdym punkcie ze swojej dziedziny nazywa się 

różniczkowalna. 

Dalej w danym rozdziale wszystkie funkcje będą różniczkowalne. 

Dla obliczania pochodnej korzystamy z wymienionych niżej wzorów i reguł 

różniczkowania. 

Wzory różniczkowania:  

 (𝐶)ᇱ = 0, 𝐶 ∈ ℝ 

 (𝑥௡)ᇱ = 𝑛 ⋅ 𝑥௡ିଵ, 𝑛 ≠ 0 

 (𝑥)ᇱ = 1 

 (𝑥ଶ)ᇱ = 2𝑥 
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 ൫√𝑥൯
ᇱ

=
ଵ

ଶ√௫
 

 ቀ
ଵ

௫
ቁ

ᇱ

= −
ଵ

௫మ
 

 (𝑎௫)ᇱ = 𝑎௫ ln 𝑎 , 𝑎 > 0, 𝑎 ≠ 1 

 (𝑒௫)ᇱ = 𝑒௫ 
 

 (log௔ 𝑥)ᇱ =
ଵ

௫ ୪୬ ௔
, 𝑎 > 0, 𝑎 ≠ 1 

 (ln 𝑥)ᇱ =
ଵ

௫
 

 (sin 𝑥)ᇱ = cos 𝑥 

 (cos 𝑥)ᇱ = − sin 𝑥 

 (tg 𝑥)ᇱ =
ଵ

ୡ୭ୱమ ௫
 

 (ctg 𝑥)ᇱ =
ିଵ

ୱ୧୬మ ௫
 

 (arcsin 𝑥)ᇱ =
ଵ

√ଵି௫మ
 

 (arccos 𝑥)ᇱ =
ିଵ

√ଵି௫మ
 

 (arctg 𝑥)ᇱ =
ଵ

ଵା௫మ
 

 (arcctg𝑥)ᇱ =
ିଵ

ଵା௫మ
 

 (sinh 𝑥)ᇱ = cosh 𝑥 

 (cosh 𝑥)ᇱ = sinh 𝑥 

 (th 𝑥)ᇱ =
ଵ

ୡ୭ୱ୦మ௫
 

 (ctgh 𝑥)ᇱ = −
ଵ

ୱ୧୬୦మ ௫
 

Reguły różniczkowania: jeżeli funkcje 𝑢, 𝑣 różniczkowalne, to 

 (𝐶 ⋅ 𝑢)ᇱ = 𝐶 ⋅ 𝑢ᇱ, 𝐶 ∈ ℝ   (stały współczynnik) 

 (𝑢 ± 𝑣)ᇱ = 𝑢ᇱ ± 𝑣ᇱ   (pochodna sumy / różnicy) 

 (𝑢 ⋅ 𝑣)ᇱ = 𝑢ᇱ ⋅ 𝑣 + 𝑢 ⋅ 𝑣ᇱ   (pochodna iloczynu) 

 ቀ
௨

௩
ቁ

ᇱ

=
௨ᇲ⋅௩ି௨⋅௩ᇲ

௩మ
, 𝑣 ≠ 0   (pochodna ilorazu) 

 𝑢(𝑣) = 𝑢ᇱ ⋅ 𝑣ᇱ   (pochodna funkcji złożonej) 

Przykład Obliczyć pochodną funkcji 𝑓(𝑥) = 5𝑥 + 2 w punktach 𝑥଴ = 0 i 𝑥଴ = 3 

według definicji. 

Rozwiązanie 

 𝑥଴ = 0: 
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∆𝑥 = 𝑥 − 𝑥଴ = 𝑥 − 0 = 𝑥 

𝑓(𝑥) = 5𝑥 + 2 

𝑓(𝑥଴) = 𝑓(0) = 2 

∆𝑓 = 𝑓(𝑥) − 𝑓(𝑥଴) = 5𝑥 + 2 − 2 = 5𝑥 

lim
∆௫→଴

∆𝑓

∆𝑥
= lim

௫→଴

5𝑥

𝑥
= lim

௫→଴
(5) = 5 

 𝑥଴ = 3: 

∆𝑥 = 𝑥 − 𝑥଴ = 𝑥 − 3 

𝑓(𝑥) = 5𝑥 + 2 

𝑓(𝑥଴) = 𝑓(3) = 17 

∆𝑓 = 𝑓(𝑥) − 𝑓(𝑥଴) = 5𝑥 + 2 − 17 = 5𝑥 − 15 

lim
∆௫→଴

∆𝑓

∆𝑥
= lim

௫→ଷ

5𝑥 − 15

𝑥 − 3
= lim

௫→ଷ

5(𝑥 − 3)

𝑥 − 3
= lim

௫→ଷ
 (5) = 5 

Przykład Znaleźć pochodne następujących funkcji, wykorzystując wzory 

różniczkowania 

 𝑦ଵ = 𝑥ହ 

 𝑦ଶ = 5௫ 

 𝑦ଷ = 5ହ 

 𝑦ସ = logହ 𝑥 

 𝑦ହ = logହ 2 

 𝑦଺ = 𝑒ହ 

 𝑦଻ = √𝑥
ఱ

  

Rozwiązanie 

 𝑦ଵ = 𝑥ହ 

𝑦ଵ
ᇱ = 5𝑥ସ 

 𝑦ଶ = 5௫ 

𝑦ଶ
ᇱ = 5௫ ln 5 

 𝑦ଷ = 5ହ 

𝑦ଷ
ᇱ = 0 

 𝑦ସ = logହ 𝑥 

𝑦ସ
ᇱ =

1

𝑥 ln 5
 

 𝑦ହ = logହ 2 

𝑦ହ
ᇱ = 0 

 𝑦଺ = 𝑒ହ 

𝑦଺
ᇱ = 0 

 𝑦଻ = √𝑥
ఱ

 = 𝑥ଵ/ହ  

𝑦଻
ᇱ =

1

5
𝑥ିସ ହ⁄ =

1

5√𝑥ସఱ

Przykład Znaleźć pochodne funkcji w punktach (o ile zaznaczone), wykorzystując wzory 

i reguły różniczkowania 

 𝑦ଵ = 𝑥ଷ 

 𝑦ଶ = cos 𝑥 

 𝑦ଷ = 𝑥ଷ + cos 𝑥 

 𝑦ସ = 𝑥ଷ cos 𝑥 , 𝑥଴ = 0 

 𝑦ହ =
௫య

ୡ୭ୱ ௫
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 𝑦଺ =
௫మ

ଶ௫ିଷ
,  𝑥଴ = 2 

 𝑦଻ = 𝑥ହ(𝑒௫ + 2 ln 𝑥),  𝑥଴ = 1 

 𝑦଼ = 3௫(2𝑥 − cosh 𝑥), 𝑥଴ = 0 

Rozwiązanie 

 𝑦ଵ = 𝑥ଷ 

𝑦ଵ
ᇱ = 3𝑥ଶ 

 𝑦ଶ = cos 𝑥 

𝑦ଶ
ᇱ = − sin 𝑥 

 𝑦ଷ = 𝑥ଷ + cos 𝑥 

𝑦ଷ
ᇱ = 3𝑥ଶ − sin 𝑥 

 𝑦ସ = 𝑥ଷ cos 𝑥 , 𝑥଴ = 0 

𝑦ସ
ᇱ = 3𝑥ଶ cos 𝑥 − 𝑥ଶ sin 𝑥 

𝑦ᇱ(0) = 0 

 𝑦ହ =
௫య

ୡ୭ୱ ௫
 

𝑦ହ
ᇱ =

3𝑥ଶ cos 𝑥 + 𝑥ଷ sin 𝑥

cosଶ 𝑥

 𝑦଺ =
௫మ

ଶ௫ିଷ
,  𝑥଴ = 2 

𝑦଺
ᇱ =

2𝑥(2𝑥 − 3) − 𝑥ଶ(2)

(2𝑥 − 3)ଶ
=

2𝑥ଶ − 6𝑥

(2𝑥 − 5)ଶ
 

𝑦଺
ᇱ (2) = −4 

 𝑦଻ = 𝑥ହ(𝑒௫ + 2 ln 𝑥),  𝑥଴ = 1 

𝑦଻
ᇱ = 5𝑥ସ(𝑒௫ + 2 ln 𝑥) + 𝑥ହ ൬𝑒௫ +

2

𝑥
൰ = (5𝑥ସ + 𝑥ହ)𝑒௫ + 10𝑥ସ ln 𝑥 + 2𝑥ସ 

𝑦଻
ᇱ (1) = 6𝑒 + 2 

 𝑦଼ = 3௫(2𝑥 − cosh 𝑥), 𝑥଴ = 0 

𝑦଼
ᇱ = 3௫ ln 3 (2𝑥 − cosh 𝑥) + 3௫(2 − sinh 𝑥) 

𝑦଼
ᇱ (0) = − ln 3 + 2

Przykład Znaleźć pochodne funkcji złożonych 

 𝑦ଵ = cos 𝑥ଶ 

 𝑦ଶ = cosଶ 𝑥 

 𝑦ଷ = sinh 𝑒௫ 

 𝑦ସ = 𝑒ୱ୧୬୦ ௫ 

 𝑦ହ = 𝑒௫మାଶ௫ 

 𝑦଺ = (𝑥ଶ + 2𝑥)௘ 

 𝑦଻ = ln(sinh 𝑥) 

 𝑦଼ = ln(sinh(ln 𝑥))
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Rozwiązanie 

 𝑦ଵ = cos 𝑥ଶ = cos(𝑥ଶ) 

𝑦ଵ
ᇱ = − sin 𝑥ଶ ⋅ (𝑥ଶ)ᇱ = −2𝑥 sin 𝑥ଶ  

 𝑦ଶ  = cosଶ 𝑥 = (cos 𝑥)ଶ 

𝑦ଶ
ᇱ = 2 cos 𝑥 ⋅ (cos 𝑥)ᇱ = −2 cos 𝑥 sin 𝑥 = − sin 2𝑥 

 𝑦ଷ = sinh(𝑒௫) 

𝑦ଷ
ᇱ = cosh 𝑒௫ ⋅ (𝑒௫)ᇱ = 𝑒௫ cosh 𝑒௫ 

 𝑦ସ = 𝑒ୱ୧୬୦ ௫ 

𝑦ସ
ᇱ = 𝑒ୱ୧୬୦ ௫ ⋅ (sinh 𝑥)ᇱ = 𝑒ୱ୧୬୦ ௫ cosh 𝑥 

 𝑦ହ = 𝑒௫మାଶ௫ 

𝑦ହ
ᇱ = 𝑒௫మାଶ௫ ⋅ (𝑥ଶ + 2𝑥)ᇱ = (2𝑥 + 2)𝑒௫మାଶ௫ 

 𝑦଺ = (𝑥ଶ + 2𝑥)௘ 

𝑦଺
ᇱ = 𝑒(𝑥ଶ + 2𝑥)௘ିଵ ⋅ (𝑥ଶ + 2𝑥)ᇱ = 𝑒(2𝑥 + 2)(𝑥ଶ + 2𝑥)௘ିଵ 

 𝑦଻ = ln(sinh 𝑥) 

𝑦଻
ᇱ =

1

sinh 𝑥
⋅ (sinh 𝑥)ᇱ =

cosh 𝑥

sinh 𝑥
= ctgh 𝑥 

 𝑦଼ = ln(sinh(ln 𝑥)) 

𝑦଼
ᇱ =

1

sinh(ln 𝑥)
⋅ ( sinh (ln 𝑥))ᇱ =

1

sinh(ln 𝑥)
⋅ cosh(ln 𝑥) ⋅ (ln 𝑥)ᇱ

=
cosh(ln 𝑥)

𝑥 sinh(ln 𝑥)
=

1

𝑥
ctgh 𝑥 

Definicja Drugą pochodną funkcji 𝑓(𝑥) nazywa się pochodna pochodnej tej funkcji (𝑓ᇱ)ᇱ 

(o ile ona istnieje); trzecią pochodną funkcji 𝑓(𝑥) jest pochodna drugiej pochodnej (𝑓ᇱᇱ)ᇱ; itd.; 

𝑛-tą pochodną funkcji 𝑓(𝑥) nazywa się pochodna (𝑛 − 1)-ej pochodnej funkcji 𝑓(𝑥). 

Pochodne wyższych rzędów oznaczamy przez 𝑓ᇱᇱ ≡
ௗమ௙

ௗ௫మ
, 𝑓ᇱᇱᇱ ≡

ௗయ௙

ௗ௫య
, 𝑓(௡) ≡

ௗ೙௙

ௗ௫೙
. 

Przykład Znaleźć pochodne wskazanego rzędu w punktach (o ile zaznaczone) 

𝑦 = 𝑒ହ௫, 𝑦(௡), 𝑦ᇱ(2), 𝑦ᇱᇱ(1), 𝑦(ଷ)(0), 𝑦(௡)(0) 

Rozwiązanie 

𝑦 = 𝑒ହ௫ 

𝑦ᇱ = 5𝑒ହ௫ 

𝑦ᇱ(2) = 5𝑒ଵ଴ 

𝑦ᇱᇱ = 5ଶ𝑒ହ௫ 

𝑦ᇱᇱ(1) = 25𝑒ହ 

𝑦ᇱᇱᇱ = 5ଷ𝑒ହ௫ 

𝑦ᇱᇱᇱ(0) = 125 

… 

 

𝑦(௡) = 5௡𝑒ହ௫, 

𝑛 ∈ ℕ 

𝑦(௡)(0) = 5௡ 
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Twierdzenie (Reguła de L’Hospitala) Jeżeli pod granicą jest jeden z symboli 

nieoznaczonych ቂ
଴

଴
,

ஶ

ஶ
ቃ, to granica nie ulegnie zmian przy osobnym różniczkowaniu licznika 

i mianownika, mianowicie 

lim
௫→⋯

𝑓(𝑥)

𝑔(𝑥)
= ൴

0

0
 ∨  

∞

∞
൸ = lim

௫→⋯

𝑓ᇱ(𝑥)

𝑔ᇱ(𝑥)
 

Przykład Obliczyć granicy funkcji 

 lim
௫→ஶ

௫మାଶ௫ାଵ

ହ௫మିସ
 

 lim
௫→ଵ

௫యାଶ௫మା௫

௫మିଷ௫ାଶ
 

 lim
௫→଴

୲୥ ଻௫

௫
 

 lim
௫→଴

ୟ୰ୡ୲୥ ௫

ଶ௫
 

Rozwiązanie 

 lim
௫→ஶ

௫మାଶ௫ାଵ

ହ௫మିସ
= ቘ

ஶ

ஶ
቙ = lim

௫→ஶ

൫௫మାଶ௫ାଵ൯
ᇲ

(ହ௫మିସ)ᇲ
= lim

௫→ஶ

ଶ௫ାଶ

ଵ଴௫
= ቘ

ஶ

ஶ
቙ = lim

௫→ஶ

(ଶ௫ାଶ)ᇲ

(ଵ଴ )ᇲ
=

lim
௫→ஶ

ଶ

ଵ଴
= 0,2 

 lim
௫→ଵ

௫యିଶ௫మା௫

௫మିଷ௫ାଶ
= ቘ

଴

଴
቙ = lim

௫→ଵ

൫௫యିଶ௫మା௫൯
ᇲ

(௫మିଷ௫ାଶ)ᇲ
= lim

௫→ଵ

ଷ௫మିସ௫ାଵ

ଶ௫ିଷ
=

଴

ିଵ
= 0 

 lim
௫→଴

୲୥ ଻௫

௫
= ቘ

଴

଴
቙ = lim

௫→଴

(୲୥ ଻௫ )ᇲ

(௫)ᇲ
= lim

௫→଴

ళ

ౙ౥౩మ ళೣ

ଵ
= lim

௫→଴

଻

ୡ୭ୱమ ଻௫
= 7 

 lim
௫→଴

ୟ୰ୡ୲୥ ௫

ଶ௫
= ቘ

଴

଴
቙ = lim

௫→଴

(ୟ୰ୡ୲ )ᇲ

(ଶ௫)ᇲ
= lim

௫→଴

భ

భశೣమ

ଶ
= lim

௫→଴

ଵ

ଶ(ଵା௫మ)
=

ଵ

ଶ
 

Równanie stycznej do wykresu funkcji 

Styczną do wykresu funkcji ciągłej 𝑦 = 𝑓(𝑥) w punkcie (𝑥଴; 𝑦଴),   𝑦଴ = 𝑓(𝑥଴)  można 

znaleźć ze wzoru 

𝑦 − 𝑦଴ = 𝑓ᇱ(𝑥଴)(𝑥 − 𝑥଴) 

Monotoniczność funkcji, optymalizacja 

Monotoniczność funkcji oznacza, że funkcja jest rosnąca (↗↗), niemalejąca (↗),  

malejąca (↘↘), nierosnąca (↘) lub stała. 

Ekstrema funkcji – to maksymalna i minimalna wartości funkcji. Są różne rodzaje 

ekstrema – ekstrema lokalne, ekstrema absolutne (globalne), w domkniętym przedziale, 

właściwe lokalne lub absolutne. Zwykłe badamy ekstrema lokalne w całej dziedzinie funkcji 

oraz ekstrema absolutne w domkniętym przedziale. Dalej, gdy nie będzie zaznaczono innego, 

mówimy o ekstremach lokalnych. 

Ekstremum (lokalny) funkcji: (twierdzenie Fermata, warunek konieczny) jeśli funkcja 

ma ekstremum w punkcie 𝑥଴ oraz jest różniczkowalna w tym punkcie, to 𝑓ᇱ(𝑥଴) = 0. Punkty, 

w których 𝑓ᇱ(𝑥଴) = 0 zwane są punktami stacjonarnymi funkcji 𝑓(𝑥). Inaczej mówiąc, punkty 
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podejrzane o ekstremum funkcji szukamy wśród punktów stacjonarnych tej funkcji oraz 

punktów (z dziedziny funkcji), w których pochodna nie istnieje. 

Monotoniczność funkcji (warunek dostateczny): jeśli funkcja 𝑓(𝑥) jest różniczkowalna 

w punkcie 𝑥଴ oraz 

 𝑓ᇱ(𝑥଴) > 0, to funkcja 𝑓(𝑥) jest rosnąca w punkcie 𝑥଴; 

 𝑓ᇱ(𝑥଴) < 0, to funkcja 𝑓(𝑥) jest malejąca w punkcie 𝑥଴. 

Monotoniczność w punkcie oznacza monotoniczność w jego dość małym otoczeniu. 

Algorytm 1 szukania ekstremów (oraz przedziałów monotoniczności) funkcji 𝑓(𝑥): 

 wypisujemy dziedzinę 𝐷௙ funkcji 𝑓(𝑥); 

 obliczamy pochodną funkcji 𝑓ᇱ(𝑥); 

 szukamy miejsca zerowe pochodnej 𝑓ᇱ(𝑥) = 0 oraz punkty, w których ∄𝑓ᇱ(𝑥), z 

czego otrzymujemy kandydatów na ekstremum; 

 badamy znak pochodnej w dość małym otoczeniu każdego z otrzymanych 

kandydatów, tak więc: 

 jeśli pochodna 𝑓ᇱ(𝑥) w punkcie 𝑥଴ zmienia znak z „+” na „−” , to  𝑥଴ jest 

punktem maksimum; 

 jeśli pochodna 𝑓ᇱ(𝑥) w punkcie 𝑥଴ zmienia znak z „−” na „+”, to 𝑥଴ jest 

punktem minimum. 

Algorytm 2 szukania ekstremów funkcji 𝑓(𝑥): 

 wypisujemy dziedzinę 𝐷௙ funkcji 𝑓(𝑥); 

 obliczamy pochodną funkcji 𝑓ᇱ(𝑥); 

 szukamy miejsca zerowe pochodnej 𝑓ᇱ(𝑥) = 0 oraz punkty, w których ∄𝑓ᇱ(𝑥), 

z czego otrzymujemy  kandydatów na ekstremum; 

 obliczamy drugą pochodną w znalezionych kandydatach na ekstremum, tak więc: 

 jeśli druga pochodna 𝑓ᇱᇱ(𝑥)  > 0, to  𝑥଴ jest punktem minimum; 

 jeśli druga pochodna 𝑓ᇱᇱ(𝑥)  < 0, to  𝑥଴ jest punktem maksimum. 

Twierdzenie (Weierstrassa o kresach) Ciągła funkcja określona w domkniętym 

przedziale 𝑓: [𝑎, 𝑏] → ℝ osiąga swoje maksymalną i minimalną wartości w tym przedziale. 

Innymi słowy, ciągła funkcja w domkniętym przedziale zawsze ma dokładnie jeden 

minimum i jeden maksimum (tak zwane ekstrema absolutne w domkniętym przedziale). 

Przykład Znaleźć przedziały monotoniczności oraz ekstrema lokalne funkcji 

 𝑓ଵ(𝑥) =
௘ೣ

௫య
  𝑓ଶ(𝑥) =

ଷ௫ାଷ

௫మ
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Rozwiązanie 

 𝑓ଵ(𝑥) =
௘ೣ

௫య
 

Dziedzina 𝐷௙భ
= ℝ\{0} 

𝑓ଵ
ᇱ(𝑥) =

𝑒௫𝑥ଷ − 𝑒௫3𝑥ଶ

𝑥଺
=

𝑒௫(𝑥 − 3)

𝑥ସ
 

𝑓ଵ
ᇱ(𝑥) = 0 ⇔

𝑒௫(𝑥 − 3)

𝑥ସ
= 0 

𝑒௫(𝑥 − 3) = 0 ∧ 𝑥ସ ≠ 0 

𝑥 = 3 ∧ 𝑥 ≠ 0 

Pochodna 𝑓ଵ
ᇱ(𝑥) nie istnieje w punkcie 𝑥 = 0 ale 0 ∉ 𝐷௙భ

, co oznacza, że ona 

istnieje we wszystkich punktach z dziedziny funkcji 

𝑥 (−∞; 0) (0; 3) 3 (3; ∞) 

𝑓ଵ
ᇱ(𝑥) < 0 < 0 0 > 0 

𝑓ଵ(𝑥) ↘↘ ↘↘ loc min 

𝑓ଵ୫୧୬
 =

𝑒ଷ

27
 

↗↗ 

𝑓ଵ(3) =
𝑒ଷ

3ଷ
=

𝑒ଷ

27
≈ 0,744 

 𝑓ଶ(𝑥) =
ଷ௫ାଷ

௫మ
 

Dziedzina 𝐷௙ర
= ℝ\{0} 

𝑓ଶ
ᇱ(𝑥) = ൬

3𝑥 + 3

𝑥ଶ
൰

ᇱ

=
3𝑥ଶ − 2𝑥(3𝑥 + 3)

𝑥ସ
=

−3𝑥 − 6

𝑥ଷ
 

𝑓ଶ
ᇱ(𝑥) = 0 ⇔

−3𝑥 − 6

𝑥ଷ
= 0 

−3𝑥 − 6 = 0 ∧ 𝑥ଷ ≠ 0 

𝑥 = −2 ∧ 𝑥 ≠ 0 

𝑥 = −2 

𝑓ଶ
ᇱ(𝑥) =

−3(𝑥 + 2)

𝑥ଷ
 

Pochodna 𝑓ଶ
ᇱ(𝑥) nie istnieje w punkcie 𝑥 = 0 ale 0 ∉ 𝐷௙మ

, co oznacza, że ona 

istnieje we wszystkich punktach z dziedziny funkcji 

𝑥 (−∞; −2) −2 (−2; 0) (0; ∞) 

𝑓ଶ
ᇱ(𝑥) < 0 0 > 0 < 0 

𝑓ଶ(𝑥) ↘↘ loc min 

𝑓ଶ୫୧୬
 = −0,75 

↗↗ ↘↘ 

𝑓ଶ(−2) = −0,75 
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Przykład Wyznaczyć ekstrema absolutne w domkniętym przedziale 

 𝑓ଵ(𝑥) = 𝑥ଷ − 9𝑥ଶ + 24𝑥, 𝑥 ∈ 〈0,3〉 

 𝑓ଶ(𝑥) =
௘ೣ

௫య
, 𝑥 ∈ 〈1,4〉 

Rozwiązanie 

 𝑓ଵ(𝑥) = 𝑥ଷ − 9𝑥ଶ + 24𝑥, 𝑥 ∈ 〈0,3〉 

Dziedzina 𝐷௙భ
= 〈0,3〉 

𝑓ଵ
ᇱ(𝑥) = 3𝑥ଶ − 18𝑥 + 24 = 3(𝑥ଶ − 6𝑥 + 8) = 0 ⇔ 𝑥 = 2 ∨ 𝑥 = 4 

𝑓ଵ
ᇱ(𝑥) = 0 ∨  ∄𝑓ଵ

ᇱ(𝑥) ⇔ 𝑥 = 2 ∨ 𝑥 = 4 

2 ∈ 〈0,3〉, 4 ∉ 〈0,3〉 

𝑓ଵ(0) = 0 

𝑓ଵ(2) = 20 

𝑓ଵ(3) = 18 

𝑓ଵ୫୧୬
= 𝑓ଵ(0) = 0 

𝑓ଵ୫ୟ୶
= 𝑓ଵ(2) = 20 

 𝑓ଶ(𝑥) =
௘ೣ

௫య
, 𝑥 ∈ 〈1,4〉 

Dziedzina 𝐷௙మ
= 〈1,4〉 ⊂ ℝ\{0} 

𝑓ଶ
ᇱ(𝑥) = 0 ∨ ∄𝑓ଶ

ᇱ(𝑥) ⇔ 𝑥 = 3 

(punkt 𝑥 = 0 nie rozstrzygamy, bo 0 ∉ 𝐷௙మ
) 

3 ∈ 〈1,4〉 

𝑓ଶ(1) = 𝑒 

𝑓ଶ(3) =
𝑒ଷ

27
≈ 0,744 

𝑓ଶ(4) =
𝑒ସ

64
≈ 0,853 

𝑓ଶ୫୧୬
= 𝑓ଶ(3) =

𝑒ଷ

27
 

𝑓ଶ୫ୟ୶
= 𝑓ଶ(1) = 𝑒 

Wklęsłość, wypukłość funkcji, punkty przegięcia 

Wklęsłość i wypukłość funkcji to są własności o wykresu funkcji a stycznej do niego. 

Definicja Funkcja nazywa się wypukła (wklęsła) w pewnym przedziale, jeżeli styczna w 

każdym punkcie z tego przedziału leży pod (nad) wykresem samej funkcji. 

Również są inne określenia, tak więc wypukła ≡ wypukła w dół, wklęsła ≡ wypukła w 

górę. 
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Twierdzenie (warunek dostateczny) Jeśli funkcja 𝑓(𝑥) dwukrotnie różniczkowalna w 

przedziale (𝑎, 𝑏) jest  

 wypukła w (𝑎, 𝑏), to dla każdego 𝑥଴ ∈ (𝑎, 𝑏) zachodzi 𝑓ᇱᇱ(𝑥଴) > 0; 

 wklęsła w (𝑎, 𝑏), to dla każdego 𝑥଴ ∈ (𝑎, 𝑏) zachodzi 𝑓ᇱᇱ(𝑥଴) < 0. 

Definicja Punktami przegięcia zwane są punkty, w których funkcja z jednej strony jest 

wypukła lecz z drugiej strony – wklęsła. 

Punkty przegięcia funkcji (warunek konieczny): jeśli 𝑥଴ jest punktem przegięcia 

dwukrotnie różniczkowalnej funkcji 𝑓(𝑥), to 𝑓ᇱᇱ(𝑥଴) = 0. Inaczej mówiąc, kandydatów na 

punkty przegięcia funkcji szukamy wśród miejsc zerowych pochodnej drugiego rzędu tej 

funkcji oraz punktów (z dziedziny funkcji), w których druga pochodna nie istnieje. 

Algorytm 1 szukania punktów przegięcia (oraz przedziałów wklęsłości i wypukłości) 

funkcji 𝑓(𝑥): 

 wypisujemy dziedzinę 𝐷௙ funkcji 𝑓(𝑥); 

 obliczamy drugą pochodną funkcji 𝑓ᇱᇱ(𝑥); 

 szukamy miejsca zerowe drugiej pochodnej 𝑓ᇱᇱ(𝑥) = 0 oraz punkty, w których 

∄𝑓ᇱᇱ(𝑥), z czego otrzymujemy kandydatów na punkty przegięcia; 

 badamy znak drugiej pochodnej w dość małym otoczeniu każdego z otrzymanych 

kandydatów, tak więc: 

 jeśli 𝑓ᇱᇱ(𝑥) w punkcie 𝑥଴ zmienia znak z „+” na „−” , to  𝑥଴ jest punktem 

maksimum; 

 jeśli 𝑓ᇱᇱ(𝑥) w punkcie 𝑥଴ zmienia znak z „−” na „+”, to 𝑥଴ jest punktem 

minimum. 

Przykład Znaleźć przedziały wklęsłości, wypukłości oraz punkty przegięcia funkcji 

 𝑓ଵ(𝑥) = 𝑥ଷ − 9𝑥ଶ + 24𝑥  𝑓ଶ(𝑥) =
௘ೣ

௫య
 

Rozwiązanie 

 𝑓ଵ(𝑥) = 𝑥ଷ − 9𝑥ଶ + 24𝑥 

Dziedzina 𝐷௙భ
= ℝ 

𝑓ଵ
ᇱ(𝑥) = 3𝑥ଶ − 18𝑥 + 24 

𝑓ଵ
ᇱᇱ(𝑥) = 6𝑥 − 18 

Druga pochodna 𝑓ଵ
ᇱᇱ(𝑥) istnieje we wszystkich punktach z dziedziny funkcji 

𝑓ଵ
ᇱᇱ(𝑥) = 0 ⇔ 𝑥 = 3 

𝑥 (−∞; 3) 3 (3; +∞) 
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punkt przegięcia 

𝑓ଵ
ᇱᇱ(𝑥) < 0 0 > 0 

𝑓ଵ(𝑥) wklęsła 18 wypukła 

 𝑓ଶ(𝑥) =
௘ೣ

௫య
 

Dziedzina 𝐷௙మ
= ℝ\{0} 

𝑓ଶ
ᇱ(𝑥) =

𝑒௫(𝑥 − 3)

𝑥ସ
=

𝑥𝑒௫ − 3𝑒௫

𝑥ସ
 

𝑓ଶ
ᇱᇱ(𝑥) = ൬

𝑥𝑒௫ − 3𝑒௫

𝑥ସ
൰

ᇱ

=
(𝑒௫ + 𝑥𝑒௫ − 3𝑒௫)𝑥ସ − 4𝑥ଷ(𝑥𝑒௫ − 3𝑒௫)

𝑥଼

=
𝑒௫(𝑥ଶ − 6𝑥 + 12)

𝑥ହ
 

Druga pochodna 𝑓ଶ
ᇱᇱ(𝑥) istnieje we wszystkich punktach z dziedziny funkcji 

𝑓ଶ
ᇱᇱ(𝑥) = 0 ⇔

𝑒௫(𝑥ଶ − 6𝑥 + 12)

𝑥ହ
= 0 

𝑥ଶ − 6𝑥 + 12 = 0 ∧ 𝑥 ≠ 0 

∀𝑥: 𝑥ଶ − 6𝑥 + 12 > 0 

𝑥 (−∞; 0) 0 ∉ 𝐷𝑓2
 

punkt przegięcia 

(0; +∞) 

𝑓ଶ
ᇱᇱ(𝑥) < 0 ∄ > 0 

𝑓ଶ(𝑥) wklęsła ∄ wypukła 

Asymptoty wykresu funkcji 

Definicja Asymptotą wykresu funkcji nazywa się prosta, jeżeli odległość od punktu 

wykresu a prostą dąży do zera przy oddalaniu się tego punktu w sposób nieograniczony. 

Są dwa rodzaje asymptot wykresu funkcji: 

 pionowa: prosta 𝑦 = 𝑎 jest asymptotą pionową wykresu funkcji 𝑦 = 𝑓(𝑥), jeśli 

 lim
௫→௔ష

𝑓(𝑥) = ቂ
+∞
−∞

 ⟹   asymptota lewostronna 

 lim
௫→௔శ

𝑓(𝑥) = ቂ
+∞
−∞

 ⟹   asymptota prawostronna 

 lim
௫→௔ష

𝑓(𝑥) = ቂ
+∞
−∞

 oraz lim
௫→௔శ

𝑓(𝑥) = ቂ
+∞
−∞

 ⟹   asymptota obustronna 

 ukośna (w tym pozioma): prosta 𝑦 = 𝑘𝑥 + 𝑏 jest asymptotą ukośną wykresu 

funkcji 𝑦 = 𝑓(𝑥), jeśli istnieją skończone granice 

 
𝑘 = lim

௫→ିஶ

௙(௫)

௫

𝑏 = lim
௫→ିஶ

(𝑓(𝑥) − 𝑘𝑥)
⟹   asymptota lewostronna 
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 
𝑘 = lim

௫→ାஶ

௙(௫)

௫

𝑏 = lim
௫→ାஶ

(𝑓(𝑥) − 𝑘𝑥)
⟹   asymptota prawostronna 

Niektóre zastosowania rachunku różniczkowego funkcji jednej zmiennej 

Rachunek różniczkowy funkcji jednej zmiennej gra istotną rolę w wielu innych naukach, 

umożliwiając analizę zmian. Jeśli mamy jakąkolwiek wartość w postaci funkcji, to za pomocą 

pochodnej możemy rozwiązać zadanie optymalizacji tej funkcji, znaleźć przedziały, w których 

funkcją jest rosnąca bądź malejąca. Pochodna jest instrumentem mierzącym zmiany funkcji, 

mianowicie jak zmienia się funkcja przy małych zmianach argumentu. Z innej strony 

elastyczność 𝐸௙ funkcji 𝑓 = 𝑓(𝑥) – to jest stosunek względnej (lub procentowej) zmianę samej 

funkcji 
∆௙(௫)

௙(௫)
 do względnej (procentowej) zmiany argumentu 

∆௫

௫
, mianowicie 

𝐸௙ =

∆𝑓(𝑥)
𝑓(𝑥)

∆𝑥
𝑥

=
∆𝑓(𝑥)

∆𝑥
⋅

𝑥

𝑓(𝑥)
≈

𝑥

𝑓(𝑥)
⋅ 𝑓′(𝑥) 

Innymi słowy, z tego, że elastyczność funkcji 𝑓(𝑥) w punkcie 𝑥଴ wynosi np. 5, dowiemy się, 

że wartość funkcji w punkcie 𝑥଴ wzrośnie o 5% przy zwiększeniu argumentu 𝑥 o 1%.   

W przypadku ruchu jednowymiarowego (w kinematyce), prędkość chwilowa 𝑣(𝑡) =

𝑠ᇱ(𝑡) jest pochodną funkcji drogi 𝑠(𝑡) względem czasu, przyspieszenie chwilowe z kolei 

𝑎(𝑡) = 𝑣ᇱ(𝑡) = 𝑠ᇱᇱ(𝑡) jest pochodną prędkości lub drugą pochodną drogi. To jest związane z 

tym, że prędkością jest szybkość zmiany położenia, wtedy jak przyspieszeniem występuje 

szybkość zmiany prędkości. Również ważna jest sytuacja, kiedy ciało porusza się jednostajnie 

zmiennie, co oznacza stałość przyspieszenia 𝑎 = 𝑐𝑜𝑛𝑠𝑡. Wtedy prędkość będzie określona 

wzorem 𝑣(𝑡) = 𝑎𝑡 + 𝑣଴, a droga 𝑠(𝑡) = 𝑣଴𝑡 +
௔௧మ

ଶ
, gdzie 𝑣଴ jest prędkością początkową. 

W sterowaniu maszynami pochodna również znajduje swoje zastosowanie. W ten sposób, 

pozycja robota oraz jej zmiana może być opisana przez pochodną względem czasu (drugie 

prawo Newtona) 

𝐹 = 𝑚
dଶ𝑠

d𝑡ଶ
 

gdzie 𝐹 to siła, 𝑚 – masa, 𝑠 = 𝑠(𝑡) – przemieszczenie, 𝑡 – czas, 𝑎(𝑡) = 𝑠ᇱᇱ(𝑡) – przyspieszenie. 

Innym ważnym zadaniem jest płynność ruchu robota na skrzyżowaniach, które jest 

wprost związane z minimalizacja prędkości lub przyspieszenia. 

Oprócz tego rachunek różniczkowy jest podstawa rachunku całkowego oraz równań 

różniczkowych jak zwyczajnych tak i w pochodnych cząstkowych. Równania różniczkowe w 

swoją kolej „nieskończenie wiele” zastosowań w fizyce (równanie Newtona, Maxwella, 
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Schrödingera), inżynierii i mechanice (opisują ruch mechanizmów), automatyce i robotyce 

(sterowanie automatyczne, grafice komputerowej) i wiele innych. 

Przykład Wyznaczyć elastyczność funkcji 𝑓(𝑥) =
௘ೣ

௫య
 w punktach 𝑥ଵ = 4 i 𝑥ଶ = 2. 

Rozwiązanie 

𝑓(4) =
𝑒ସ

64
 

𝑓ᇱ(𝑥) =
𝑒௫(𝑥 − 3)

𝑥ସ
 

𝑓ᇱ(𝑥ଵ) = 𝑓ᇱ(4) =
𝑒ସ

256
 

𝐸௙(𝑥ଵ) =
𝑥ଵ

𝑓(𝑥ଵ)
⋅ 𝑓′(𝑥ଵ) 

𝐸௙(4) =
4

𝑒ସ

64

⋅
𝑒ସ

256
= 1 

Ostatnie oznacza, że zwiększenie argumentu o 1% powoduje zwiększenie wartości 

funkcji o 1%. 

𝑓(2) =
𝑒ଶ

8
 

𝑓ᇱ(𝑥) =
𝑒௫(𝑥 − 3)

𝑥ସ
 

𝑓ᇱ(𝑥ଶ) = 𝑓ᇱ(2) =
−𝑒ଶ

16
 

𝐸௙(𝑥ଶ) =
𝑥ଶ

𝑓(𝑥ଶ)
⋅ 𝑓′(𝑥ଶ) 

𝐸௙(2) =
2

𝑒ଶ

8

⋅
−𝑒ଶ

16
= −1 

Ostatnie oznacza, że zwiększenie argumentu o 1% powoduje zmniejszenie wartości 

funkcji o 1%. 

Przykład Prostoliniowy ruch samochodu określony równaniem 𝑠(𝑡) = 0,2𝑡ଷ + 0,01𝑡  

(czas jest mierzony w sekundach, droga – w metrach). Znaleźć 

 o ile przemieści się w czasie 30 sekund; 

 jaką będzie miał prędkość chwilową po 30 sekundach ruchu; 

 jakie będzie przyspieszenie po 10 sekundach ruchu? 

Rozwiązanie 

 o ile przemieści się w czasie 30 sekund 
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𝑠(30) = 180,3 m 

 jaką będzie miał prędkość chwilową po 30 sek. ruchu 

𝑣(𝑡) = 𝑠ᇱ(𝑡) = (0,2𝑡ଶ + 0,01𝑡)ᇱ = 0,4𝑡 + 0,01 

𝑣(30) = 12,01 m/s 

 jakie będzie przyspieszenie po 10 sekundach ruchu 

𝑎(𝑡) = 𝑣ᇱ(𝑡) = (0,4𝑡 + 0,01)ᇱ ≡ 0,4 m/sଶ 

Przyspieszenie jest stałe i wynosi 0,4 m/sଶ. 

Przykład Trajektoria ruchu punktu materialnego określona równaniem 𝑠(𝑡) = 0,25𝑡ଶ +

10𝑡 (czas jest mierzony w sekundach, droga – w metrach). Znaleźć 

 o ile przemieści się obiekt po 5 sekundach ruchu; 

 ile wynosi prędkość początkowa; 

 ile wynosi prędkość chwilowa w momencie 𝑡 = 10 s; 

 czy porusza się obiekt jednostajnie zmiennie i jakie jest w tym przypadku 

przyspieszenie? 

Rozwiązanie 

 o ile przemieści się obiekt po 5 sekundach ruchu 

𝑠(5) = 56,25 m 

 ile wynosi prędkość początkowa 

𝑣(𝑡) = 𝑠ᇱ(𝑡) = (0,25𝑡ଶ + 10𝑡)ᇱ = 0,5𝑡 + 10 

𝑣(0) = 10 m/s = 36 km/h 

 ile wynosi prędkość chwilowa w momencie 𝑡 = 10 s 

𝑣(𝑡) = 0,5𝑡 + 10 
𝑣(10) = 15 m/s = 54 km/h 

 czy porusza się obiekt jednostajnie zmiennie i jakie jest w tym przypadku 

przyspieszenie 

𝑎(𝑡) = 𝑣ᇱ(𝑡) = (0,5𝑡 + 10)ᇱ = 0,5 = const 

Tak, obiekt porusza się ze stałym przyspieszeniem, które wynosi 𝑎 = 0,5 m/sଶ. 

Przykład Droga hamowania samochodu na suchym asfalcie opisana wzorem  

𝑠ଵ(𝑡) = 50𝑡 − 𝑡ଶ 

Znaleźć prędkość początkowa oraz kiedy samochód skończy jazdę i o ile przemieści się od 

początku hamowania? 
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Rozwiązanie 

Niech droga będzie mierzona w tzw. jednostkach drogowych (jed.d.), wtedy jak czas – 

jednostkach czasowych (jed.cz.). 

Samochód skończy jazdę wtedy i tylko wtedy, kiedy go prędkość będzie wynosiła 0.  

𝑠ଵ(𝑡) = 50𝑡 − 𝑡ଶ 

𝑣ଵ(𝑡) = 𝑠ᇱ(𝑡) = 50 − 2𝑡 

𝑣ଵ(0) = 50 

Prędkość początkowa to jest 50 jed.d./jed.cz. 

𝑣ଵ
ᇱ (𝑡) = 0 ⟺ 50 − 2𝑡 = 0 ⟺ 𝑡 = 25 

Czas hamowania na suchym asfalcie wynosi 25 jed.cz. 

𝑠ଵ(25) = 625 

Samochód przemieści się o 625 jed.d. od początku hamowania. 

Przykład Droga hamowania samochodu na mokrym asfalcie opisana wzorem  

𝑠ଶ(𝑡) = 50𝑡 − 0,1𝑡ଶ 

Znaleźć prędkość początkowa oraz kiedy samochód skończy jazdę i o ile przemieści się od 

początku hamowania? 

Rozwiązanie 

Niech droga będzie mierzona w tzw. jednostkach drogowych (jed.d.), wtedy jak czas – 

jednostkach czasowych (jed.cz.). 

Samochód skończy jazdę wtedy i tylko wtedy, kiedy go prędkość będzie wynosiła 0. 

Obejrzymy przypadki hamowanie w jasną pogodę i po deszczu. 

Hamowanie na mokrym asfalcie: 

𝑠ଶ(𝑡) = 50𝑡 − 0,1𝑡ଶ 

𝑣ଶ(𝑡) = 𝑠ଶ
ᇱ (𝑡) = 50 − 0,2𝑡 

𝑣ଶ(0) = 50 

Prędkość początkowa to jest 50 jed.d./jed.cz. 

𝑣ଶ
ᇱ (𝑡) = 0 ⟺ 50 − 0,2𝑡 = 0 ⟺ 𝑡 = 250 

Czas hamowania na suchym asfalcie wynosi 250 jed.cz. 

𝑠ଶ(250) = 6250 

Samochód przemieści się o 625 jed.d. jednostek drogowych od początku hamowania. 

Przykład Obiekt porusza się prostoliniowo zgodnie z trajektorią 𝑠(𝑡) = 𝑒௧ − 1 (czas jest 

mierzony w sekundach, droga – w metrach). Znaleźć 

 o ile przemieści się obiekt po 5 sekundach ruchu; 
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 ile wynosi prędkość chwilowa w momencie 𝑡 = 5 s; 

 czy porusza się obiekt jednostajnie zmiennie. 

Rozwiązanie 

 o ile przemieści się obiekt po 5 sekundach ruchu 

𝑠(5) = 𝑒ହ − 1 ≈ 147,41 m 

 ile wynosi prędkość chwilowa w momencie 𝑡 = 5 s 

𝑣(𝑡) = 𝑠ᇱ(𝑡) = (𝑒௧ − 1)ᇱ = 𝑒௧ 

𝑣(5) = 𝑒ହ ≈ 148,41 m/s 

 czy porusza się obiekt jednostajnie zmiennie 

𝑎(𝑡) = 𝑣ᇱ(𝑡) = (𝑒௧)ᇱ = 𝑒௧ ≠ const 

Nie, ponieważ przyspieszenie nie jest stałą, a jest funkcja wykładniczą. 

Różniczka funkcji jednej zmiennej 

Różniczką funkcji jednej zmiennej nazywa się zmiana funkcji względem zmiany 

argumentu. Innymi słowy, różniczka funkcji 𝑓(𝑥) nazywa się 

d𝑓(𝑥) = 𝑓ᇱ(𝑥)d𝑥 

Zastosowania różniczki powstają w obliczeniach przybliżonych oraz w rachunku 

całkowym funkcji jednej zmiennej, które będą dokładnie opisane w kolejnych rozdziałach. 

1.5. RACHUNEK CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ I JEGO 

ZASTOSOWANIE TECHNICZNE 

Rachunek całkowy wraz z rachunkiem różniczkowym tworzą podstawowy oraz jeden z 

najważniejszych działów analizy matematycznej, zwany „Rachunkiem”. Całkowanie funkcji 

jest działaniem odwrotnym do różniczkowania, ale w przeciwieństwie do pochodnej, całka nie 

jest taka jednoznaczna, mianowicie jest określona z dokładnością do stałej. 

Całka nieoznaczona 

Definicja Funkcją pierwotną funkcji 𝑓(𝑥) nazywa się taka funkcja 𝐹(𝑥) (o ile ona 

istnieje), pochodna której jest równa danej funkcji 𝑓(𝑥), tzn. 𝐹ᇱ(𝑥) = 𝑓(𝑥).  

Przykład Sprawdzić, czy są wymienione niżej funkcji 𝐹௜(𝑥) pierwotnymi odpowiednich 

funkcji 𝑓௜(𝑥) 

 𝐹ଵ(𝑥) = − sin 𝑥 , 𝑓ଵ(𝑥) = cos 𝑥 

 𝐹ଶ(𝑥) = 𝑥ଶ, 𝑓ଶ(𝑥) = 𝑥 

 𝐹ଷ(𝑥) = 2௫ , 𝑓ଷ(𝑥) =
ଵ

ଶೣ
 

 𝐹ସ(𝑥) = arccos 𝑥 , 𝑓ସ(𝑥) = arcsin 𝑥 

 𝐹ହ(𝑥) = 𝑒௫, 𝐹଺(𝑥) = 𝑒௫ + 1, 𝐹଻(𝑥) = 𝑒௫ − 1, 𝐹 (𝑥) = 𝑒௫ + const,   
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𝑓ହ(𝑥) = 𝑒௫ 

Rozwiązanie  

 𝐹ଵ
ᇱ(𝑥) = (− sin 𝑥)ᇱ = −(− cos 𝑥) = cos 𝑥 = 𝑓ଵ(𝑥) 

jest 

 𝐹ଶ
ᇱ(𝑥) = (𝑥ଶ)ᇱ = 2𝑥 ≠  𝑓ଶ(𝑥) = 𝑥 

nie jest 

 𝐹ଷ
ᇱ(𝑥) = (2௫)ᇱ = 2௫ ln 2 ≠ 𝑓ଷ(𝑥) =

ଵ

ଶೣ
  

nie jest 

 𝐹ସ
ᇱ(𝑥) = (arccos 𝑥)ᇱ = −

ଵ

√ଵି௫మ
≠  𝑓ସ(𝑥) = arcsin 𝑥  

nie jest 

 𝐹ହ(𝑥) = 𝑒௫, 𝐹଺(𝑥) = 𝑒௫ + 1, 𝐹଻(𝑥) = 𝑒௫ − 1, 𝐹 (𝑥) = 𝑒௫ + const,    

𝑓ହ(𝑥) = 𝑒௫ 

𝐹ହ
ᇱ(𝑥) = (𝑒௫)ᇱ = 𝑒௫ = 𝑓ହ(𝑥) 

𝐹଺
ᇱ(𝑥) = (𝑒௫ + 1)ᇱ = 𝑒௫ =  𝑓ହ(𝑥) 

𝐹଻
ᇱ(𝑥) = (𝑒௫ − 1)ᇱ = 𝑒௫ = 𝑓ହ(𝑥) 

𝐹ᇱ(𝑥) = (𝑒௫ + const)ᇱ = 𝑒௫ = 𝑓ହ(𝑥) 

tak, 𝐹ହି଼(𝑥) są pierwotnymi funkcjami 𝑓ହ(𝑥). 

Łatwo zauważyć, że funkcja pierwotna określona z dokładnością do stałej 𝐶 ∈ ℝ, 

mianowicie jeżeli 𝐹(𝑥) jest pierwotną funkcji 𝑓(𝑥), to dla jakiejkolwiek liczby rzeczywistej 𝐶 

funkcja 𝐹(𝑥) + 𝐶 również będzie pierwotną funkcji 𝑓(𝑥). 

Definicja Zbiór wszystkich funkcji pierwotnych {𝐹(𝑥) + 𝐶|𝐶 ∈ ℝ} nazywa się całką 

nieoznaczoną funkcji 𝑓(𝑥). Oznaczamy przez ∫ 𝑓(𝑥) d𝑥 = 𝐹(𝑥) + 𝐶, 𝐶 ∈ ℝ. Funkcja 𝑓(𝑥) 

nazywa się funkcją podcałkową, wtedy jak 𝑓(𝑥)d𝑥 – wyrazem podcałkowym. Funkcja, dla 

której istnieje funkcja pierwotna, nazywa się całkowalna. 

Twierdzenie Funkcja ciągła (w przedziale) jest całkowalna (w tym przedziale) . 

Dalej, jeżeli nie będzie zaznaczono przeciwnego, niech każda funkcja będzie ciągła, z 

czego będzie wynikała jej całkowalność. 

Tak samo jak w rachunku różniczkowym, rzadko korzystamy z definicji aby znaleźć 

całkę. Natomiast wykorzystujemy wzory, reguły (własności) oraz metody całkowania. 

Wzory całkowania: poniższe wzory prawdziwe w przedziałach, w których odpowiednie 

funkcje ciągłe 

 ∫ 𝑥௡ d𝑥 =
௫೙శభ

௡ାଵ
+ 𝐶, 𝑛 ≠ −1, 𝐶 ∈ ℝ 
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 ∫ 1 d𝑥 = 𝑥 + 𝐶, 𝐶 ∈ ℝ 

 ∫ 𝐴 d𝑥 = 𝐴𝑥 + 𝐶, 𝐴 = const, 𝐶 ∈ ℝ 

 ∫
ଵ

௫
d𝑥 = ln |𝑥| + 𝐶, 𝐶 ∈ ℝ 

 ∫ 𝑎௫ d𝑥 =
௔ೣ

୪୬ ௔
+ 𝐶, 𝑎 > 0, 𝑎 ≠ 1, 𝐶 ∈ ℝ 

 ∫ 𝑒௫ d𝑥 = 𝑒௫ + 𝐶, 𝐶 ∈ ℝ 

 ∫ sin 𝑥 d𝑥 = − cos 𝑥 + 𝐶, 𝐶 ∈ ℝ 

 ∫ cos 𝑥 d𝑥 = sin 𝑥 + 𝐶, 𝐶 ∈ ℝ 

 ∫
ଵ

ୱ୧୬మ ௫
d𝑥 = −ctg 𝑥 + 𝐶, 𝐶 ∈ ℝ 

 ∫
ଵ

ୡ୭ୱమ ௫
d𝑥 = tg 𝑥 + 𝐶, 𝐶 ∈ ℝ 

 ∫ sinh 𝑥 d𝑥 = cosh 𝑥 + 𝐶, 𝐶 ∈ ℝ 

 ∫ cosh 𝑥 d𝑥 = sinh 𝑥 + 𝐶, 𝐶 ∈ ℝ 

 ∫
ଵ

ୱ୧୬୦మ ௫
d𝑥 = −ctgh 𝑥 + 𝐶, 𝐶 ∈ ℝ 

 ∫
ଵ

ୡ୭ୱ୦మ ௫
d𝑥 = tgh 𝑥 + 𝐶, 𝐶 ∈ ℝ 

 ∫
ଵ

௫మା௔మ
d𝑥 =

ଵ

௔
arctg

௫

௔
+ 𝐶, 𝑎 ≠ 0, 𝐶 ∈ ℝ 

 ∫
ଵ

௫మି௔మ
d𝑥 =

ଵ

ଶ௔
ln ቚ

௫ି௔

௫ା௔
ቚ + 𝐶, 𝑎 ≠ 0, 𝐶 ∈ ℝ  

(tzw. logarytm wysoki) 

 ∫
ଵ

√௔మି௫మ
d𝑥 = arcsin

௫

௔
+ 𝐶, 𝑎 ≠ 0, 𝐶 ∈ ℝ 

 ∫
ଵ

√௫మା௕
d𝑥 = lnห𝑥 + √𝑥ଶ + 𝑏ห + 𝐶, 𝑏 ≠ 0, 𝐶 ∈ ℝ 

(tzw. logarytm długi) 

Własności całkowania (liniowość): 𝑢 = 𝑢(𝑥), 𝑣 = 𝑣(𝑥) 

 ∫ 𝐴𝑢 d𝑥 = 𝐴 ⋅ ∫ 𝑢 d𝑥, 𝐴 ∈ ℝ 

(stały współczynnik) 

 ∫(𝑢 ± 𝑣) d𝑥 = ∫ 𝑢 d𝑥 ± ∫ 𝑣 d𝑥 

(całka sumy / różnicy) 

Metody całkowania: 

 całkowanie przez podstawienie 

 całkowanie bezpośrednie 

 całkowanie przez części 

 całkowanie wymierne 

 całkowanie pierwiastkowe 

 całkowanie trygonometryczne  

Przykład  Znaleźć całki nieoznaczone 
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 ∫ 5𝑥ସ d𝑥 

 ∫(𝑥 − 3) d𝑥 

 ∫(5𝑥ସ + 𝑒௫) d𝑥 

 ∫ 2 cos 𝑥 d𝑥 

 ∫
ଶ

ୱ୧୬మ ௫
d𝑥 

 ∫ ቀ𝑥ଶ +
ଵ

௫మ
ቁ d𝑥 

 ∫ ቀ
ଵ

௫
− 𝑥ቁ d𝑥 

 ∫ ቀ
௫య

ଶ
+

ଶ

௫య
−

ଶ

௫
ቁ d𝑥 

 ∫
ଵ

௫మିଵ଺
d𝑥 

 ∫
ଵ

௫మାଵ଺
d𝑥 

 ∫
ଵ

௫మିଶ
d𝑥 

 ∫
ଵ

௫మାଶ
d𝑥 

 ∫
ଵ

√௫మାଷ
d𝑥 

 ∫
ଵ

√௫మିଵଶ
d𝑥 

 ∫
ଵ

√ଶହି௫మ
d𝑥 

Rozwiązanie 

 ∫ 5𝑥ସ d𝑥 = 5 ∫ 𝑥ସ d𝑥 = 5 ⋅
௫ఱ

ହ
+ 𝐶 = 𝑥ହ + 𝐶, 𝐶 ∈ ℝ 

 ∫(𝑥 − 3) d𝑥 = ∫ 𝑥 d𝑥 − 3 ∫ 1 d𝑥 =
௫మ

ଶ
− 3𝑥 + 𝐶, 𝐶 ∈ ℝ 

 ∫(5𝑥ସ + 𝑒௫) d𝑥 = 5 ∫ 𝑥ସ d𝑥 + ∫ 𝑒௫ d𝑥 = 𝑥ହ + 𝑒௫ + 𝐶, 𝐶 ∈ ℝ 

 ∫ 2 cos 𝑥 d𝑥 = 2 ∫ cos 𝑥 d𝑥 = 2 sin 𝑥 + 𝐶, 𝐶 ∈ ℝ 

 ∫
ଶ

ୱ୧୬మ ௫
d𝑥 = 2 ∫

ଵ

ୱ୧୬మ ௫
d𝑥 = −2 ctg 𝑥 + 𝐶, 𝐶 ∈ ℝ 

 ∫ ቀ𝑥ଶ +
ଵ

௫మ
ቁ d𝑥 = ∫ 𝑥ଶ d𝑥 + ∫ 𝑥ିଶ d𝑥 =

௫య

ଷ
+

௫షభ

ିଵ
+ 𝐶 =

௫య

ଷ
−

ଵ

௫
+ 𝐶, 𝐶 ∈ ℝ 

 ∫ ቀ
ଵ

௫
− 𝑥ቁ d𝑥 = ∫

ଵ

௫
d𝑥 − ∫ 𝑥 d𝑥 = ln|𝑥| −

௫మ

ଶ
+ 𝐶, 𝐶 ∈ ℝ 

 ∫ ቀ
௫య

ଶ
+

ଶ

௫య
−

ଶ

௫
ቁ d𝑥 =

ଵ

ଶ
∫ 𝑥ଷ d𝑥 + 2 ∫ 𝑥ିଷ d𝑥 − 2 ∫

ଵ

௫
d𝑥 =

ଵ

ଶ
⋅

௫ర

ସ
+ 2 ⋅

௫షమ

ିଶ
−

2 ln 𝑥 + 𝐶 =
௫ర

଼
−

ଵ

௫మ
− 2 ln 𝑥 + 𝐶, 𝐶 ∈ ℝ 

 ∫
ଵ

௫మିଵ଺
d𝑥 = ∫

ଵ

௫మିସమ
d𝑥 =

ଵ

ଶ⋅ସ
ln ቚ

௫ିସ

௫ାସ
ቚ + 𝐶 =

ଵ

଼
ln ቚ

௫ିସ

௫ାସ
ቚ + 𝐶, 𝐶 ∈ ℝ 

 ∫
ଵ

௫మାଵ଺
d𝑥 = ∫

ଵ

௫మାସమ
d𝑥 =

ଵ

ସ
arctg

௫

ସ
+ 𝐶, 𝐶 ∈ ℝ 

 ∫
ଵ

௫మିଶ
d𝑥 = ∫

ଵ

௫మି൫√ଶ൯
మ d𝑥 =

ଵ

ଶ√ଶ
ln ቚ

௫ି√ଶ

௫ା√ଶ
ቚ + 𝐶, 𝐶 ∈ ℝ 

 ∫
ଵ

௫మାଶ
d𝑥 = ∫

ଵ

௫మା൫√ଶ൯
మ d𝑥 =

ଵ

√ଶ
arctg

௫

√ଶ
+ 𝐶, 𝐶 ∈ ℝ 

 ∫
ଵ

√௫మାଷ
d𝑥 = lnห𝑥 + √𝑥ଶ + 3ห + 𝐶, 𝐶 ∈ ℝ 

 ∫
ଵ

√௫మିଵଶ
d𝑥 = lnห𝑥 + √𝑥ଶ − 12ห + 𝐶, 𝐶 ∈ ℝ 

 ∫
ଵ

√ଶହି௫మ
d𝑥 = ∫

ଵ

√ହమି௫మ
d𝑥 = arcsin

௫

ହ
+ 𝐶, 𝐶 ∈ ℝ

Całkowanie bezpośrednie: 

න 𝑓(𝑥) d𝑥 = 𝐹(𝑥) + 𝐶, 𝐶 ∈ ℝ ⟹ න 𝑓(𝑘𝑥 + 𝑏) d𝑥 =
1

𝑘
𝐹(𝑘𝑥 + 𝑏) + 𝐶, 𝐶 ∈ ℝ 
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Słownie: jeśli we wzorach całkowania argument funkcji podcałkowej 𝑥 zastąpimy przez 

funkcję liniową 𝑘𝑥 + 𝑏, to po całkowaniu otrzymamy współczynnik 
ଵ

௞
. 

Przykład  Znaleźć całki nieoznaczone 

 ∫(5 − 7𝑥)௡ d𝑥,

𝑛 ≠ −1 

 ∫
ଵ

ହି଻௫
d𝑥 

 ∫
ଵ

଻௫ାହ
d𝑥 

 ∫ 5ଷି௫ d𝑥  

 ∫ 𝑒ଷ௫ାଵ d𝑥 

 ∫ sinh 5𝑥 d𝑥 

 ∫ cos(5 − 7𝑥) d𝑥 

 ∫
ଵ

ୡ୭ୱమ ଷ௫
d𝑥 

 ∫ cosh(1 − 𝑥) d𝑥 

 ∫
ଵ

ୱ୧୬୦మ ଶ௫
d𝑥 

 ∫
ଵ

௫మାଶ௫ାହ
d𝑥 

 ∫
ଵ

௫మାଶ௫ିଷ
d𝑥 

 ∫
ଵ

√ସ௫మାସ௫ାଵ଴
d𝑥 

Rozwiązanie 

 ∫(5 − 7𝑥)௡ d𝑥 = ቘ
𝑘𝑥 + 𝑏 = −7𝑥 + 5

𝑘 = −7
቙ =

ଵ

ି଻
⋅

(ହି଻௫)೙శభ

௡ାଵ
+ 𝐶 =

(ହି଻௫)೙శభ

ି଻(௡ାଵ)
+

𝐶, 𝐶 ∈ ℝ 

 ∫
ଵ

ହି଻௫
d𝑥 = ቘ

𝑘𝑥 + 𝑏 = −7𝑥 + 5
𝑘 = −7

቙ =
ଵ

ି଻
ln|5 − 7𝑥| + 𝐶, 𝐶 ∈ ℝ 

 ∫
ଵ

଻௫ାହ
d𝑥 = ቘ

𝑘𝑥 + 𝑏 = 7𝑥 + 5
𝑘 = 7

቙ =
ଵ

଻
ln|7𝑥 + 5| + 𝐶, 𝐶 ∈ ℝ 

 ∫ 5ଷି௫ d𝑥 = ቘ
𝑘𝑥 + 𝑏 = −𝑥 + 3

𝑘 = −1
቙ =

ଵ

ିଵ
⋅

ହయషೣ

୪୬ ହ
+ 𝐶 = −

ହయషೣ

୪୬ ହ
+ 𝐶, 𝐶 ∈ ℝ 

 ∫ 𝑒ଷ௫ାଵ d𝑥 = ቘ
𝑘𝑥 + 𝑏 = 3𝑥 + 1

𝑘 = 3
቙ =

ଵ

ଷ
𝑒ଷ௫ାଵ + 𝐶, 𝐶 ∈ ℝ 

 ∫ sinh 5𝑥 d𝑥 = ቘ
𝑘𝑥 + 𝑏 = 5𝑥

𝑘 = 5
቙ =

ଵ

ହ
cosh 5𝑥 + 𝐶, 𝐶 ∈ ℝ 

 ∫ cos(5 − 7𝑥) d𝑥 = ቘ
𝑘𝑥 + 𝑏 = −7𝑥 + 5

𝑘 = −7
቙ =

ଵ

ି଻
sin(5 − 7𝑥) + 𝐶 = −

ଵ

଻
sin (5 −

7𝑥) + 𝐶, 𝐶 ∈ ℝ 

 ∫
ଵ

ୡ୭ୱమ ଷ௫
d𝑥 = ቘ

𝑘𝑥 + 𝑏 = 3𝑥
𝑘 = 3

቙ =
ଵ

ଷ
tg 3𝑥 + 𝐶, 𝐶 ∈ ℝ 

 ∫ cosh(1 − 𝑥) d𝑥 = ቘ
𝑘𝑥 + 𝑏 = −𝑥 + 1

𝑘 = −1
቙ =

ଵ

ିଵ
sinh(1 − 𝑥) + 𝐶 = − sinh(1 −

𝑥) + 𝐶, 𝐶 ∈ ℝ 

 ∫
ଵ

ୱ୧୬୦మ ଶ௫
d𝑥 = ቘ

𝑘𝑥 + 𝑏 = 2𝑥
𝑘 = 2

቙ =
ଵ

ଶ
(− ctg 2𝑥) + 𝐶 = −

ଵ

ଶ
ctg 2𝑥 + 𝐶, 𝐶 ∈ ℝ 

 ∫
ଵ

௫మାଶ௫ାହ
d𝑥 = ൵

𝑥ଶ + 2𝑥 + 5
𝑥ଶ + 2𝑥 + 1 + 4

(𝑥 + 1)ଶ + 2ଶ
൹ = ∫

ଵ

(௫ାଵ)మାଶమ
d𝑥 = ቘ

𝑘𝑥 + 𝑏 = 𝑥 + 1
𝑘 = 1

቙ =

arctg(𝑥 + 1) + 𝐶, 𝐶 ∈ ℝ 



 

43 
 

 ∫
ଵ

௫మାଶ௫ିଷ
d𝑥 = ൵

𝑥ଶ + 2𝑥 − 3
𝑥ଶ + 2𝑥 + 1 − 4

(𝑥 + 1)ଶ − 2ଶ
൹ = ∫

ଵ

(௫ାଵ)మିଶమ
d𝑥 = ቘ

𝑘𝑥 + 𝑏 = 𝑥 + 1
𝑘 = 1

቙ =

ଵ

ଶ
ln ቚ

௫ାଵିଶ

௫ାଵାଶ
ቚ + 𝐶 =

ଵ

ଶ
ln ቚ

௫ିଵ

௫ାଷ
ቚ + 𝐶, 𝐶 ∈ ℝ 

 ∫
ଵ

√ସ௫మାସ௫ାଵ଴
d𝑥 = ൴

4𝑥ଶ + 4𝑥 + 10 =
(2𝑥 + 1)ଶ + 9

൸ = ∫
ଵ

ඥ(ଶ௫ାଵ)మାଽ
d𝑥 =

ቘ
𝑘𝑥 + 𝑏 = 2𝑥 + 1

𝑘 = 2
቙ =

ଵ

ଶ
lnห2𝑥 + 1 + ඥ(2𝑥 + 1)ଶ + 9ห + 𝐶 =

ଵ

ଶ
lnห2𝑥 + 1 +

√4𝑥ଶ + 4𝑥 + 10ห + 𝐶, 𝐶 ∈ ℝ 

Całkowanie przez podstawienie (metoda zamiany zmiennej): 

න 𝑓൫𝑔(𝑥)൯𝑔′(𝑥) d𝑥 = ቬ

𝑔(𝑥) = 𝑡

d൫𝑔(𝑥)൯ = d𝑡

𝑔′(𝑥)d𝑥 = d𝑡

ቭ = න 𝑓(𝑡) d𝑡 = 𝐹(𝑡) + 𝐶 = ⟦𝑡 = 𝑔(𝑥)⟧

= 𝐹൫𝑔(𝑥)൯ + 𝐶, 𝐶 ∈ ℝ 

Schemat: krok 1: wybieramy funkcję, którą chcemy zamienić; krok 2: zamieniamy; krok 

3: różniczkujemy zamianę; krok 4: otrzymujemy wyraz, na który zamieni się różniczka; krok 

5: przepisujemy całkę przez nowy argument; krok 6: całkujemy; krok 7: wracamy do 

początkowego argumentu; krok 8: otrzymujemy odpowiedź. Uwaga do kroków 1 i 4: zamianę 

wybieramy sami tak aby w wyniku całka była przepisana w całości w nowej zmiennej (nie 

może być w jednej całce jednocześnie dwa argumenty) oraz funkcja podcałkowa była taką, 

która nadaje się do całkowania. 

Całkowanie bezpośrednie jest jednym z przypadków całkowania przez podstawienie, 

mianowicie jeśli przy całkowaniu funkcji zamiast całkowania bezpośredniego można 

skorzystać z zamiany 𝑘𝑥 + 𝑏 = 𝑡, co daje ten sam wynik. 

Przykład  Znaleźć całki nieoznaczone 

 ∫ 2𝑥 cos(𝑥ଶ − 1) d𝑥 

 ∫(2𝑥 + 3)𝑒௫మାଷ௫ିଵ d𝑥 

 ∫ tg 𝑥 d𝑥 

 ∫ sinଷ 𝑥 cos 𝑥 d𝑥

Rozwiązanie 

 ∫ 2𝑥 cos(𝑥ଶ − 1) d𝑥 = ൶

𝑥ଶ − 1 = 𝑡
d(𝑥ଶ − 1) = d𝑡

(𝑥ଶ − 1)ᇱd𝑥 = d𝑡
2𝑥d𝑥 = d𝑡

ൺ = ∫ cos 𝑡 d𝑡 = sin 𝑡 + 𝐶 = ⟦𝑡 =

𝑥ଶ − 1⟧ = sin(𝑥ଶ − 1) + 𝐶, 𝐶 ∈ ℝ 
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 ∫(2𝑥 + 3)𝑒௫మାଷ௫ିଵ d𝑥 = ൶

𝑥ଶ + 3𝑥 − 1 = 𝑡
d(𝑥ଶ + 3𝑥 − 1) = d𝑡

(𝑥ଶ + 3𝑥 − 1)ᇱd𝑥 = d𝑡
(2𝑥 + 3)d𝑥 = d𝑡

ൺ = ∫ 𝑒௧ d𝑡 = 𝑒௧ + 𝐶 = ⟦𝑡 =

𝑥ଶ + 3𝑥 − 1⟧ = 𝑒௫మାଷ௫ିଵ + 𝐶, 𝐶 ∈ ℝ 

 ∫ tg 𝑥 d𝑥 = ∫
ୱ୧୬ ௫

ୡ୭ୱ ௫
d𝑥 = ൶

cos 𝑥 = 𝑡
d(cos 𝑥) = d𝑡

(cos 𝑥)ᇱd𝑥 = d𝑡
− sin 𝑥 d𝑥 = d𝑡
sin 𝑥 d𝑥 = −d𝑡

ൺ = − ∫
ଵ

௧
d𝑡 = − ln|𝑡| + 𝐶 = ⟦𝑡 =

cos 𝑥⟧ = − ln | cos 𝑥 | + 𝐶, 𝐶 ∈ ℝ 

 ∫ sinଷ 𝑥 cos 𝑥 d𝑥 = ൶

sin 𝑥 = 𝑡
d(sin 𝑥) = d𝑡

(sin 𝑥)ᇱd𝑥 = d𝑡
cos 𝑥 d𝑥 = d𝑡

ൺ = ∫ 𝑡ଷ d𝑡 =
௧ర

ସ
+ 𝐶 = ⟦𝑡 = sin 𝑥⟧ =

ୱ୧୬ర ௫

ସ
+ 𝐶, 𝐶 ∈ ℝ 

Wyłączanie z różniczki: przy wyłączaniu funkcji z różniczki, różniczkujemy ją, tzn. 

szukamy pochodną 

𝑓(𝑥) = 𝑓ᇱ(𝑥)d𝑥 

Włączanie do różniczki: przy włączaniu funkcji do różniczki, całkujemy ją, tzn. 

szukamy funkcję pierwotną 

𝑓ᇱ(𝑥)d𝑥 = d𝑓(𝑥) lub 𝑔(𝑥)d𝑥 = d𝐺(𝑥) 

gdzie 𝐺(𝑥) jest funkcja pierwotną funkcji 𝑔(𝑥). 

Wskazówka: często są wykorzystywane wymienione niżej wzory na włączanie do 

różniczki (niech 𝑎, 𝑏 ∈ ℝ, 𝑎 ≠ 0): 

 𝑒௫d𝑥 = d(𝑒௫) 

 𝑒௔௫ା௕d𝑥 = d ቀ
ଵ

௔
𝑒௔௫ା௕ቁ =

ଵ

௔
d(𝑒௔௫ା௕) 

 𝑥௡d𝑥 = d ቀ
௫೙శభ

௡ାଵ
ቁ =

ଵ

௡ାଵ
d(𝑥௡ାଵ) 

 sin 𝑥 d𝑥 = d(− cos 𝑥) = −d(cos 𝑥) 

 sin(𝑎𝑥 + 𝑏) d𝑥 = d ቀ−
ଵ

௔
cos(𝑎𝑥 + 𝑏)ቁ = −

ଵ

௔
d(cos(𝑎𝑥 + 𝑏)) 

 cos 𝑥 d𝑥 = d(sin 𝑥) 

 cos(𝑎𝑥 + 𝑏) d𝑥 = d ቀ
ଵ

௔
sin(𝑎𝑥 + 𝑏)ቁ =

ଵ

௔
d(sin(𝑎𝑥 + 𝑏)) 

 ଵ

௫
d𝑥 = d(ln 𝑥) 

Całkowanie przez części: 𝑢 = 𝑢(𝑥), 𝑣 = 𝑣(𝑥) 
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න 𝑢 d𝑣 = 𝑢𝑣 − න 𝑣 d𝑢 

Przykład Znaleźć całki nieoznaczone 

 ∫ 2𝑥 cos 𝑥 d𝑥 

 ∫ ln 𝑥 d𝑥 

 ∫ 𝑥ଷ𝑒௫ d𝑥 

 ∫ √1 − 𝑥ଶ d𝑥 

Rozwiązanie 

 ∫ 2𝑥 cos 𝑥 d𝑥 = ⟦cos 𝑥 d𝑥 = d(sin 𝑥)⟧ = ∫ 2𝑥 d(sin 𝑥) =

൵

𝑢 = 2𝑥
𝑣 = sin 𝑥

∫ 𝑢 d𝑣 = 𝑣𝑢 − ∫ 𝑣 d𝑢
൹ = 2𝑥 sin 𝑥 − ∫ sin 𝑥 d(2𝑥) = 2𝑥 sin 𝑥 − 2 ∫ sin 𝑥 d𝑥 =

2𝑥 sin 𝑥 + 2 cos 𝑥 + 𝐶, 𝐶 ∈ ℝ 

 ∫ ln 𝑥 d𝑥 = ൵
𝑢 = ln 𝑥

𝑣 = 𝑥
∫ 𝑢 d𝑣 = 𝑣𝑢 − ∫ 𝑣 d𝑢

൹ = 𝑥 ln 𝑥 − ∫ 𝑥 d(ln 𝑥) = 𝑥 ln 𝑥 −

∫ 𝑥
ଵ

௫
d𝑥 + 𝐶 = 𝑥 ln 𝑥 − ∫ 1 d𝑥 + 𝐶 = 𝑥 ln 𝑥 − 𝑥 + 𝐶 = 𝑥(ln 𝑥 − 1) + 𝐶, 𝐶 ∈ ℝ 

 ∫ 𝑥ଷ𝑒௫ d𝑥 = ⟦𝑒௫d𝑥 = d(𝑒௫)⟧ = ∫ 𝑥ଷ d(𝑒௫) = ቬ
𝑢 = 𝑥ଷ

𝑣 = 𝑒௫

∫ 𝑢 d𝑣 = 𝑣𝑢 − ∫ 𝑣 d𝑢
ቭ =

𝑥ଷ𝑒௫ − ∫ 𝑒௫ d(𝑥ଷ) = 𝑥ଷ𝑒௫ − ∫ 3𝑥ଶ𝑒௫ d𝑥 = 𝑥ଷ𝑒௫ − 3 ∫ 𝑥ଶ𝑒௫ d𝑥 = , 

∫ 𝑥ଶ𝑒௫ d𝑥 = ∫ 𝑥ଶ d𝑒௫ = ቬ
𝑢 = 𝑥ଶ

𝑣 = 𝑒௫

∫ 𝑢 d𝑣 = 𝑣𝑢 − ∫ 𝑣 d𝑢
ቭ = 𝑥ଶ𝑒௫ − ∫ 𝑒௫ d(𝑥ଶ) =

𝑥ଶ𝑒௫ − 2 ∫ 𝑥𝑒௫ d𝑥 = 𝑥ଶ𝑒௫ − 2(𝑥𝑒௫ − 𝑒௫) = 𝑥ଶ𝑒௫ − 2𝑥𝑒௫ + 2𝑒௫, bo 

∫ 𝑥𝑒௫ d𝑥 = ∫ 𝑥d(𝑒௫) = ൵

𝑢 = 𝑥
𝑣 = 𝑒௫

∫ 𝑢 d𝑣 = 𝑣𝑢 − ∫ 𝑣 d𝑢
൹ = 𝑥𝑒௫ − ∫ 𝑒௫ d(𝑥) = 𝑥𝑒௫ −

∫ 𝑒௫ d𝑥 = 𝑥𝑒௫ − 𝑒௫, 

= 𝑥ଷ𝑒௫ − 3(𝑥ଶ𝑒௫ − 2𝑥𝑒௫ + 2𝑒௫) + 𝐶 = 𝑒௫(𝑥ଷ − 3𝑥ଶ + 6𝑥 − 6), 𝐶 ∈ ℝ 

 𝐼 = ∫ √1 − 𝑥ଶ d𝑥 = ቬ
𝑢 = √1 − 𝑥ଶ

𝑣 = 𝑥
∫ 𝑢 d𝑣 = 𝑣𝑢 − ∫ 𝑣 d𝑢

ቭ = 𝑥√1 − 𝑥ଶ − ∫ 𝑥 d൫√1 − 𝑥ଶ൯ =

𝑥√1 − 𝑥ଶ − ∫ 𝑥
ଵ

ଶ√ଵି௫మ
(−2𝑥) d𝑥 = 𝑥√1 − 𝑥ଶ − ∫

ି௫మ

√ଵି௫మ
d𝑥 = 𝑥√1 − 𝑥ଶ −

∫
ଵି௫మିଵ

√ଵି௫మ
d𝑥 = 𝑥√1 − 𝑥ଶ − ∫ ቀ

ଵି௫మ

√ଵି௫మ
−

ଵ

√ଵି௫మ
ቁ d𝑥 = 𝑥√1 − 𝑥ଶ − ∫ ቀ√1 − 𝑥ଶ −

ଵ

√ଵି௫మ
ቁ d𝑥 = 𝑥√1 − 𝑥ଶ − 𝐼 + arcsin 𝑥 

𝐼 =  𝑥ඥ1 − 𝑥ଶ − 𝐼 + arcsin 𝑥 
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2𝐼 = 𝑥ඥ1 − 𝑥ଶ + arcsin 𝑥 

𝐼 =
1

2
ቀ𝑥ඥ1 − 𝑥ଶ + arcsin 𝑥ቁ + 𝐶 

න ඥ1 − 𝑥ଶ d𝑥 =
1

2
ቀ𝑥ඥ1 − 𝑥ଶ + arcsin 𝑥ቁ + 𝐶, 𝐶 ∈ ℝ 

Całka oznaczona 

Definicja Niech 𝑥ଵ, 𝑥ଶ ∈ ℝ, wtedy pod całką oznaczoną funkcji ciągłej 𝑓(𝑥) w 

przedziale 〈𝑥ଵ; 𝑥ଶ〉 będziemy rozumieć różnicę wartości 𝐹(𝑥ଶ) i 𝐹(𝑥ଵ) funkcji pierwotnej, tzn.  

න 𝑓(𝑥)

௫మ

௫భ

d𝑥 = [𝐹(𝑥)]௫భ

௫మ = 𝐹(𝑥ଶ) − 𝐹(𝑥ଵ) 

Ostania równość nazywa się wzorem Newtona-Leibniza.  

Funkcja 𝑓(𝑥) jest całkowalna w przedziale 〈𝑥ଵ; 𝑥ଶ〉, gdy ona ma ograniczoną funkcję 

pierwotną w tym przedziale. Warunkiem koniecznym całkowalności funkcji jest jej 

ograniczoność, wtedy jak warunkiem dostatecznym jest ciągłość funkcji. 

Przykład  Obliczyć całki oznaczone 

 ∫ 5𝑥ସଵ

଴
d𝑥 

 ∫ (𝑥 − 3)
ଶ

ିଵ
d𝑥 

 ∫ (5𝑥ସ + 𝑒௫)
ଵ

ିଵ
d𝑥 

 

 ∫ 2 cos 𝑥
గ/ଶ

଴
d𝑥 

 ∫
ଶ

ୱ୧୬మ ௫

ଷగ/ସ 

గ/ସ
d𝑥 

 ∫ ቀ
ଵ

௫
− 𝑥ቁ

ଶ

ଵ
d𝑥 

Rozwiązanie 

Poniższe rozwiązania są tylko częścią od całkowitego rozwiązania, początek którego 

można znaleźć w poprzednich przykładach (całka nieoznaczona) 

 ∫ 5𝑥ସଵ

଴
d𝑥 = [𝑥ହ]଴

ଵ = (1) − (0) = 1 

 ∫ (𝑥 − 3)
ଶ

ିଵ
d𝑥 = ቂ

௫మ

ଶ
− 3𝑥ቃ

ିଵ

ଶ

= ቀ
ସ

ଶ
− 6ቁ − ቀ

ଵ

ଶ
+ 3ቁ =

ଵହ

ଶ
 

 ∫ (5𝑥ସ + 𝑒௫)
ଵ

ିଵ
d𝑥 = [𝑥ହ + 𝑒௫]ିଵ

ଵ = (1 + 𝑒) − ቀ−1 +
ଵ

௘
ቁ = 𝑒 −

ଵ

௘
+ 2 =

௘మାଶ௘ାଵ

௘
 

 ∫ 2 cos 𝑥
గ/ଶ

଴
d𝑥 = [2 sin 𝑥]଴

గ/ଶ 
= ቀ2 sin

గ

ଶ
ቁ − (2 sin 0) = 2 

 ∫
ଶ

ୱ୧୬మ ௫

ଷగ/ସ 

గ/ସ
d𝑥 = [−2 ctg 𝑥]గ/ସ

ଷగ/ସ
= ቀ−2ctg

ଷగ

ସ
ቁ − ቀ−2 ctg

గ

ସ
ቁ = 2 + 2 = 4 

 ∫ ቀ
ଵ

௫
− 𝑥ቁ

ଶ

ଵ
d𝑥 = ቂln|𝑥| −

௫మ

ଶ
ቃ

ଵ

ଶ

= ቀln 2 −
ସ

ଶ
ቁ − ቀln 1 −

ଵ

ଶ
ቁ = ln 2 −

ଷ

ଶ
 

Własności:  

 ∫ 𝐴𝑓(𝑥)
௫మ

௫భ
d𝑥 = 𝐴 ⋅ ∫ 𝑓(𝑥)

௫మ

௫భ
d𝑥, 𝐴 ∈ ℝ    
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(stały współczynnik) 

 ∫ ൫𝑓(𝑥) ± 𝑔(𝑥)൯
௫మ

௫భ
d𝑥 = ∫ 𝑓(𝑥)

௫మ

௫భ
d𝑥 ± ∫ 𝑔(𝑥)

௫మ

௫భ
d𝑥 

(całka sumy / różnicy lub addytywność względem funkcji podcałkowej) 

 ∫ 𝑓(𝑥)
௫మ

௫భ
d𝑥 = − ∫ 𝑓(𝑥)

௫భ

௫మ
d𝑥 

 ∫ 𝑓(𝑥)
௫మ

௫భ
d𝑥 = ∫ 𝑓(𝑥)

௔

௫భ
d𝑥 + ∫ 𝑓(𝑥)

௫మ

௔
d𝑥, 𝑎 ∈ 〈𝑥ଵ; 𝑥ଶ〉 

(addytywność względem przedziału całkowania) 

 ∫ 𝑓(𝑥)
௔

௔
d𝑥 = 0 

 ∫ 𝑓(𝑥)
௔

ି௔
d𝑥 = 0 jeżeli funkcja 𝑓(𝑥) nieparzysta 

Przykład  Obliczyć całki oznaczone 

 ∫ (5 − 7𝑥)଼ଵ

଴
d𝑥  ∫ 𝑒ଷ௫ାଵଶ 

଴
d𝑥  ∫ sinh 5𝑥

଴

ିଵ
d𝑥

Rozwiązanie 

Poniższe rozwiązania są tylko częścią od całkowitego rozwiązania, początek którego 

można znaleźć w poprzednich przykładach (całka nieoznaczona) 

 ∫ (5 − 7𝑥)଼ଵ

଴
d𝑥 = ቂ−

(ହି଻௫)వ

଺ଷ
ቃ

଴

ଵ

= ቂ−
(ିଶ)వ

଺ଷ
ቃ − ቂ−

ହవ

଺ଷ
ቃ =

ଶ଻ଽ ଴ଽଵ

ଽ
 

 ∫ 𝑒ଷ௫ାଵଶ 

଴
d𝑥 = ቂ

ଵ

ଷ
𝑒ଷ௫ାଵቃ

଴

ଶ

= ቂ
ଵ

ଷ
𝑒଻ቃ − ቂ

ଵ

ଷ
𝑒ቃ =

௘ళି௘

ଷ
 

 ∫ sinh 5𝑥
଴

ିଵ
d𝑥 = ቂ

ଵ

ହ
cosh 5𝑥ቃ

ିଵ

଴

= ቂ
ଵ

ହ
cosh 0ቃ − ቂ

ଵ

ହ
cosh(−1)ቃ = ⟦cosh(−𝑥) =

cosh 𝑥⟧ =
ଵିୡ୭ୱ

ହ
 

Całkowanie przez podstawienie (metoda zamiany zmiennej): 

න 𝑓(𝑔(𝑥))𝑔ᇱ(𝑥)

௫మ

௫భ

d𝑥 = ቬ

𝑔(𝑥) = 𝑡

d൫𝑔(𝑥)൯ = d𝑡

𝑔′(𝑥)d𝑥 = d𝑡

𝑡 = 𝑔(𝑥)

𝑡ଵ = 𝑔(𝑥ଵ)
𝑡ଶ = 𝑔(𝑥ଶ)

ቭ = න 𝑓(𝑡)

௧మ

௧భ

d𝑡 = [𝐹(𝑡)]௧భ

௧మ

= 𝐹(𝑡ଶ) − 𝐹(𝑡ଵ) 

Wskazówka: możemy obliczyć całkę oznaczoną za pomocą metody zamiany zmiennej 

na dwa sposoby, mianowicie wykorzystujemy schemat dla całkowania przez podstawienia jak 

dla całki nieoznaczonej, w którym dodatkowo 

 przy zamianie zmiennej wyznaczamy nowe granicy całkowania, tzn.  

න 𝑓(𝑔(𝑥))𝑔ᇱ(𝑥)

௫మ

௫భ

d𝑥 = ቬ

𝑔(𝑥) = 𝑡

d൫𝑔(𝑥)൯ = d𝑡

𝑔ᇱ(𝑥)d𝑥 = d𝑡

𝑡 = 𝑔(𝑥)

𝑡ଵ = 𝑔(𝑥ଵ)

𝑡ଶ = 𝑔(𝑥ଶ)
ቭ = න 𝑓(𝑡)

௧మ

௧భ

d𝑡 = [𝐹(𝑡)]௧భ

௧మ

= 𝐹(𝑡ଶ) − 𝐹(𝑡ଵ) 

lub 
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 nie obliczamy nowych granic całkowania, natomiast, zanim przejdziemy do 

podstawiania granic całkowania do funkcji pierwotnej, musimy wrócić do 

początkowego argumentu 𝑥, tzn. 

න 𝑓(𝑔(𝑥))𝑔ᇱ(𝑥)

௫మ

௫భ

d𝑥 = ቬ

𝑔(𝑥) = 𝑡

d൫𝑔(𝑥)൯ = d𝑡

𝑔ᇱ(𝑥)d𝑥 = d𝑡

ቭ = න 𝑓(𝑡) d𝑡 = 𝐹(𝑡) = ⟦𝑡 = 𝑔(𝑥)⟧

= ൣ𝐹൫𝑔(𝑥)൯൧
௫భ

௫మ
= 𝐹൫𝑔(𝑥ଶ)൯ − 𝐹൫𝑔(𝑥ଵ)൯ 

Przykład  Obliczyć całki oznaczone 

 ∫ (2𝑥 + 3)𝑒௫మାଷ௫ିଵଵ

଴
d𝑥  ∫ sinଷ 𝑥 cos 𝑥

଴

ିగ/ଶ 
d𝑥 

Rozwiązanie 

Poniższe rozwiązania są tylko częścią od całkowitego rozwiązania, początek którego 

można znaleźć w poprzednich przykładach (całka nieoznaczona) 

 ∫ (2𝑥 + 3)𝑒௫మାଷ௫ିଵଵ

଴
d𝑥 = ቬ

𝑡 = 𝑥ଶ + 3𝑥 − 1
𝑡ଵ = −1
𝑡ଶ = 3

ቭ = ∫ 𝑒௧ଷ

ିଵ
d𝑡 = [𝑒௧]ିଵ

ଷ = 𝑒ଷ −

𝑒ିଵ =
௘రିଵ

௘
 

 ∫ sinଷ 𝑥 cos 𝑥
଴

ିగ/ଶ 
d𝑥 = ൵

𝑡 = sin 𝑥
𝑡ଵ = −1
𝑡ଶ = 0

൹ = ∫ 𝑡ଷ଴

ିଵ
d𝑡 = ቂ

௧ర

ସ
ቃ

ିଵ

଴

= 0 −
ଵ

ସ
= −

ଵ

ସ
 

Całkowanie przez części: 𝑢 = 𝑢(𝑥), 𝑣 = 𝑣(𝑥), 𝑥 ∈ 〈𝑥ଵ; 𝑥ଶ〉 

න 𝑢

௫మ

௫భ

d𝑣 = [𝑢𝑣]௫భ

௫మ − න 𝑣

௫మ

௫భ

d𝑢 

lub  

න 𝑢

௫మ

௫భ

d𝑣 = ൤𝑢𝑣 − න 𝑣 d𝑢൨
௫భ

௫మ

 

Różnica między powyższymi wzorami polega na tym, że granicy całkowania 

podstawiamy w trakcie obliczeń (pierwszy wzór) lub na samym końcu (drugi wzór). 

Przykład Znaleźć całki oznaczone 

 ∫ ln 𝑥
௘

ଵ
d𝑥  ∫ 𝑥ଷ𝑒௫ଷ

ଵ
d𝑥 

Rozwiązanie 

Poniższe rozwiązania są tylko częścią od całkowitego rozwiązania, początek którego 

można znaleźć w poprzednich przykładach (całka nieoznaczona) 
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 ∫ ln 𝑥
௘

ଵ
d𝑥 = [𝑥 ln 𝑥]ଵ

௘ − ∫ 𝑥
௘

ଵ
d(ln 𝑥) = [𝑒 ln 𝑒 − ln 1] − ∫ ቀ𝑥 ⋅

ଵ

௫
ቁ

௘

ଵ
d𝑥 = 𝑒 −

∫ 1
௘

ଵ
d𝑥 = 𝑒 − [𝑥]ଵ

௘ = 𝑒 − (𝑒 − 1) = 1 

 ∫ 𝑥ଷ𝑒௫ଷ

ଵ
d𝑥 = [𝑒௫(𝑥ଷ − 3𝑥ଶ + 6𝑥 − 6)]ଵ

ଷ = [𝑒ଷ(27 − 27 + 18 − 6)] − [𝑒(1 −

3 + 6 − 6)] = 12𝑒ଷ + 2𝑒 

Całka niewłaściwa 

Całka niewłaściwa jest rozszerzeniem całki oznaczonej na przedziały nieograniczone 

(tzn. ⟨𝑥ଵ; +∞), (−∞; 𝑥ଶ⟩ lub (−∞; +∞), 𝑥ଵ, 𝑥ଶ ∈ ℝ) bądź na przedziały ograniczone 〈𝑥ଵ; 𝑥ଶ〉, 

ale takie, w których funkcja 𝑓(𝑥) podcałkowa jest nieograniczona. Nieograniczoność funkcji 

𝑓(𝑥) w punkcie 𝑥଴ oznacza, że lim
௫→௫బ

𝑓(𝑥) = +∞ lub lim
௫→௫బ

𝑓(𝑥) = −∞. Tak więc są dwa rodzaje 

całek niewłaściwych, które są określone w wymienione niżej sposoby (niech 𝐷௙ = ℝ)  

 nieograniczoność przedziału całkowania: 

∫ 𝑓(𝑥)
ାஶ

௫భ
d𝑥 = lim

௫మ→ାஶ
ቀ∫ 𝑓(𝑥)

௫మ

௫భ
d𝑥ቁ, 

∫ 𝑓(𝑥)
௫మ

ିஶ
d𝑥 = lim

௫భ→ିஶ
ቀ∫ 𝑓(𝑥)

௫మ

௫భ
d𝑥ቁ, 

∫ 𝑓(𝑥)
ାஶ

ିஶ
d𝑥 = ∫ 𝑓(𝑥)

௫భ

ିஶ
d𝑥 + ∫ 𝑓(𝑥)

ାஶ

௫భ
d𝑥; 

 nieograniczoność funkcji podcałkowej:  

dla funkcji 𝑓(𝑥), 𝑥 ∈ 〈𝑥ଵ; 𝑥ଶ〉 nieograniczonej w punkcie 𝑥ଵ: 

න 𝑓(𝑥)

௫మ

௫భ

d𝑥 = lim
ఌ→଴శ

ቌ න 𝑓(𝑥)

௫మ

௫భାఌ

d𝑥ቍ 

dla funkcji 𝑓(𝑥), 𝑥 ∈ 〈𝑥ଵ; 𝑥ଶ〉 nieograniczonej w punkcie 𝑥ଶ: 

න 𝑓(𝑥)

௫మ

௫భ

d𝑥 = lim
ఌ→଴శ

ቌ න 𝑓(𝑥)

௫మିఌ

௫భ

d𝑥ቍ 

dla funkcji 𝑓(𝑥), 𝑥 ∈ 〈𝑥ଵ; 𝑥ଶ〉 nieograniczonej w punkcie wewnętrznym 𝑥଴ ∈

(𝑥ଵ; 𝑥ଶ): 

න 𝑓(𝑥)

௫మ

௫భ

d𝑥 = lim
ఌ→଴

ቌ න 𝑓(𝑥)

௫బିఌ

௫భ

d𝑥ቍ + lim
ఋ→଴

ቌ න 𝑓(𝑥)

௫మ

௫బାఋ

d𝑥ቍ 

Możliwe również połączenie dwóch rodzajów całek niewłaściwych. 

Definicja Całka niewłaściwa nazywa się zbieżna, jeżeli odpowiednia granica bądź 

granicy istnieją i skończone. Całka niewłaściwa, która nie jest zbieżna, nazywa się rozbieżna. 
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Przykład Sprawdzić zbieżność całek niewłaściwych (niektóre przykłady wzięte z [2]) i 

w przypadku zbieżności obliczyć 

 ∫ 𝑒௫ାஶ

଴
d𝑥  ∫ 𝑒௫଴

ିஶ
d𝑥  ∫ 𝑒௫ାஶ

ିஶ
d𝑥

Rozwiązanie 

 ∫ 𝑒௫ାஶ

଴
d𝑥 = lim

௫మ→ାஶ
൫∫ 𝑒௫௫మ

଴
d𝑥൯ = lim

௫మ→ାஶ
(𝑒௫మ − 1) = ⟦∞ − 1⟧ = ∞  

rozbieżna 

 ∫ 𝑒௫଴

ିஶ
d𝑥 = lim

௫భ→ିஶ
ቀ∫ 𝑒௫଴

௫భ
d𝑥ቁ = lim

௫భ→ିஶ
(1 − 𝑒௫భ) = ቘ1 − 𝑒ିஶ = 1 −

ଵ

௘ಮ
=

1 − 0቙ = 1 

zbieżna do 1 

 ∫ 𝑒௫ାஶ

ିஶ
d𝑥 = ∫ 𝑒௫଴

ିஶ
d𝑥 + ∫ 𝑒௫ାஶ

଴
d𝑥 

rozbieżna, bo ∫ 𝑒௫ାஶ

଴
d𝑥 jest rozbieżna 

Niektóre zastosowania rachunku całkowego funkcji jednej zmiennej 

Niech dalej każda funkcja będzie ciągła w odpowiednim przedziale. Wtedy z ciągłości 

funkcji wynika jej całkowalność w tym przedziale. 

Pole figur płaskich: pole 𝑆 figury płaskiej ograniczonej krzywą 𝑦 = 𝑓(𝑥) a osią 𝑂𝑥 w 

przedziale 〈𝑎; 𝑏〉 (co równoważne dodatkowym ograniczeniu prostymi 𝑦 = 𝑎 i 𝑦 = 𝑏) wynosi 

 𝑆 = ∫ 𝑓(𝑥)
௕

௔
d𝑥, jeżeli 𝑓(𝑥) ≥ 0, 𝑥 ∈ 〈𝑎; 𝑏〉 (tzn. wykres funkcji znajduje się nad 

osią 𝑂𝑥 w przedziale 〈𝑎; 𝑏〉); 

 𝑆 = − ∫ 𝑓(𝑥)
௕

௔
d𝑥, jeżeli 𝑓(𝑥) ≤ 0, 𝑥 ∈ 〈𝑎; 𝑏〉 (tzn. wykres funkcji znajduje się 

pod osią 𝑂𝑥 w przedziale 〈𝑎; 𝑏〉); 

 𝑆 = ∫ 𝑓(𝑥)
௖

௔
 d𝑥 + (− ∫ 𝑓(𝑥)

௕

௖
d𝑥), jeżeli 𝑓(𝑥) ≥ 0, 𝑥 ∈ 〈𝑎; 𝑐〉 i 𝑓(𝑥) ≤ 0, 𝑥 ∈

〈𝑐; 𝑏〉 (tzn. wykres funkcji znajduje się nad osią 𝑂𝑥 w przedziale 〈𝑎; 𝑐〉 i pod osią 

𝑂𝑥 w przedziale 〈𝑐; 𝑏〉). 

Pole 𝑆 figury płaskiej ograniczonej krzywymi 𝑦 = 𝑓ଵ(𝑥) i 𝑦 = 𝑓ଶ(𝑥) w przedziale 〈𝑎; 𝑏〉, 

takimi że dla wszystkich 𝑥 ∈ 〈𝑎; 𝑏〉 zachodzi 𝑓ଶ(𝑥) ≥ 𝑓ଵ(𝑥), wynosi 

 𝑆 = ∫ ൫𝑓ଶ(𝑥) − 𝑓ଵ(𝑥)൯
௕

௔
d𝑥 

Przykład Obliczyć pola wymienionych niżej figur płaskich 

 𝐹ଵ = {(𝑥; 𝑦)|−1 ≤ 𝑥 ≤ 1, 𝑥ଶ − 1 ≤ 𝑦 ≤ 0} 

 𝐹ଶ = {(𝑥; 𝑦)|0 ≤ 𝑥 ≤ 𝜋, 𝑥 − 𝜋 ≤ 𝑦 ≤ sin 𝑥} 

 



 

51 
 

Rozwiązanie 

 𝐹ଵ = {(𝑥; 𝑦)|−1 ≤ 𝑥 ≤ 1, 𝑥ଶ − 1 ≤ 𝑦 ≤ 0} 

𝑓ଵ(𝑥) = 𝑥ଶ − 1, 𝑥 ∈ 〈0; 1〉 

𝑆ଵ = − න 𝑓ଶ(𝑥)

ଵ

଴

 d𝑥 = − න(𝑥ଶ − 1)

ଵ

଴

d𝑥 = ቈ−
𝑥ଶ

3
+ 𝑥቉

଴

ଵ

= ൬−
1

3
+ 1൰ + 0 =

2

3

≈ 0,67 

 𝐹ଶ = {(𝑥; 𝑦)|0 ≤ 𝑥 ≤ 𝜋, 𝑥 − 𝜋 ≤ 𝑦 ≤ sin 𝑥} 

𝑓ଶ,ଵ(𝑥) = 𝑥 − 𝜋, 𝑓ଶ,ଶ(𝑥) = sin 𝑥 , 𝑥 ∈ 〈0; 𝜋〉 

𝑆ଶ = න ቀ𝑓ଶ,ଶ(𝑥) − 𝑓ଶଵ(𝑥)ቁ

గ

଴

 d𝑥 = න൫sin 𝑥 − (𝑥 − 𝜋)൯

గ

଴

d𝑥

= ቈ− cos 𝑥 −
𝑥ଶ

2
+ 𝜋𝑥቉

଴

గ

= ቆ− cos 𝜋 −
𝜋ଶ

2
+ 𝜋ଶቇ − (− cos 0)

=
𝜋ଶ

2
+ 2 ≈ 6,93 

Długość łuku krzywej płaskiej: długość 𝐿 łuku krzywej funkcji 𝑦 = 𝑓(𝑥), 𝑥 ∈ 〈𝑎; 𝑏〉 

wynosi 

𝐿 = න ට1 + ൫𝑓ᇱ(𝑥)൯
ଶ

௕

௔

d𝑥 

Przykład Obliczyć długość krzywej opisanej wzorem 𝑓(𝑥) = cosh 𝑥 , 𝑥 ∈ 〈0; 1〉. 

Rozwiązanie 

𝑓(𝑥) = cosh 𝑥 , 𝑥 ∈ 〈0; 1〉 

𝐿 = න ට1 + ൫𝑓ᇱ(𝑥)൯
ଶ

ଵ

଴

d𝑥 = න ඥ1 + (sinh 𝑥)ଶ

ଵ

଴

d𝑥 = න ඥcoshଶ 𝑥

ଵ

଴

d𝑥

= න cosh 𝑥

ଵ

଴

d𝑥 = [sinh 𝑥]଴
ଵ = sinh 1 − sinh 0 = sinh 1

=
𝑒 − 𝑒ିଵ

2
=

𝑒ଶ − 1

2𝑒
≈ 8,68 

Współrzędne środka ciężkości (tzw. momenty statyczne) jednorodnej figury płaskiej: 

współrzędne środka ciężkości (𝑥௦; 𝑦௦) figury płaskiej 𝐹 o polu 𝑆 

 𝐹 = {(𝑥; 𝑦)|𝑎 ≤ 𝑥 ≤ 𝑏, 0 ≤ 𝑦 ≤ 𝑓(𝑥)} można znaleźć ze wzorów 
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𝑥௦ =
1

𝑆
න 𝑥𝑓(𝑥)

௕

௔

d𝑥 

𝑦௦ =
1

2𝑆
න 𝑓ଶ(𝑥)

௕

௔

d𝑥 

(figura ograniczona wykresem funkcji 𝑦 = 𝑓(𝑥), 𝑥 ∈ 〈𝑎; 𝑏〉, osią 𝑂𝑥 oraz 

prostymi 𝑥 = 𝑎 i 𝑥 = 𝑏) 

 𝐹 = {(𝑥; 𝑦)|𝑎 ≤ 𝑥 ≤ 𝑏, 𝑓ଵ(𝑥) ≤ 𝑦 ≤ 𝑓ଶ(𝑥)} można znaleźć ze wzorów 

𝑥௦ =
1

𝑆
න 𝑥(𝑓ଶ(𝑥) − 𝑓ଵ(𝑥)) 

௕

௔

d𝑥 

𝑦௦ =
1

2𝑆
න൫𝑓ଶ

ଶ(𝑥) − 𝑓ଵ
ଶ(𝑥)൯

௕

௔

d𝑥 

(figura ograniczona wykresami funkcji 𝑦 = 𝑓ଵ(𝑥), 𝑦 = 𝑓ଶ(𝑥), 𝑓ଶ(𝑥) ≥ 𝑓ଵ(𝑥),

𝑥 ∈ 〈𝑎; 𝑏〉 oraz prostymi 𝑥 = 𝑎 i 𝑥 = 𝑏) 

Przykład Znaleźć momenty statyczne (𝑥௦; 𝑦௦) figury płaskiej 

𝐹 = {(𝑥; 𝑦)|0 ≤ 𝑥 ≤ 3, 0 ≤ 𝑦 ≤ 𝑒௫ − 1} 

Rozwiązanie 

𝐹 = {(𝑥; 𝑦)|0 ≤ 𝑥 ≤ 3, 0 ≤ 𝑦 ≤ 𝑒௫ − 1} 

𝑓(𝑥) = 𝑒௫ − 1 

𝑆 = න 𝑓(𝑥)

ଷ

଴

d𝑥 = න(𝑒௫ − 1)

ଷ

଴

d𝑥 = [𝑒௫ − 𝑥]଴
ଷ = (𝑒ଷ − 3) − 1 = 𝑒ଷ − 4 

𝑥௦ =
ଵ

ௌ
∫ 𝑥𝑓(𝑥)

ଷ

଴
d𝑥 =

ଵ

௘యିସ
∫ 𝑥

ଷ

଴
(𝑒௫ − 1)d𝑥 = , 

 

∫ 𝑥𝑒௫ d𝑥 = ⟦𝑒௫d𝑥 = d(𝑒௫)⟧ = ∫ 𝑥 d(𝑒௫) = ൵

𝑢 = 𝑥
𝑣 = 𝑒௫

∫ 𝑢 d𝑣 = 𝑣𝑢 − ∫ 𝑣 d𝑢
൹ = 𝑥𝑒௫ −

∫ 𝑒௫ d(𝑥) = 𝑥𝑒௫ − 𝑒௫ + 𝐶 = (𝑥 − 1)𝑒௫ + 𝐶, 𝐶 ∈ ℝ, 

=
1

𝑒ଷ − 4
ቈ(𝑥 − 1)𝑒௫ −

𝑥ଶ

2
቉

଴

ଷ

=
ቀ2𝑒ଷ −

9
2

ቁ − (−1)

𝑒ଷ − 4
=

4𝑒ଷ − 7

2𝑒ଷ − 8
≈ 2,28 
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𝑦௦ =
1

2𝑆
න 𝑓ଶ(𝑥)

ଷ

଴

d𝑥 =
1

2(𝑒ଷ − 4)
න(𝑒௫ − 1)ଶ

ଷ

଴

d𝑥

=
1

2(𝑒ଷ − 4)
න(𝑒ଶ௫ − 2𝑒௫ + 1)

ଷ

଴

d𝑥

=
1

2(𝑒ଷ − 4)
൤
1

2
𝑒ଶ௫ − 2𝑒௫ + 𝑥൨

଴

ଷ

=
ቀ

1
2

𝑒଺ − 2𝑒ଷ + 3ቁ − ቀ
1
2

− 2ቁ

2(𝑒ଷ − 4)

= (𝑒଺ − 4𝑒ଷ + 9)/4(𝑒ଷ − 4)  ≈ 5,16 

Współrzędne środka ciężkości ቀ
ସ௘యି଻

ଶ௘యି଼
;

௘లିସ௘యାଽ

ସ(௘యିସ)
ቁ 

Pole powierzchni obrotowej: pole 𝑆 powierzchni powstałej przez obrót wykresu funkcji 

𝑦 = 𝑓(𝑥), 𝑥 ∈ 〈𝑎; 𝑏〉 wokół  

 osi 𝑂𝑥 wynosi: 

 𝑆 = 2𝜋 ∫ 𝑓(𝑥)ට1 + ൫𝑓ᇱ(𝑥)൯
ଶ௕

௔
d𝑥, jeżeli 𝑓(𝑥) ≥ 0, 𝑥 ∈ 〈𝑎; 𝑏〉 

 𝑆 = 2𝜋 ∫ |𝑓(𝑥)|ට1 + ൫𝑓ᇱ(𝑥)൯
ଶ௕

௔
d𝑥 

 osi 𝑂𝑦 wynosi (przy warunku dodatkowym 𝑎 ≥ 0): 

𝑆 = 2𝜋 න 𝑥ට1 + ൫𝑓ᇱ(𝑥)൯
ଶ

௕

௔

d𝑥 

Przykład Obliczyć pola powierzchni obrotowej powstałej przez obrót wykresu funkcji  

𝑓(𝑥) = cosh 𝑥 , 0 ≤ 𝑥 ≤ 1 wokół osi 𝑂𝑦. 

Rozwiązanie 

𝑓(𝑥) = cosh, 0 ≤ 𝑥 ≤ 1 wokół osi 𝑂𝑦 



 

54 
 

𝑆 = 2𝜋 න 𝑥ට1 + ൫𝑓ଶ
ᇱ(𝑥)൯

ଶ

ଵ

଴

d𝑥 = 2𝜋 න 𝑥ඥ1 + (sinh 𝑥)ଶ

ଵ

଴

d𝑥 = 2𝜋 න 𝑥 cosh 𝑥

ଵ

଴

d𝑥

= 2𝜋 න 𝑥

ଵ

଴

d sinh 𝑥 = ൶
න 𝑢 d𝑣 = 𝑢𝑣 − න 𝑣 d𝑢

𝑢 = 𝑥
𝑣 = sinh 𝑥

ൺ

= 2𝜋 ൤𝑥 sinh 𝑥 − න sinh 𝑥 d𝑥൨
଴

ଵ

= 2𝜋[𝑥 sinh 𝑥 − cosh 𝑥]଴
ଵ

= 2𝜋൫(sinh 1 − cosh 1) − (0 − cosh 0)൯

= 2𝜋 ቆ
𝑒 − 𝑒ିଵ

2
−

𝑒 + 𝑒ିଵ

2
+ 1ቇ = 𝜋(2 − 2𝑒ିଵ) =

2𝜋(𝑒 − 1)

𝑒

≈ 3,97 

Objętość bryły obrotowej: objętość 𝑉 bryły obrotowej powstałej przez obrót figury 

płaskiej 𝐹 = {(𝑥; 𝑦)|𝑎 ≤ 𝑥 ≤ 𝑏, 0 ≤ 𝑦 ≤ 𝑓(𝑥)} wokół  

 osi 𝑂𝑥 wynosi: 

𝑉 = 𝜋 න 𝑓ଶ(𝑥)

௕

௔

d𝑥 

 osi 𝑂𝑦 wynosi (przy warunku dodatkowym 𝑎 ≥ 0): 

𝑉 = 2𝜋 න 𝑥𝑓(𝑥)

௕

௔

d𝑥 

Jeśli figura ograniczona wykresami funkcji 𝑓ଵ,ଶ(𝑥), 𝑥 ∈ 〈𝑎; 𝑏〉, takimi że 𝑓ଵ(𝑥) ≤ 𝑓ଶ(𝑥),

𝑥 ∈ 〈𝑎; 𝑏〉, mianowicie może być zapisana w postaci  

𝐹 = {(𝑥; 𝑦)|𝑎 ≤ 𝑥 ≤ 𝑏, 𝑓ଵ(𝑥) ≤ 𝑦 ≤ 𝑓ଶ(𝑥)} 

to objętość bryły obrotowej powstałej przez obrót figury 𝐹 wokół osi 𝑂𝑥 wynosi 

𝑉 = 𝜋 න൫𝑓ଵ
ଶ(𝑥) − 𝑓ଶ

ଶ(𝑥)൯

௕

௔

d𝑥 

Przykład Obliczyć objętości brył obrotowych powstałych przez obroty figur płaskich 

wokół zaznaczonych osi 

 𝐹ଵ = {(𝑥; 𝑦)|0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 𝑥} wokół osi 𝑂𝑦 

 𝐹ଶ = {(𝑥; 𝑦)|0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 5𝑥ଶ} wokół osi 𝑂𝑥 

Rozwiązanie 

 𝐹ଵ = {(𝑥; 𝑦)|0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 𝑥} wokół osi 𝑂𝑦 

𝑓ଵ(𝑥) = 𝑥, 𝑥 ∈  〈0; 1〉 
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𝑉ଵ = 2𝜋 න 𝑥𝑓ଵ(𝑥)

ଵ

଴

d𝑥 = 2𝜋 න 𝑥ଶ

ଵ

଴

 d𝑥 = 2𝜋 ቈ
𝑥ଷ

3
቉

଴

ଵ

=
2𝜋

3
≈ 2,09 

 𝐹ଶ = {(𝑥; 𝑦)|0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 5𝑥ଶ} wokół osi 𝑂𝑥 

𝑓ଶ(𝑥) = 5𝑥ଶ, 𝑥 ∈  〈0; 1〉 

𝑉ଶ = 𝜋 න 𝑓ଶ
ଶ(𝑥)

ଵ

଴

d𝑥 = 𝜋 න 25𝑥ସ

ଵ

଴

 d𝑥 = 𝜋[5𝑥ହ]଴
ଵ = 5𝜋 ≈ 15,71 

Współrzędne środka ciężkości jednorodnej bryły obrotowej: współrzędne środków 

ciężkości (𝑥௦; 𝑦௦) jednorodnej bryły obrotowej o objętości V, która powstała przez obrót figury  

𝐹 = {(𝑥; 𝑦)|𝑎 ≤ 𝑥 ≤ 𝑏, 0 ≤ 𝑦 ≤ 𝑓(𝑥)} 

wokół osi 𝑂𝑥 można znaleźć ze wzorów 

𝑥௦ =
𝜋

𝑉
න 𝑥𝑓(𝑥) 

௕

௔

d𝑥 

𝑦௦ = 0 

(współrzędna 𝑦௦ = 0 zerowa, bo bryła jest symetryczna względem osi 𝑂𝑥). 

Przykład Znaleźć współrzędne środku ciężkości bryły obrotowej, która powstały przez 

obrót figury płaskiej 𝐹 = {(𝑥; 𝑦)|0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 5𝑥ଶ} wokół osi 𝑂𝑥. 

Rozwiązanie 

𝐹 = {(𝑥; 𝑦)|0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 5𝑥ଶ} 

𝑉 = 5𝜋 (z poprzednich przykładów) 

𝑥௦ =
𝜋

𝑉
න 𝑥𝑓(𝑥)

ଵ

଴

d𝑥 =
𝜋

5𝜋
න 𝑥

ଵ

଴

⋅ 5𝑥ଶd𝑥 =
1

5
න 5𝑥ଷ

ଵ

଴

d𝑥 = ቈ
𝑥ସ

4
቉

଴

ଵ

=
1

4
− 0 =

1

4
 

Współrzędne środka ciężkości ቀ
ଵ

ସ
; 0ቁ. 

Długość drogi w ruchu zmiennym: ponieważ całkowanie jest działaniem odwrotnym 

do różniczkowania, mając funkcję (w tym funkcję stałą) przyspieszenia ruchu pewnego ciała, 

można znaleźć prędkość, z czego w swoją kolej – drogę, mianowicie 

𝑣(𝑡) = ∫ 𝑎(𝑡) d𝑡 + 𝑣଴, 

gdzie 𝑣଴ – to jest prędkość początkowa 

𝑠(𝑡) = න 𝑣(𝑡) d𝑡 

W przypadku, gdy cząstka porusza się jednostajnie zmiennie (co oznacza, że 

przyspieszenie stałe) oraz zakładając, że początkowa droga wynosi zero, otrzymamy wzory  
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𝑣(𝑡) = න 𝑎 d𝑡 + 𝑣଴ = 𝑎𝑡 + 𝑣଴ 

𝑠(𝑡) = න 𝑣(𝑡) d𝑡 = න(𝑎𝑡 + 𝑣଴) d𝑡 =
𝑎𝑡ଶ

2
+ 𝑣଴𝑡 

Jeżeli cząstka porusza się ze stałą prędkością 𝑣 = const a prędkość początkowa jest 

zerowa otrzymamy wzór  

𝑠(𝑡) = න 𝑣(𝑡) d𝑡 = න 𝑣 d𝑡 = 𝑣𝑡 ⇒ 𝑆 = 𝑣 ⋅ 𝑡 

Przykład Obiekt porusza się ze stałym przyspieszeniem 𝑎 = 0,5 m/sଶ. Zakładając 

zerowość prędkości początkowej, znaleźć o ile przemieści się obiekt przez 𝑡 = 10 s. 

Rozwiązanie 

𝑠(𝑡) =
𝑎𝑡ଶ

2
+ 𝑣଴𝑡 

𝑎 = 0,5, 𝑣଴ = 0 

𝑠(𝑡) =
𝑡ଶ

4
 

𝑠(12) =
10ଶ

4
= 25 m 

Przykład Obiekt porusza się ze zmiennym przyspieszeniem 𝑎(𝑡) = 0,02𝑡 m/sଶ. 

Zakładając zerowość prędkości początkowej, znaleźć o ile przemieści się obiekt przez 𝑡 = 5 s. 

Rozwiązanie 

𝑎(𝑡) = 𝑡, 𝑣଴ = 0 

𝑣(𝑡) = න 𝑎(𝑡) d𝑡 + 𝑣଴ 

𝑣(𝑡) = න 0,02𝑡 d𝑡 =
0,02𝑡ଶ

2
= 0,01𝑡ଶ 

𝑠(𝑡) = න 𝑣(𝑡) d𝑡 

𝑠(𝑡) = න 0,01𝑡ଶ d𝑡 =
0,01𝑡ଷ

3
=

𝑡ଷ

300
 

𝑠(12) =
10ଷ

300
=

1

3
≈ 0,33 m 

Przykład Obiekt porusza się ze zmiennym przyspieszeniem 𝑎(𝑡) = 0,24(𝑡ଷ − 𝑡) m/sଶ. 

Zakładając zerowość prędkości początkowej, znaleźć o ile przemieści się obiekt przez 𝑡 = 10 s. 

Rozwiązanie 

𝑎(𝑡) = 0,24(𝑡ଷ − 𝑡), 𝑣଴ = 0 
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𝑣(𝑡) = න 𝑎(𝑡) d𝑡 + 𝑣଴ 

𝑣(𝑡) = න(0,24𝑡ଷ − 0,24𝑡) d𝑡 = 0,06𝑡ସ − 0,12𝑡ଶ 

𝑠(𝑡) = න 𝑣(𝑡) d𝑡 

𝑠(𝑡) = න(0,06𝑡ସ − 0,12𝑡ଶ) d𝑡 = 0,012𝑡ହ − 0,04𝑡ଷ 

𝑠(10) = 0,012 ⋅ 10ହ − 0,04 ⋅ 10ଷ = 1 160 m = 1,16 km 

1.6.  FUNKCJE DWU LUB WIĘCEJ ZMIENNYCH 

Podstawowe pojęcia 

Niech 𝑛 ∈ ℕ, 𝑛 ≥ 2. 

Definicja Funkcją 𝑛 zmiennych nazywa się odwzorowanie 𝑧 = 𝑓( 𝑥 തതത) zbioru 𝐷 ⊆ ℝ௡ 

(zwane dziedziną) 

𝑓 ∶  
𝐷 →  ℝ

(𝑥ଵ, 𝑥ଶ, … , 𝑥௡) ⟼ 𝑓(𝑥ଵ, 𝑥ଶ, … , 𝑥௡)
 

które każdemu elementowi  𝑥 തതത = (𝑥ଵ, 𝑥ଶ, … , 𝑥௡) przyporządkuje dokładnie jedną wartość 

𝑓(𝑥ଵ, 𝑥ଶ, … , 𝑥௡) ∈ ℝ.  𝑥 തതത = (𝑥ଵ, 𝑥ଶ, … , 𝑥௡) nazywa się argumentem funkcji, 𝑥ଵ, 𝑥ଶ, … , 𝑥௡ – 

zmiennymi niezależnymi, 𝑓(𝑥ଵ, 𝑥ଶ, … , 𝑥௡) – wartością funkcji, 𝑧 – zmienną zależną. 

W przestrzeni ℝ௡ odległość pomiędzy punktami 𝑃ଵቀ𝑥ଵ
(ଵ)

, 𝑥ଶ
(ଵ)

, … , 𝑥௡
(ଵ)

ቁ,  

𝑃ଶቀ𝑥ଵ
(ଶ)

, 𝑥ଶ
(ଶ)

, … , 𝑥௡
(ଶ)

ቁ określona wzorem  

𝑑(𝑃ଵ; 𝑃ଶ) = ටቀ𝑥ଵ
(ଵ)

− 𝑥ଵ
(ଶ)

ቁ
ଶ

+ ቀ𝑥ଶ
(ଵ)

− 𝑥ଶ
(ଶ)

ቁ
ଶ

+ ⋯ + ቀ𝑥௡
(ଵ)

− 𝑥௡
(ଶ)

ቁ
ଶ

 

Tak więc w przypadku przestrzeni  

 ℝଵ = ℝ:    𝑑(𝑃ଵ; 𝑃ଶ) = ටቀ𝑥ଵ
(ଵ)

− 𝑥ଵ
(ଶ)

ቁ
ଶ

= ቚ𝑥ଵ
(ଵ)

− 𝑥ଵ
(ଶ)

ቚ 

 ℝଶ:    𝑑(𝑃ଵ; 𝑃ଶ) = ටቀ𝑥ଵ
(ଵ)

− 𝑥ଵ
(ଶ)

ቁ
ଶ

+ ቀ𝑥ଶ
(ଵ)

− 𝑥ଶ
(ଶ)

ቁ
ଶ

 

Dalej obejrzyjmy przypadek funkcji dwu zmiennych 𝑧 = 𝑓(𝑥, 𝑦) (kiedy liczba 

zmiennych większa od dwóch, teoria przedstawia się w analogiczny sposób). 

Definicja (Heinego) Granicą funkcji dwu zmiennych 𝑧 = 𝑓(𝑥, 𝑦) w punkcie 𝑃଴ =

(𝑥଴, 𝑦଴) nazywa się 𝑔, jeżeli dla każdego ciągu liczbowego {𝑃௡ = (𝑥௡, 𝑦௡)}, dążącego do 𝑃଴, 

zachodzi lim
௡→ஶ

𝑓(𝑥௡, 𝑦௡) = 𝑔. Oznaczamy granicę funkcji dwu zmiennych przez lim
௫→௫బ
௬→௬బ

𝑓(𝑥, 𝑦). 
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Innymi słowy, lim
௫→௫బ
௬→௬బ

𝑓(𝑥, 𝑦) = 𝑔 ⟺ ቂ𝑃௡(𝑥௡, 𝑦௡) → 𝑃௢(𝑥଴, 𝑦଴)
𝑛 ⟶ ∞

⟹
𝑓(𝑥௡, 𝑦௡) → 𝑔

𝑛 ⟶ ∞
ቃ 

Definicja Funkcja dwu zmiennych 𝑦 = 𝑓(𝑥, 𝑦) nazywa się ciągła w punkcie (𝑥଴, 𝑦଴), 

jeśli lim
௫→௫బ
௬→௬బ

𝑓(𝑥, 𝑦) = 𝑓(𝑥଴, 𝑦଴). 

Inaczej mówiąc, funkcja ciągła w punkcie, jeśli granica w punkcie równa się wartość 

funkcji w tym punkcie. 

Definicja Pochodną cząstkową funkcji 

dwu zmiennych 𝑓(𝑥, 𝑦) względem zmiennej 

𝑥 w punkcie (𝑥଴, 𝑦଴) nazywa się granica (o 

ile ona istnieje) 

lim
୼௫→଴

𝑓(𝑥଴ + Δ𝑥, 𝑦଴) − 𝑓(𝑥଴, 𝑦଴)

Δ𝑥
 

Oznaczamy:
డ௙

డ௫
|(௫బ,௬బ), 𝑓௫

ᇱ(𝑥଴, 𝑦଴), 𝑓௫(𝑥଴, 𝑦଴) 

Definicja Pochodną cząstkową funkcji 

dwu zmiennych 𝑓(𝑥, 𝑦) względem zmiennej 

𝑦 w punkcie (𝑥଴, 𝑦଴) nazywa się granica (o 

ile ona istnieje) 

lim
୼௬→଴

𝑓(𝑥଴, 𝑦଴ + Δ𝑦) − 𝑓(𝑥଴, 𝑦଴)

Δ𝑦
 

Oznaczamy:
డ௙

డ௬
|(௫బ,௬బ), 𝑓௬

ᇱ(𝑥଴, 𝑦଴), 𝑓௬(𝑥଴, 𝑦଴) 

Podobnie do pochodnej funkcji jednej zmiennej, dla obliczania pochodnych 

cząstkowych, nie koniecznym jest wykorzystanie definicji. Natomiast, dla pochodnej 

cząstkowej względem jednej zmiennej różniczkujemy funkcje jako funkcje jednej zmiennej, 

zakładając że druga zmienna jest stałą. Tak więc dla różniczkowania funkcji 𝑓(𝑥, 𝑦) względem 

zmiennej 𝑥 różniczkujemy funkcje 𝑓(𝑥, const), a dla różniczkowania funkcji 𝑓(𝑥, 𝑦) względem 

zmiennej 𝑦 różniczkujemy funkcje 𝑓(const, 𝑦). 

Dla funkcji dwu zmiennych również określone pojęcia pochodnych wyższych rzędów, 

tzn. pochodnych od pochodnych. W porównaniu do funkcji jednej zmiennej, pochodnych 

wyższych rzędów jest więcej. Tak na przykład, pochodne funkcji 𝑓(𝑥, 𝑦) rzędu drugiego: 

 డమ௙

డ௫మ
=

డ

డ௫
ቀ

డ௙

డ௫
ቁ   డమ௙

డ௬మ
=

డ

డ௬
ቀ

డ௙

డ௬
ቁ  డమ௙

డ௫డ௬
=

డ

డ௫
ቀ

డ௙

డ௬
ቁ  డమ௙

డ௬డ௫
=

డ

డ௬
ቀ

డ௙

డ௫
ቁ 

dla funkcji ciągłej ostatnie dwie pochodne cząstkowe (zwane pochodnymi mieszanymi) są 

równe sobie (twierdzenie Schwarza). 

Pochodne drugiego rzędu oznaczamy przez  

 డమ௙

డ௫మ
≡ 𝑓௫௫

ᇱᇱ ≡ 𝑓௫௫ 

 డమ௙

డ௬మ
≡ 𝑓௬௬

ᇱᇱ ≡ 𝑓௬௬ 

 డమ௙

డ௫డ௬
≡ 𝑓௫௬

ᇱᇱ ≡ 𝑓௫௬ 

 డమ௙

డ௬డ௫
≡ 𝑓௬௫

ᇱᇱ ≡ 𝑓௬௫ 

Pochodne drugiego rzędu w punkcie (𝑥଴; 𝑦଴) oznaczamy przez  

 డమ௙

డ௫మ
ቚ

(௫బ;௬బ)
≡ 𝑓௫௫

ᇱᇱ (𝑥଴; 𝑦଴) ≡ 𝑓௫௫(𝑥଴; 𝑦଴) 
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 డమ௙

డ௬మ
ቚ

(௫బ;௬బ)
≡ 𝑓௬௬

ᇱᇱ (𝑥଴; 𝑦଴) ≡ 𝑓௬௬(𝑥଴; 𝑦଴) 

 డమ௙

డ௫డ௬
ቚ

(௫బ;௬బ)
≡ 𝑓௫௬

ᇱᇱ (𝑥଴; 𝑦଴) ≡ 𝑓௫௬(𝑥଴; 𝑦଴) 

 డమ௙

డ௬డ௫
ቚ

(௫బ;௬బ)
≡ 𝑓௬௫

ᇱᇱ (𝑥଴; 𝑦଴) ≡ 𝑓௬௫(𝑥଴; 𝑦଴) 

Niech dalej dla każdej funkcji istnieją wszystkie pochodne cząstkowe potrzebnego rzędu 

(co oznacza, że funkcja będzie różniczkowalna odpowiedniego rzędu). 

Definicja Różniczką zupełną rzędu pierwszego funkcji n zmiennych 𝑓(𝑥ଵ, 𝑥ଶ, … 𝑥௡) w 

punkcie 𝑃଴ቀ𝑥ଵ
(଴)

, 𝑥ଶ
(଴)

, … , 𝑥௡
(଴)

ቁ nazywa się   d𝑓(𝑃଴) =
డ௙

డ௫భ
d𝑥ଵ +

డ௙

డ௫మ
d𝑥ଶ + ⋯ +

డ௙

డ௫೙
d𝑥௡ . 

Różniczką zupełną rzędu pierwszego funkcji dwu zmiennych 𝑓(𝑥ଵ, 𝑥ଶ) w punkcie 

𝑃଴ቀ𝑥ଵ
(଴)

, 𝑥ଶ
(଴)

ቁ nazywa się   d𝑓(𝑃଴) =
డ௙

డ௫భ
d𝑥ଵ +

డ௙

డ௫మ
d𝑥ଶ. Różniczką zupełną rzędu drugiego 

funkcji dwu zmiennych 𝑓(𝑥, 𝑦) w punkcie 𝑃଴(𝑥଴, 𝑦଴) nazywa się   d𝑓(𝑃଴) =
డమ௙

డ௫మ
|௉బ

d𝑥ଶ +

2
డమ௙

డ௫డ௬
|௉బ

d𝑥d𝑦 +
డమ௙

డ௬మ
|௉బ

d𝑦ଶ . 

Definicja Gradientem funkcji 𝑛 zmiennych 𝑓(𝑥ଵ, 𝑥ଶ, … 𝑥௡) nazywa się wektor 

ቂ
డ௙

డ௫భ
;

డ௙

డ௫మ
; … ;

డ௙

డ௫೙
 ቃ. Gradientem funkcji dwu zmiennych 𝑓(𝑥ଵ, 𝑥ଶ, ) nazywa się wektor 

ቂ
డ௙

డ௫భ
;

డ௙

డ௫మ
 ቃ. Oznaczamy gradient funkcji 𝑓 przez ∇𝑓 lub grad 𝑓. 

Gradient (w punkcie) wskazuje kierunek największego wzrostu funkcji (w tym punkcie). 

Długość wektora gradient wskazuje wielkość wzrostu (tzn. o ile wzrośnie funkcja przy 

jednostkowym wzroście argumentu).  Zbiór wektorów grad 𝑓 tworzy tzw. pole gradientu. 

Jeśli na przykład, funkcja 𝑓(𝑥, 𝑦, 𝑧) jest funkcją temperatury, to ∇𝑓(𝑃଴) =

ቂ
డ௙

డ௫
|௉బ

,
డ௙

డ௬
|௉బ

,
డ௙

డ௭
|௉బ

ቃ jest wskaźnikiem największego wzrostu temperatury w punkcie 

𝑃଴(𝑥଴, 𝑦଴, 𝑧଴), a moduł tego wektora ห∇𝑓|௉బ
ห = ටቀ

డ௙

డ௫
|௉బ

ቁ
ଶ

+ ቀ
డ௙

డ௬
|௉బ

ቁ
ଶ

+ ቀ
డ௙

డ௭
|௉బ

ቁ
ଶ

 odpowie na 

pytanie o ile wzrośnie temperatura gdy przemieścimy się na jednostkę długości w kierunku 

wektora ∇𝑓(𝑃଴). 

Przykład Znaleźć wszystkie pochodne cząstkowe rzędu pierwszego wymienionych niżej 

funkcji wielu zmiennych (w zaznaczonych punktach) 

 𝑓(𝑥, 𝑦) = 3𝑥ଶ + 2𝑦ଷ − 5 

 𝑓(𝑥, 𝑦) = 𝑥ଶ𝑦 + 𝑥𝑦ଶ 

 𝑓(𝑥, 𝑦) = sin(2𝑥𝑦ହ) 

 𝑓(𝑥, 𝑦) = 𝑒௫௬, 𝑃଴(1; 0) 

 𝑓(𝑥, 𝑦, 𝑧) = 𝑥 + 𝑦ଶ + 𝑧ଷ, 𝑃଴(3; 2; 1) 

 𝑓(𝑥, 𝑦, 𝑧) = 𝑥𝑦 + 𝑦ଷ𝑧ଶ − 2𝑥ଶ𝑧 
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 𝑓(𝑥, 𝑦, 𝑧) =

ln(𝑥𝑦𝑧) , 𝑃଴(1; 1; 1) 

 𝑓(𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ) = 𝑒௫భାଶ௫మ − 𝑥ଷ
ଶ + 𝑥ଷ𝑥ସ 

Rozwiązanie 

 𝑓(𝑥, 𝑦) = 3𝑥ଶ + 2𝑦ଷ − 5 

𝑓௫
ᇱ = ⟦𝑦 = 𝐶 = const⟧ = [3𝑥ଶ + 2𝐶ଷ − 5]௫

ᇱ = 6𝑥 = ⟦𝐶 = 𝑦⟧ = 6𝑥

𝑓௬
ᇱ = ⟦𝑥 = 𝐶 = const⟧ = [3𝐶ଶ + 2𝑦ଷ − 5]௬

ᇱ = 6𝑦ଶ = ⟦𝐶 = 𝑥⟧ = 6𝑦ଶ 

 𝑓(𝑥, 𝑦) = 𝑥ଶ𝑦 + 𝑥𝑦ଶ 

𝑓௫
ᇱ = ⟦𝑦 = 𝐶 = const⟧ = [𝑥ଶ𝐶 + 𝑥𝐶ଶ]௫

ᇱ = 2𝑥𝐶 + 𝐶ଶ = ⟦𝐶 = 𝑦⟧ = 2𝑥𝑦 + 𝑦ଶ

𝑓௬
ᇱ = ⟦𝑥 = 𝐶 = const⟧ = [𝐶ଶ𝑦 + 𝐶𝑦ଶ]௬

ᇱ = 𝐶ଶ + 2𝐶𝑦 = ⟦𝐶 = 𝑥⟧ = 𝑥ଶ + 2𝑥𝑦
 

 𝑓(𝑥, 𝑦) = sin(2𝑥𝑦ହ) 

𝑓௫
ᇱ = [sin(2𝑥𝑦ହ)]௫

ᇱ = cos(2𝑥𝑦ହ) ⋅ (2𝑥𝑦ହ)௫
ᇱ = 2𝑦ହ cos(2𝑥𝑦ହ) 

𝑓௬
ᇱ = [sin(2𝑥𝑦ହ)]௬

ᇱ = cos(2𝑥𝑦ହ) (2𝑥𝑦ହ)௬
ᇱ = 10𝑥𝑦ସcos(2𝑥𝑦ହ) 

 𝑓(𝑥, 𝑦) = 𝑒௫௬, 𝑃଴(1; 0) 

𝑓௫
ᇱ = [𝑒௫௬]௫

ᇱ = 𝑒௫௬[𝑥𝑦]௫
ᇱ = 𝑦𝑒௫௬

𝑓௬
ᇱ = [𝑒௫௬]௬

ᇱ = 𝑒௫௬[𝑥𝑦]௬
ᇱ = 𝑥𝑒௫௬ 

𝑓௫
ᇱ|௉బ

= (𝑦𝑒௫௬)|௉బ
= ൴

𝑥଴ = 1
𝑦଴ = 0

൸ = 0

𝑓௬
ᇱ|௉బ

= (𝑥𝑒௫௬)|௉బ
= ൴

𝑥଴ = 1
𝑦଴ = 0

൸ = 1
 

 𝑓(𝑥, 𝑦, 𝑧) = 𝑥 + 𝑦ଶ + 𝑧ଷ, 𝑃଴(3; 2; 1) 

𝑓௫
ᇱ = ൴

𝑦 = 𝐶ଵ = const
𝑧 = 𝐶ଶ = const

൸ = [𝑥 + 𝐶ଵ
ଶ + 𝐶ଶ

ଷ]௫
ᇱ = 1 = ൴

𝐶ଵ = 𝑦
𝐶ଶ = 𝑧

൸ = 1

𝑓௬
ᇱ = ൴

𝑥 = 𝐶ଵ = const
𝑧 = 𝐶ଶ = const

൸ = [𝐶ଵ + 𝑦ଶ + 𝐶ଶ
ଷ]௬

ᇱ = 2𝑦 = ൴
𝐶ଵ = 𝑥
𝐶ଶ = 𝑧

൸ = 2𝑦

𝑓௭
ᇱ = ൴

𝑥 = 𝐶ଵ = const
𝑦 = 𝐶ଶ = const

൸ = [𝐶ଵ + 𝐶ଶ
ଶ + 𝑧ଷ]௭

ᇱ = 3𝑧ଶ = ൴
𝐶ଵ = 𝑥
𝐶ଶ = 𝑦

൸ = 3𝑧ଶ

 

𝑓௫
ᇱ|௉బ

= (1)|௉బ
= ൵

𝑥଴ = 3
𝑦଴ = 2
𝑧଴ = 1

൹ = 1

𝑓௬
ᇱ|௉బ

= (2𝑦)|௉బ
= ൵

𝑥଴ = 3
𝑦଴ = 2
𝑧଴ = 1

൹ = 4

𝑓௭
ᇱ|௉బ

= (3𝑧ଶ)|௉బ
= ൵

𝑥଴ = 3
𝑦଴ = 2
𝑧଴ = 1

൹ = 3

 

 𝑓(𝑥, 𝑦, 𝑧) = 𝑥𝑦 + 𝑦ଷ𝑧ଶ − 2𝑥ଶ𝑧 

𝑓௫
ᇱ = [𝑥𝑦 + 𝑦ଷ𝑧ଶ − 2𝑥ଶ𝑧]௫

ᇱ = 𝑦 + 0 − 4𝑥𝑧 = 𝑦 − 4𝑥𝑧

𝑓௬
ᇱ = [𝑥𝑦 + 𝑦ଷ𝑧ଶ − 2𝑥ଶ𝑧]௬

ᇱ = 𝑥 + 3𝑦ଶ𝑧 − 0 = 𝑥 + 3𝑦ଶ𝑧

𝑓௭
ᇱ = [𝑥𝑦 + 𝑦ଷ𝑧ଶ − 2𝑥ଶ𝑧]௭

ᇱ = 0 + 2𝑦ଷ𝑧 − 2𝑥ଶ = 2𝑦ଷ𝑧 − 2𝑥ଶ
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 𝑓(𝑥, 𝑦, 𝑧) = ln(𝑥𝑦𝑧) , 𝑃଴(1; 1; 1) 

𝑓௫
ᇱ = [ln(𝑥𝑦𝑧)]௫

ᇱ =
1

𝑥𝑦𝑧
⋅ [𝑥𝑦𝑧]௫

ᇱ =
𝑦𝑧

𝑥𝑦𝑧
=

1

𝑥
 

𝑓௬
ᇱ = [ln(𝑥𝑦𝑧)]௬

ᇱ =
1

𝑥𝑦𝑧
⋅ [𝑥𝑦𝑧]௬

ᇱ =
𝑥𝑧

𝑥𝑦𝑧
=

1

𝑦
 

𝑓௭
ᇱ = [ln(𝑥𝑦𝑧)]௭

ᇱ =
1

𝑥𝑦𝑧
⋅ [𝑥𝑦𝑧]௭

ᇱ =
𝑥𝑦

𝑥𝑦𝑧
=

1

𝑧
 

𝑓௫
ᇱ|௉బ

= ൬
1

𝑥
൰ |௉బ

= ൵

𝑥଴ = 1
𝑦଴ = 1
𝑧଴ = 1

൹ = 1 

𝑓௬
ᇱ|௉బ

= ൬
1

𝑦
൰ |௉బ

= ൵

𝑥଴ = 1
𝑦଴ = 1
𝑧଴ = 1

൹ = 1 

𝑓௭
ᇱ|௉బ

= ൬
1

𝑧
൰ |௉బ

= ൵

𝑥଴ = 1
𝑦଴ = 1
𝑧଴ = 1

൹ = 1 

 𝑓(𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ) = 𝑒௫భାଶ௫మ − 𝑥ଷ
ଶ + 𝑥ଷ𝑥ସ 

𝑓௫భ
ᇱ = [𝑒௫భାଶ௫మ − 𝑥ଷ

ଶ + 𝑥ଷ𝑥ସ]௫భ
ᇱ = 𝑒௫భାଶ௫మ[𝑥ଵ + 2𝑥ଶ]௫భ

ᇱ − 0 + 0 = 𝑒௫భାଶ௫మ

𝑓௫మ
ᇱ = [𝑒௫భାଶ௫మ − 𝑥ଷ

ଶ + 𝑥ଷ𝑥ସ]௫మ
ᇱ = 𝑒௫భାଶ௫మ[𝑥ଵ + 2𝑥ଶ]௫మ

ᇱ − 0 + 0 = 2𝑒௫భାଶ௫మ
 

𝑓௫య
ᇱ = [𝑒௫భାଶ௫మ − 𝑥ଷ

ଶ + 𝑥ଷ𝑥ସ]௫య
ᇱ = 0 − 2𝑥ଷ + 𝑥ସ = 𝑥ସ − 2𝑥ଷ

𝑓௫ర
ᇱ = [𝑒௫భାଶ௫మ − 𝑥ଷ

ଶ + 𝑥ଷ𝑥ସ]௫ర
ᇱ = 0 − 0 + 𝑥ଷ = 𝑥ଷ

 

Przykład Znaleźć wszystkie pochodne cząstkowe rzędu drugiego wymienionych niżej 

funkcji dwóch i trzech zmiennych 

 𝑓(𝑥, 𝑦) = 𝑥ଶ𝑦 + 𝑥𝑦ଶ 

 𝑓(𝑥, 𝑦) = sin(2𝑥𝑦ହ) 

 𝑓(𝑥, 𝑦) = 𝑒௫௬ 

 𝑓(𝑥, 𝑦, 𝑧) = 𝑥𝑦 + 𝑦ଷ𝑧ଶ − 2𝑥ଶ𝑧 

Rozwiązanie 

 𝑓(𝑥, 𝑦) = 𝑥ଶ𝑦 + 𝑥𝑦ଶ 

𝑓௫௫
ᇱᇱ = (𝑓௫

ᇱ)௫
ᇱ = (2𝑥𝑦 + 𝑦ଶ)௫

ᇱ = 2𝑦

𝑓௫௬
ᇱᇱ = (𝑓௫

ᇱ)௬
ᇱ = (2𝑥𝑦 + 𝑦ଶ)௬

ᇱ = 2𝑥 + 2𝑦
 

𝑓௬௫
ᇱᇱ = ൫𝑓௬

ᇱ൯
௫

ᇱ
= (𝑥ଶ + 2𝑥𝑦)௫

ᇱ = 2𝑥 + 2𝑦

𝑓௬௬
ᇱᇱ = ൫𝑓௬

ᇱ൯
௬

ᇱ
= (𝑥ଶ + 2𝑥𝑦)௬

ᇱ = 2𝑥
 

𝑓௫௬
ᇱᇱ ≡ 𝑓௬௭

ᇱᇱ ≡ 2𝑥 + 2𝑦 

 𝑓(𝑥, 𝑦) = sin(2𝑥𝑦ହ) 

𝑓௫௫
ᇱᇱ = (𝑓௫

ᇱ)௫
ᇱ = (2𝑦ହ cos(2𝑥𝑦ହ))௫

ᇱ = 2𝑦ହ(− sin(2𝑥𝑦ହ)) ⋅ 2𝑦ହ = −4𝑦ଵ଴ sin(2𝑥𝑦ହ)

𝑓௫௬
ᇱᇱ = (𝑓௫

ᇱ)௬
ᇱ = (2𝑦ହ cos(2𝑥𝑦ହ))௬

ᇱ = 10𝑦ସ cos(2𝑥𝑦ହ) − 20𝑥𝑦ଽ sin(2𝑥𝑦ହ)
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𝑓௬௫
ᇱᇱ = ൫𝑓௬

ᇱ൯
௫

ᇱ
= (10𝑥𝑦ସ cos(2𝑥𝑦ହ))௫

ᇱ = 10𝑦ସ cos(2𝑥𝑦ହ) − 20𝑥𝑦ଽ sin(2𝑥𝑦ହ)

𝑓௬௬
ᇱᇱ = ൫𝑓௬

ᇱ൯
௬

ᇱ
= (10𝑥𝑦ସ cos(2𝑥𝑦ହ))௬

ᇱ = 40𝑥𝑦ଷ cos(2𝑥𝑦ହ) − 100𝑥ଶ𝑦଼ sin(2𝑥𝑦ହ)
 

𝑓௫௬
ᇱᇱ ≡ 𝑓௬௭

ᇱᇱ ≡ 10𝑦ସ cos(2𝑥𝑦ହ) − 20𝑥𝑦ଽ sin(2𝑥𝑦ହ) 

 𝑓(𝑥, 𝑦) = 𝑒௫௬ 

𝑓௫௫
ᇱᇱ = (𝑓௫

ᇱ)௫
ᇱ = (𝑦𝑒௫௬)௫

ᇱ = 𝑦ଶ𝑒௫௬

𝑓௫௬
ᇱᇱ = (𝑓௫

ᇱ)௬
ᇱ = (𝑦𝑒௫௬)௬

ᇱ = 𝑒௫௬ + 𝑥𝑦𝑒௫௬ 

𝑓௬௫
ᇱᇱ = ൫𝑓௬

ᇱ൯
௫

ᇱ
= (𝑥𝑒௫௬)௫

ᇱ = 𝑒௫௬ + 𝑥𝑦𝑒௫௬

𝑓௬௬
ᇱᇱ = ൫𝑓௬

ᇱ൯
௬

ᇱ
= (𝑥𝑒௫௬)௬

ᇱ = 𝑥ଶ𝑒௫௬
 

𝑓௫௬
ᇱᇱ ≡ 𝑓௬௭

ᇱᇱ ≡ 𝑒௫௬ + 𝑥𝑦𝑒௫௬ 

 𝑓(𝑥, 𝑦, 𝑧) = 𝑥𝑦 + 𝑦ଷ𝑧ଶ − 2𝑥ଶ𝑧 

𝑓௫௫
ᇱᇱ = (𝑓௫

ᇱ)௫
ᇱ = (𝑦 − 4𝑥𝑧)௫

ᇱ = −4𝑧

𝑓௫௬
ᇱᇱ = (𝑓௫

ᇱ)௬
ᇱ = (𝑦 − 4𝑥𝑧)௬

ᇱ = 1

𝑓௫௭
ᇱᇱ = (𝑓௫

ᇱ)௭
ᇱ = (𝑦 − 4𝑥𝑧)௭

ᇱ = −4𝑥

 

𝑓௬௫
ᇱᇱ = ൫𝑓௬

ᇱ൯
௫

ᇱ
= (𝑥 + 3𝑦ଶ𝑧ଶ)௫

ᇱ = 1

𝑓௬௬
ᇱᇱ = ൫𝑓௬

ᇱ൯
௬

ᇱ
= (𝑥 + 3𝑦ଶ𝑧ଶ)௬

ᇱ = 6𝑦𝑧ଶ

𝑓௬௭
ᇱᇱ = ൫𝑓௬

ᇱ൯
௭

ᇱ
= (𝑥 + 3𝑦ଶ𝑧ଶ)௭

ᇱ = 6𝑦ଶ𝑧

 

𝑓௭௫
ᇱᇱ = (𝑓௭

ᇱ)௫
ᇱ = (2𝑦ଷ𝑧 − 2𝑥ଶ)௫

ᇱ = −4𝑥

𝑓௭௬
ᇱᇱ = (𝑓௭

ᇱ)௬
ᇱ = (2𝑦ଷ𝑧 − 2𝑥ଶ)௬

ᇱ = 6𝑦ଶ𝑧

𝑓௭௭
ᇱᇱ = (𝑓௭

ᇱ)௭
ᇱ = (2𝑦ଷ𝑧 − 2𝑥ଶ)௭

ᇱ = 2𝑦ଷ

 

𝑓௫௬
ᇱᇱ ≡ 𝑓௬௫

ᇱᇱ ≡ 1

𝑓௫௭
ᇱᇱ ≡ 𝑓௭௫

ᇱᇱ ≡ −4𝑥

𝑓௬௭
ᇱᇱ ≡ 𝑓௭௬

ᇱᇱ ≡ 6𝑦ଶ𝑧

 

Przykład Znaleźć gradient funkcji dwu zmiennych w zaznaczonych punktach 

 𝑓(𝑥, 𝑦) = 𝑥ଶ + 𝑦ଶ, 𝑃଴(0; 0) 

 𝑓(𝑥, 𝑦) = 𝑥ଶ − 𝑦ଶ, 𝑃଴(1; −1) 

Rozwiązanie  

 𝑓(𝑥, 𝑦) = 𝑥ଶ + 𝑦ଶ, 𝑃଴(0; 0) 

𝑓௫
ᇱ = 2𝑥 

𝑓௫
ᇱ(0; 0) = 0 

𝑓௬
ᇱ = 2𝑦 

𝑓௬
ᇱ(0; 0) = 0 

grad 𝑓|௉బ
= (0; 0) 

 𝑓(𝑥, 𝑦) = 𝑥ଶ − 𝑦ଶ, 𝑃଴(1; −1) 
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𝑓௫
ᇱ = 2𝑥 

𝑓௫
ᇱ(1; −1) = 2 

𝑓௬
ᇱ = −2𝑦 

𝑓௬
ᇱ(1; −1) = 2 

grad 𝑓|௉బ
= (2; 2) 

Optymalizacja funkcji dwu zmiennych 

Podobnie do funkcji jednej zmiennej, mówiąc o optymalizacji funkcji wielu zmiennych, 

myślimy o poszukiwaniu ekstremów lokalnych, największy, najmniejszych wartości (w 

domkniętym obszarze) bądź o znalezieniu ekstremów warunkowych (ostatniego nie ma dla 

funkcji jednej zmiennej). W poniższym materiale wykorzystujemy niektóre pojęcia algebry 

liniowej, dokładną informację o których można znaleźć w następnym rozdziale (Działanie na 

macierzach. Obliczanie wyznacznika i macierzy odwrotnej. Operacje elementarne. 

Rozwiązywanie układów równań liniowych). 

Definicja Macierzą Hessego (lub hessianem) funkcji dwu zmiennych 𝑓(𝑥, 𝑦) w punkcie 

𝑃଴(𝑥଴, 𝑦଴) nazywa się macierz pochodnych cząstkowych rzędu drugiego obliczonych w 

punkcie 𝑃଴, mianowicie 

𝐻௙(𝑃଴) =

⎣
⎢
⎢
⎢
⎡

𝜕ଶ𝑓

𝜕𝑥ଶ

𝜕ଶ𝑓

𝜕𝑥𝜕𝑦

𝜕ଶ𝑓

𝜕𝑦𝜕𝑥

𝜕ଶ𝑓

𝜕𝑦ଶ ⎦
⎥
⎥
⎥
⎤

ተ
ተ

௉బ

 

Oznaczając 𝐴 =
డమ௙

డ௫మ
, 𝐵 =

డమ௙

డ௫డ௬
≡

డమ௙

డ௬డ௫
, 𝐶 =

డమ௙

డ௬మ
, dla funkcji która ma ciągłe pochodne 

cząstkowe otrzymamy 𝐻௙(𝑃଴) = ቂ
𝐴 𝐵
𝐵 𝐶

ቃቚ
௉బ

. 

𝐻௙ =

⎣
⎢
⎢
⎢
⎡

𝜕ଶ𝑓

𝜕𝑥ଶ

𝜕ଶ𝑓

𝜕𝑥𝜕𝑦

𝜕ଶ𝑓

𝜕𝑦𝜕𝑥

𝜕ଶ𝑓

𝜕𝑦ଶ ⎦
⎥
⎥
⎥
⎤

≡ ቈ
𝑓௫௫

ᇱᇱ 𝑓௫௬
ᇱᇱ

𝑓௬௫
ᇱᇱ 𝑓௬௬

ᇱᇱ ቉ 

Definicja Punktami stacjonarnymi funkcji dwu zmiennych 𝑓(𝑥, 𝑦) nazywają się punkty 

z dziedziny funkcji, w których  

𝜕𝑓

𝜕𝑥
=

𝜕𝑓

𝜕𝑦
= 0 

Ekstremum lokalne: 
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 warunek konieczny:  jeśli funkcja dwu zmiennych posiada w punkcie 𝑃଴(𝑥଴, 𝑦଴) 

ekstremum lokalne, to 𝑃଴ jest punktem stacjonarnym, tzn. ቐ

డ௙

డ௫
|௉బ

= 0

డ௙

డ௬
|௉బ

= 0
, lub 

pochodne cząstkowe w punkcie 𝑃଴ nie istnieją 

 warunek dostateczny (dla punktów 𝑃଴ spełniających warunek konieczny): 

det 𝐻௙(𝑃଴) > 0 ∧

⎣
⎢
⎢
⎢
⎡𝐴|௉బ

=
𝜕ଶ𝑓

𝜕𝑥ଶ
ቤ

௉బ

> 0 ⟹ min

𝐴|௉బ
=

𝜕ଶ𝑓

𝜕𝑥ଶ
ቤ

௉బ

< 0 ⟹ max

 

det 𝐻௙(𝑃଴) < 0 ⟹   funkcja nie posiada extr w punkcie 𝑃଴ 

቎
det 𝐻௙(𝑃଴) > 0 ∧ 𝐴|௉బ

=
డమ௙

డ௫మ
ቚ

௉బ

= 0

det 𝐻௙(𝑃଴) = 0
⟹  brak odpowiedzi 

Brak odpowiedzi oznacza, że powyższy warunek dostateczny nie rozstrzyga istnienie 

ekstremów w odpowiednim przypadku. 

Przykład Zbadać ekstrema lokalne poniższych funkcji dwu zmiennych [2] 

 𝑓(𝑥, 𝑦) = 𝑥ଷ + 𝑦ଷ + 3𝑥𝑦 

 𝑓(𝑥, 𝑦) = 3 ln
௫

଺
+ 2 ln 𝑦 + ln(12 − 𝑥 − 𝑦) 

Rozwiązanie 

 𝑓(𝑥, 𝑦) = 𝑥ଷ + 𝑦ଷ + 3𝑥𝑦 

ቊ
𝑓௫

ᇱ = 3𝑥ଶ + 3𝑦 = 0

𝑓௬
ᇱ = 3𝑦ଶ + 3𝑥 = 0

⟹ (0; 0), (−1; −1) 

𝑓௫௫
ᇱᇱ = 6𝑥

𝑓௫௫
ᇱᇱ (0; 0) = 0

𝑓௫௫
ᇱᇱ (−1; −1) = −6

 

𝑓௫௬
ᇱᇱ ≡ 𝑓௬௫

ᇱᇱ = 3

𝑓௫௬
ᇱᇱ (0; 0) = 𝑓௬௫

ᇱᇱ (0; 0) = 3

𝑓௫௬
ᇱᇱ (−1; −1) = 𝑓௬௫

ᇱᇱ (−1; −1) = 3

 

𝑓௬௬
ᇱᇱ = 6𝑦

𝑓௬௬
ᇱᇱ (0; 0) = 0

𝑓௬௬
ᇱᇱ (−1; −1) = −6

 

𝐻௙(0; 0) = ቂ
0 3
3 0

ቃ 

det 𝐻௙(0; 0) = ቚ
0 3
3 0

ቚ = −9 
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det 𝐻௙(0; 0) = ቚ
0 3
3 0

ቚ = −9 < 0 ⟹   funkcja 𝑓(𝑥; 𝑦) nie osiąga extr w (0; 0) 

𝐻௙(−1; −1) = ቂ
−6 3
3 −6

ቃ 

det 𝐻௙(−1; −1) = ቚ
−6 3
3 −6

ቚ = 27 

det 𝐻௙(−1; −1) = 27 > 0

𝑓௫௫
ᇱᇱ (−1; −1) = −6 < 0

⟹    funkcja 𝑓(𝑥; 𝑦) osiąga max w (−1; −1) 

𝑓୫ୟ୶ = 𝑓(−1; −1) = 1 

 𝑓(𝑥, 𝑦) = 3 ln
௫

଺
+ 2 ln 𝑦 + ln(12 − 𝑥 − 𝑦) 

𝑓(𝑥, 𝑦) = 3 ln 𝑥 − 3 ln 6 + 2 ln 𝑦 + ln(12 − 𝑥 − 𝑦) 

⎩
⎨

⎧𝑓௫
ᇱ =

3

𝑥
−

1

12 − 𝑥 − 𝑦
= 0

𝑓௬
ᇱ =

2

𝑦
−

1

12 − 𝑥 − 𝑦
= 0

⟹ (6; 4) 

𝑓௫௫
ᇱᇱ = −

3

𝑥ଶ
−

1

(12 − 𝑥 − 𝑦)ଶ

𝑓௫௫
ᇱᇱ (6; 4) = −

1

3

 

𝑓௫௬
ᇱᇱ ≡ 𝑓௬௫

ᇱᇱ = −
1

(12 − 𝑥 − 𝑦)ଶ

𝑓௫௬
ᇱᇱ (6; 4) = 𝑓௬௫

ᇱᇱ (6; 4) = −
1

4

 

𝑓௬௬
ᇱᇱ = −

2

𝑦ଶ
−

1

(12 − 𝑥 − 𝑦)ଶ

𝑓௬௬
ᇱᇱ (6; 4) = −

3

8

 

𝐻௙(6; 4) = ൦
−

1

3
−

1

4

−
1

4
−

3

8

൪ 

det 𝐻௙(6; 4) = ተ
−

1

3
−

1

4

−
1

4
−

3

8

ተ =
1

16
 

det 𝐻௙(6; 4) =
ଵ

ଵ଺
> 0

𝑓௫௫
ᇱᇱ (6; 4) = −

ଵ

ଷ
< 0

⟹    funkcja 𝑓(𝑥; 𝑦) osiąga max w (6; 4) 

𝑓୫ୟ = 𝑓(6; 4) = 5 ln 2 

Największa, najmniejsza wartości w domkniętym obszarze: podobnie do funkcji 

jednej zmiennej, aby znaleźć największą i najmniejszą wartości funkcji w domkniętym 
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obszarze, działamy według schematu: (1) szukamy punkty stacjonarne funkcji, (2) spomiędzy 

znalezionych punktów wybieramy takie, które leżą wewnątrz obszaru, (3) obliczamy wartości 

funkcji w otrzymanych punktach oraz na brzegach obszaru, (4) ze wszystkich otrzymanych 

wartości wybieramy największą i najmniejszą wartości funkcji. 

Badanie funkcji na brzegach obszaru potrzebuje dużo obliczeń, ponieważ nawet w 

przypadku obszaru prostokątnego, otrzymujemy cztery brzegi i na każdym z nich jak wynik 

zadanie największej, najmniejszej wartości funkcji jednej zmiennej w domkniętym przedziale. 

Przykład Znaleźć największą i najmniejszą wartości poniższych funkcji w zaznaczonych 

domkniętych obszarach [2] 

 𝑓(𝑥, 𝑦) = 𝑥ଶ + 𝑦ଶ − 𝑥𝑦 − 𝑥, 𝐷 = ൜(𝑥, 𝑦)ฬ
0 ≤ 𝑥 ≤ 1
0 ≤ 𝑦 ≤ 1

ൠ 

 𝑓(𝑥, 𝑦) = 𝑥ଶ − 𝑦ଶ, 𝐷 = {(𝑥, 𝑦)|𝑥ଶ + 𝑦ଶ ≤ 1} 

Rozwiązanie 

 𝑓(𝑥, 𝑦) = 𝑥ଶ + 𝑦ଶ − 𝑥𝑦 − 𝑥, 𝐷 = ൜(𝑥, 𝑦)ฬ
0 ≤ 𝑥 ≤ 1
0 ≤ 𝑦 ≤ 1

ൠ 

𝑓௫
ᇱ = 2𝑥 − 𝑦 − 1 = 0

𝑓௬
ᇱ = 2𝑦 − 𝑥 = 0

⟹ ൬
2

3
;
1

3
൰ ∈ 𝐷 

𝑓 ൬
2

3
;
1

3
൰ = −

1

3
 

𝑓(0; 𝑦) = 𝑦ଶ, 𝑦 ∈ 〈0; 1〉 

𝑔ଵ(𝑦) = 𝑓(0; 𝑦) = 𝑦ଶ, 𝑦 ∈ 〈0; 1〉 

𝑔ଵ(0) = 0

𝑔ଵ(1) = 1
⟹

𝑔ଵ୫୧୬
= 𝑔ଵ(0) = 𝑓(0; 0) = 0

𝑔ଵ୫ୟ୶
= 𝑔ଵ(1) = 𝑓(0; 1) = 1

𝑦 ∈ 〈0; 1〉 

𝑓(1; 𝑦) = 𝑦ଶ − 𝑦, 𝑦 ∈ 〈0; 1〉 

𝑔ଶ(𝑦) = 𝑦ଶ − 𝑦 = ൬𝑦 −
1

2
൰

ଶ

−
1

4
, 𝑦 ∈ 〈0; 1〉 

𝑔ଶ(0) = 0

𝑔ଶ ൬
1

2
൰ = −

1

4
𝑔ଶ(1) = 0

⟹

𝑔ଶ୫ୟ୶
= 𝑔ଶ(0) = 𝑔ଶ(1) = 𝑓(1; 0) = 𝑓(1; 1) = 0

𝑔ଶ୫୧୬
= 𝑔ଶ ൬

1

2
൰ = 𝑓 ൬1;

1

2
൰ = −

1

4

𝑦 ∈ 〈0; 1〉 

𝑓(𝑥, 0) = 𝑥ଶ − 𝑥, 𝑥 ∈ 〈0; 1〉 

𝑔ଷ(𝑥) = 𝑥ଶ − 𝑥 = ൬𝑥 −
1

2
൰

ଶ

−
1

4
 

𝑔ଷ(0) = 0

𝑔ଷ ൬
1

2
൰ = −

1

4
𝑔ଷ(1) = 0

⟹
𝑔ଷ୫୧୬

= 𝑔ଷ ൬
1

2
൰ = 𝑓 ൬

1

2
; 0൰ = −

1

4
𝑔ଷ୫ୟ୶

= 𝑔ଷ(0) = 𝑔ଷ(1) = 𝑓(0; 0) = 𝑓(0; 1) = 0
𝑥 ∈ 〈0; 1〉 
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𝑓(𝑥; 1) = 𝑥ଶ − 2𝑥 + 1 

𝑔ସ(𝑥) = 𝑥ଶ − 2𝑥 + 1 = (𝑥 − 1)ଶ 

𝑔ସ(0) = 1

𝑔ସ(1) = 0
⟹

𝑔ସ୫୧୬
= 𝑔ସ(1) = 𝑓(1; 1) = 0

𝑔ସ୫ୟ୶
= 𝑔ସ(0) = 𝑓(0; 1) = 1

𝑥 ∈ 〈0; 1〉 

𝑔ସ୫୧୬
= 𝑔ସ(1) = 𝑓(1; 1) = 0 

Do porównani są poniższe wartości:  

𝑓 ൬
2

3
;
1

3
൰ = −

1

3
; 

𝑓(0; 0) = 0; 

 𝑓(0; 1) = 1; 

𝑓(1; 0) = 𝑓(1; 1) = 0; 

𝑓 ൬1;
1

2
൰ = −

1

4
; 

𝑓 ൬
1

2
; 0൰ = −

1

4
; 

𝑓(0; 0) = 𝑓(0; 1) = 0; 

𝑓(1; 1) = 0; 

𝑓(0; 1) = 1 

𝑓୫ୟ୶ = 𝑓(0; 1) = 1

𝑓୫୧୬ = 𝑓 ൬
2

3
;
1

3
൰ = −

1

3

 𝑥 ∈ 𝐷 

 𝑓(𝑥, 𝑦) = 𝑥ଶ − 𝑦ଶ, 𝐷 = {(𝑥, 𝑦)|𝑥ଶ + 𝑦ଶ ≤ 1} 

𝑓௫
ᇱ = 2𝑥 = 0

𝑓௬
ᇱ = 2𝑦 = 0

⟹ (0; 0) ∈ 𝐷 

𝑓(0; 0) = 0 

Brzeg obszaru 𝐷: 𝑥ଶ + 𝑦ଶ = 1 ⟺ 𝑦ଶ = 1 − 𝑥ଶ ⟺ 𝑦 = ±√1 − 𝑥ଶ, 𝑥 ∈ 〈−1; 1〉 

⟹ 𝑔(𝑥) = 𝑓 ቀ𝑥, ±ඥ1 − 𝑥ଶቁ = 𝑥ଶ − (1 − 𝑥ଶ) = 2𝑥ଶ − 1, 𝑥 ∈ 〈−1; 1〉 

𝑔(𝑥) = 2𝑥ଶ − 1, 𝑥 ∈ 〈−1; 1〉 

𝑔ᇱ(𝑥) = 4𝑥 = 0 ⟹ 𝑥 = 0 ∈ 〈−1; 1〉 

𝑔(−1) = 1

𝑔(0) = −1

𝑔(1) = 1

⟹
𝑔୫୧୬ = 𝑔(0) = 𝑓(0; ±1) = −1

𝑔୫ୟ୶ = 𝑔(±1) = 𝑓(±1; 0) = 1
 𝑥 ∈ 〈−1; 1〉 

Do porównani są poniższe wartości: 

𝑓(0; 0) = 0;  𝑓(0; 1) = −1;  𝑓(±1; 0) = 1 

𝑓୫ୟ୶ = 𝑓(±1; 0) = 1

𝑓୫୧୬ = 𝑓(0; ±1) = −1
 𝑥 ∈ 𝐷 

Ekstremum warunkowe: ekstremami warunkowymi nazywają się ekstrema funkcji 

(max, min) jeśli argumenty są związane dodatkowymi warunkami. Tak więc, dla funkcji dwu 

zmiennych zagadnienie poszukiwania ekstremów warunkowych wygląda następująco 

𝑓(𝑥, 𝑦) → extr

𝜓(𝑥, 𝑦) = 0
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Ekstremum warunkowe jest uogólnieniem ekstremum lokalnego. 

Przy zwiększaniu liczby zmiennych, liczba warunków dodatkowych również może (ale 

nie musi) ulec zwiększeniu, ale dla funkcji 𝑛 zmiennych maksymalna liczba warunków 

dodatkowych wynosi (𝑛 − 1). 

Schemat badania ekstremum warunkowego: (0) sprawdzamy czy nie można przejść do 

funkcji jednej zmiennej, podstawiając jedną ze zmiennych z warunku dodatkowego; jeśli nie 

ma takiej możliwości, to rozwiązujemy według schematu; (1) formujemy funkcję pomocniczą, 

zwaną później funkcją Lagrange’a (lub Lagranżjanem) 

𝐿(𝑥, 𝑦, 𝜆) = 𝑓(𝑥, 𝑦) + 𝜆𝜓(𝑥, 𝑦) 

(2) badamy ekstrema funkcji 𝐿(𝑥, 𝑦, 𝜆) podobnie do funkcji trzech zmiennych, co oznacza 

 poszukiwanie punktów stacjonarnych 
డ௅

డ௫
=

డ௅

డ௬
=

డ௅

డఒ
= 0, z czego otrzymujemy punkty 

podejrzane o ekstremum 

 obliczamy wszystkie pochodne cząstkowe rzędu drugiego Lagrażjana (łącznie 9 szt.) 

 układamy macierz Hessego (jako dla funkcji trzech zmiennych 𝑥, 𝑦 i 𝜆) 

𝐻௅ = ቎

𝐿௫௫
ᇱᇱ 𝐿௫௬

ᇱᇱ 𝐿௫ఒ
ᇱᇱ

𝐿௬௫
ᇱᇱ 𝐿௬௬

ᇱᇱ 𝐿௬ఒ
ᇱᇱ

𝐿ఒ௫
ᇱᇱ 𝐿ఒ௬

ᇱᇱ 𝐿ఒఒ
ᇱᇱ

቏ ⟹ 𝐻௅ = ቎

𝐿௫௫
ᇱᇱ 𝐿௫௬

ᇱᇱ 𝜓௫
ᇱ

𝐿௬௫
ᇱᇱ 𝐿௬௬

ᇱᇱ 𝜓௬
ᇱ

𝜓௫
ᇱ 𝜓௬

ᇱ 0

቏ 

i obliczamy jej wyznacznik we wszystkich punktach podejrzanych o ekstremum, wtedy 

det 𝐻௅(𝑃଴) > 0 ⟹ max

det 𝐻௅(𝑃଴) < 0 ⟹ min
 

det 𝐻௅(𝑃଴) = 0 ⟹    brak odpowiedzi 

Przykład Znaleźć ekstrema warunkowe [2] 

 𝑓(𝑥, 𝑦) =
ଵ

௫
+

ଵ

௬
, przy warunku 𝑥𝑦 = 1 

 𝑓(𝑥, 𝑦) = 𝑥ଷ + 𝑦ଷ, przy warunku 𝑥 + 𝑦 = 2 

Rozwiązanie 

 𝑓(𝑥, 𝑦) =
ଵ

௫
+

ଵ

௬
, przy warunku 𝑥𝑦 = 1 

𝑥𝑦 = 1 ⟹ ൜
𝑥 ≠ 0
𝑦 ≠ 0

⟹ ൤𝑥𝑦 = 1 ⟺ 𝑦 =
1

𝑥
൨ 

𝑦 =
ଵ

௫
 podstawiamy do funkcji 𝑓(𝑥, 𝑦) i otrzymujemy funkcję jednej zmiennej 𝑥, 

którą oznaczymy przez 𝑔(𝑥) ≡ 𝑓 ቀ𝑥,
ଵ

௫
ቁ 

𝑔(𝑥) =
1

𝑥
+ 𝑥 =

𝑥ଶ + 1

𝑥
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𝑔ᇱ(𝑥) =
𝑥ଶ − 1

𝑥ଶ
 

𝑔ᇱ(𝑥) = 0 ⟺ ቄ
𝑥 = ±1
𝑥 ≠ 0

 

𝑥 (−∞; −1) −1 (−1; 0) (0; 1) 1 (1; +∞) 

𝑔ᇱ(𝑥) > 0 0 < 0 < 0 0 > 0 

𝑔(𝑥) ↗↗ loc min 

𝑔୫୧୬ = 

↘↘ 

 

↘↘ loc max 

𝑔୫ୟ୶ = 4 

↗↗ 

𝑔
min

= 𝑔(−1) = −2

𝑔
max

= 𝑔(1) = 2
⟹

𝑓
min

= 𝑓(−1; −1) = −2

𝑓
max

= 𝑓(1; 1) = 2
 

 𝑓(𝑥, 𝑦) = 𝑥ଷ + 𝑦ଷ, przy warunku 𝑥 + 𝑦 = 2 

W tym przykładzie również można przejść do badania ekstremum funkcji jednej 

zmiennej, ale zróbmy według całego schematy ((1),(2)). 

𝑓(𝑥, 𝑦) = 𝑥ଷ + 𝑦ଷ

𝜓(𝑥, 𝑦) =  𝑥 + 𝑦 − 2
 

𝐿(𝑥, 𝑦, 𝜆) = 𝑓(𝑥, 𝑦) + 𝜆𝜓(𝑥, 𝑦) 

𝐿(𝑥, 𝑦, 𝜆) = 𝑥ଷ + 𝑦ଷ + 𝜆(𝑥 + 𝑦 − 2) 

ቐ

𝐿௫
ᇱ = 3𝑥ଶ + 𝜆 = 0

𝐿௬
ᇱ = 3𝑦ଶ + 𝜆 = 0

𝐿ఒ
ᇱ = 𝑥 + 𝑦 − 2 = 0

⟹ ൝
𝑥 = 1
𝑦 = 1

𝜆 = −3

⟹
(1; 1; −3)

𝑃଴(1; 1), 𝜆 = −3
 

 𝐿௫௫
ᇱᇱ = 6𝑥 ⟹ 𝐿௫௫

ᇱᇱ (1; 1; −3) = 6 

𝐿௬௫
ᇱᇱ = 𝐿௫௬

ᇱᇱ = 0 ⟹ 𝐿௬௫
ᇱᇱ (1; 1; −3) = 𝐿௫௬

ᇱᇱ (1; 1; −3) = 0 

𝐿௬௬
ᇱᇱ = 6𝑦 ⟹ 𝐿௬௬

ᇱᇱ (1; 1; −3) = 6 

𝜓௫
ᇱ = 1 ⟹ 𝜓௫

ᇱ (1; 1; −3) =1 

𝜓௬
ᇱ = 1 ⟹ 𝜓௬

ᇱ (1; 1; −3) = 1 

𝐻௅(1; 1; −3) = ൥
6 0 1
0 6 1
1 1 0

൩ 

det 𝐻௅(1; 1; −3) = อ
6 0 1
0 6 1
1 1 0

อ = −12 

det 𝐻௅(1; 1; −3) = −12 < 0 ⟹ 𝑓୫୧୬ = 𝑓(1; 1) = 2 
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1.7. DZIAŁANIE NA MACIERZACH. OBLICZANIE WYZNACZNIKA 

I MACIERZY ODWROTNEJ. OPERACJE ELEMENTARNE. 

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ LINIOWYCH 

Macierze 

Definicja Macierzą nazywa się prostokątna tablica liczb. Zapisujemy macierzy  w postaci 

𝐴 = ൣ𝑎௜௝൧
௡×௠

 (lub bez zaznaczania tzw. wymierności 𝐴 = ൣ𝑎௜௝൧), gdzie 𝑎௜௝, 𝑖 = 1, 𝑛തതതതത, 𝑗 = 1, 𝑚തതതതതത 

zwane elementami macierzy 𝐴, tzn. 

𝐴 = ቎

𝑎ଵଵ 𝑎ଵଶ

𝑎ଶଵ 𝑎ଶଶ

… 𝑎ଵ௠

… 𝑎ଶ௠… …
𝑎௡ଵ 𝑎௡ଶ

… …
… 𝑎௡௠

቏ 

Rzędy poziome [𝑎ଵଵ 𝑎ଵଶ
… 𝑎ଵ௠], [𝑎ଶଵ 𝑎ଶଶ

… 𝑎ଶ௠], … , [𝑎௡ଵ 𝑎௡ଶ … 𝑎௡௠] są 

zwane wierszami macierzy, rzędy pionowe ቎

𝑎ଵଵ

𝑎ଶଵ…
𝑎௡ଵ

቏, ቎

𝑎ଵଶ

𝑎ଶଶ…
𝑎௡ଶ

቏ , … , ቎

𝑎ଵ௠

𝑎ଶ௠…
𝑎௡௠

቏ – kolumnami. Wskaźnik 𝑖𝑗 

elementu 𝑎௜௝ macierzy 𝐴 pokazuje jego przynależność do 𝑖-ego wiersza a 𝑗-ej kolumny. 

Definicja Wymiernością macierzy (lub macierz jest o wymiarach) nazywa się 𝑛 × 𝑚, 

gdzie 𝑛 tj. liczba wierszy, 𝑚 tj. liczba kolumn; oznaczamy przez dim 𝐴.  

Definicja Macierze 𝐴 = [𝑎௜௝] i 𝐵 = ൣ𝑏௜௝൧ zwane równymi, gdy dim 𝐴 = dim 𝐵 oraz 

elementy na odpowiednich miejscach równe.  

Definicja Gdy liczba wierszy i liczba kolumn są równe sobie, macierz 𝐴 nazywa się 

kwadratowa i w tym przypadku mówimy, że 𝐴 jest macierzą 𝑛-go stopnia. Dla macierzy 𝐴 =

ൣ𝑎௜௝൧ 𝑛-go stopnia elementy 𝑎௜௜ , 𝑖 = 1, 𝑛തതതതത tworzą przekątną główną, wtedy jak elementy 

𝑎௜,௡ି௜ାଵ, 𝑖 = 1, 𝑛തതതതത – przekątną drugą, innymi słowy 

przekątna główna 

⎣
⎢
⎢
⎢
⎡
𝑎ଵଵ ⋅ ⋅

⋅ 𝑎ଶଶ ⋅
⋅ ⋅ 𝑎ଷଷ

⋅    ⋅
⋅    ⋅
⋅    ⋅

 
⋅       ⋅      ⋅
⋅ ⋅ ⋅

…  ⋅
⋅ 𝑎௡௡⎦

⎥
⎥
⎥
⎤

 

przekątna druga 

⎣
⎢
⎢
⎢
⎡

⋅          ⋅
⋅          ⋅
⋅          ⋅

⋅ ⋅ 𝑎ଵ௡

⋅ 𝑎ଶ,௡ିଵ    ⋅
… ⋅    ⋅

⋅ 𝑎௡ିଵ,ଶ

𝑎௡ଵ ⋅
⋅      ⋅        ⋅
⋅       ⋅         ⋅ ⎦

⎥
⎥
⎥
⎤

 

Definicja Macierzą zerową nazywa się macierz, elementami której występują liczby 

zerowe. Oznaczamy macierz zerową przez 𝑂௡×௠ lub bez zaznaczania wymierności przez 𝑂.  

Definicja Macierzą jednostkową (tzw. jedynką macierzową) nazywa się macierz 

kwadratowa, w której na przekątnej głównej są 1, a pozostałe elementy zerowe. Oznaczamy 

macierz jednostkową 𝑛-go stopnia przez 𝐼௡ lub bez zaznaczania wymierności przez 𝐼. 

Przykład Macierze jednostkowe i zerowe o zaznaczonych wymiarach wyglądają tak 
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𝑂ଶଵ = ቂ
0
0

ቃ 

𝑂ଶଶ = ቂ
0 0
0 0

ቃ 

𝑂ଶଷ = ቂ
0 0 0
0 0 0

ቃ 

𝐼ଵ = [1] 

𝐼ଶ = ቂ
1 0
0 1

ቃ 

𝐼ଷ = ൥
1 0 0
0 1 0
0 0 1

൩ 

Działanie na macierzach: 

 Transponowanie macierzy: macierz 𝐴் = ൣ𝑎௝௜൧
௠×௡

 nazywa się macierzą 

transponowaną macierzy 𝐴 = ൣ𝑎௜௝൧
௡×௠

. Inaczej mówiąc macierz transponowaną 

otrzymamy z macierzy 𝐴 przestawiając wiersze z kolumnami, lub przepisując 1-

szy wiersz jako 1-sza kolumna, 2-gi wiersz jako 2-ga kolumna itd., ostatni wiersz 

jako ostatnia kolumna. Takie przekształcenie macierzy można sobie wyobrazić 

jako symetrię elementów względem przekątnej głównej, dlatego macierzy które 

nie zmienią się po transponowaniu zwane symetryczne. 

Niektóre własności transponowania: (1) (𝐴்)் = 𝐴; (2) dim 𝐴 = 𝑛 × 𝑚 ⟹

dim 𝐴் = 𝑚 × 𝑛. 

 Mnożeniem macierzy 𝐴 = ൣ𝑎௜௝൧
௡×௠

 przez liczbę 𝑐 ∈ ℝ nazywa się macierz 𝑐𝐴 =

ൣ𝑐𝑎௜௝൧
௡×௠

. Wskazówka: mnożymy każdy element macierzy przez liczbę. 

 Sumą, różnicą macierzy 𝐴 = ൣ𝑎௜௝൧
௡×௠

 i 𝐵 = ൣ𝑏௜௝൧
௡×௠

 o jednakowych wymiarach 

nazywa się macierz 𝐶 = ൣ𝑎௜௝ ± 𝑏௜௝൧
௡×௠

. Wskazówka: dodajemy, odejmujemy 

elementy na odpowiadających sobie miejscach. Macierz zerowa jest elementem 

neutralnym dodawania bądź odejmowania macierzy. Elementem przeciwnym 

dodawania do macierzy 𝐴 występuje macierz (−1)𝐴. 

 Mnożeniem macierzy 𝐴 = ൣ𝑎௜௝൧
௡×௞

 przez macierz 𝐵 = ൣ𝑏௜௝൧
௞×௠

 (liczba kolumn 

macierzy 𝐴 równa się liczbie wierszy macierzy 𝐵) nazywa się macierz 𝐶 =

ൣ𝑐௜௝൧
௡×௠

, w której element 𝑐௜௝ jest iloczynem 𝑖-go wiersza macierzy 𝐴 a 𝑗-ej 

kolumny macierzy 𝐵 (w sensie iloczynu skalarnego wektorów).  

Innymi słowy,  

𝐴 ⋅ 𝐵 = 𝐶 

ൣ𝑎௜௝൧
௡×௞

⋅ ൣ𝑏௜௝൧
௞×௠

= ൣ𝑐௜௝൧
௡×௠

, gdzie  

𝑐௜௝ = [𝑎௜ଵ 𝑎௜ଶ … 𝑎௜௞] ⋅ ൦

𝑏ଵ௝

𝑏ଶ௝
…

𝑏௞௝

൪ = 𝑎௜ଵ𝑏ଵ௝ + 𝑎௜ଶ𝑏ଶ௝ + ⋯ + 𝑎௜௞ 
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Macierz jednostkowa jest elementem neutralnym mnożenie dwóch macierzy. 

Mnożenie macierzy przez macierz na ogół nie jest przemienne, tzn. 𝐴 ⋅ 𝐵 ≠ 𝐵 ⋅ 𝐴 

(często jest sytuacja, kiedy iloczyn 𝐴𝐵 istnieje, natomiast w innej kolejności 𝐵𝐴 

nie istnieje lub na odwrót). 

Dla znalezienia iloczynu 𝐴𝐵 można wykorzystać poniższy schemat 

 𝐵 

𝐴 𝐴𝐵 

 Potęgowanie macierzy: 𝐴ଶ = 𝐴 ⋅ 𝐴, 𝐴ଷ = 𝐴ଶ ⋅ 𝐴, 𝐴ସ = 𝐴ଷ ⋅ 𝐴, itd. 

 Operacje elementarne na wierszach macierzy to są wymienione niżej działania: 

 pomnożenie wiersza macierzy przez liczbę niezerową 

 zamiana dwóch wierszy miejscami 

 dodawanie do jednego wiersza innego pomnożonego przez liczbę 

W ten sam sposób można określić operacje elementarne na kolumnach macierzy. 

Przykład Dla poniższych macierzy 𝐴௜, 𝑖 = 1; 2,  znaleźć: (1) wymierność: dim 𝐴௜; (2) 

elementy 𝑎ଵଷ, 𝑎ଷଵ, 𝑎ଶଶ, 𝑎ଶସ, 𝑎ଵହ (gdy takie istnieją); (3) transponowanie: 𝐴௜
் 

 𝐴ଵ = ൥
1 𝜋 0
5 −1 2
3 0 −3

൩ 
 𝐴ଶ = ቂ

0 1
1 0

3 0 −2
−5 𝑒 7

ቃ 

Rozwiązanie 

 𝐴ଵ = ൥
1 𝜋 0
5 −1 2
3 0 −3

൩ ⟹ dim 𝐴ଵ = 3 × 3

⎣
⎢
⎢
⎢
⎡

𝑎ଵଷ = 0
𝑎ଷଵ = 3

𝑎ଶଶ = −1
∄ 𝑎ଶସ

∄ 𝑎ଵହ

  

𝐴ଵ
் = ൥

1 𝜋 0
5 −1 2
3 0 −3

൩

்

= ൥
1 5 3
𝜋 −1 0
0 2 −3

൩ 

 𝐴ଶ = ቂ
0 1
1 0

3 0 −2
−5 𝑒 7

ቃ ⟹ dim 𝐴ଶ = 2 × 3

⎣
⎢
⎢
⎢
⎡

𝑎ଵଷ = 3
∄ 𝑎ଷଵ

𝑎ଶଶ = 0
𝑎ଶସ = 𝑒

𝑎ଵହ = −2

 

𝐴ଶ
் = ቂ

0 1
1 0

3 0 −2
−5 𝑒 7

ቃ
்

=

⎣
⎢
⎢
⎢
⎡
0 1
1 0
3 −5
0 𝑒

−2 7⎦
⎥
⎥
⎥
⎤

 

Przykład Dla macierzy kwadratowych 𝐴 i B znaleźć macierz 3𝐴 − 2𝐵் + 𝐼ଶ, gdzie 

𝐴 = ቂ
1 2
3 4

ቃ , 𝐵 = ቂ
−1 1
2 0

ቃ 
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Rozwiązanie 

𝐴 = ቂ
1 2
3 4

ቃ ⟹ 3𝐴 = ቂ
3 6
9 12

ቃ 

𝐵 = ቂ
−1 1
2 0

ቃ ⟹ 𝐵் = ቂ
−1 2
1 0

ቃ ⟹ 2𝐵் = ቂ
−2 4
2 0

ቃ 

3𝐴 − 2𝐵் + 𝐼ଶ = ቂ
3 6
9 12

ቃ − ቂ
−2 4
2 0

ቃ + ቂ
1 0
0 1

ቃ = ቂ
6 2
7 13

ቃ 

Przykład Dla macierzy 𝐴 = ቂ
2 −1
0 3

ቃ , 𝐵 = ቂ
0 −1
2 −1

ቃ znaleźć 𝐴𝐵, 𝐵𝐴, 𝐴ଶ, 𝐵ଶ, 𝐴ଶ −

𝐵ଶ, 𝐴் , 𝐵் , 𝐴் + 𝐵். 

Rozwiązanie 

 𝐴𝐵 = ቂ
2 −1
0 3

ቃ ⋅ ቂ
0 −1
2 −1

ቃ = ൤
2 ⋅ 0 + (−1) ⋅ 2 2 ⋅ (−1) + (−1) ⋅ (−1)

0 ⋅ 0 + 3 ⋅ 2 0 ⋅ (−1) + 3 ⋅ (−1)
൨ =

ቂ
−2 −1
6 −3

ቃ 

 𝐵𝐴 = ቂ
0 −1
2 −1

ቃ ⋅ ቂ
2 −1
0 3

ቃ = ൤
0 ⋅ 2 + (−1) ⋅ 0 0 ⋅ (−1) + (−1) ⋅ 3

2 ⋅ 2 + (−1) ⋅ 0 2 ⋅ (−1) +⋅ (−1) ⋅ 3
൨ =

ቂ
0 −3
4 −5

ቃ 

 𝐴ଶ = ቂ
2 −1
0 3

ቃ ⋅ ቂ
2 −1
0 3

ቃ = ൤
2 ⋅ 2 + (−1) ⋅ 0 2 ⋅ (−1) + (−1) ⋅ 3

0 ⋅ 2 + 3 ⋅ 0 0 ⋅ (−1) + 3 ⋅ 3
൨ = ቂ

4 −5
0 9

ቃ 

 𝐵ଶ = ቂ
0 −1
2 −1

ቃ ⋅ ቂ
0 −1
2 −1

ቃ = ൤
0 ⋅ 0 + (−1) ⋅ 2 0 ⋅ (−1) + (−1) ⋅ (−1)

2 ⋅ 0 + (−1) ⋅ 2 2 ⋅ (−1) + (−1) ⋅ (−1)
൨ =

ቂ
−2 1
−2 −1

ቃ 

 𝐴ଶ − 𝐵ଶ=ቂ
4 −5
0 9

ቃ − ቂ
−2 1
−2 −1

ቃ = ቂ
6 −6
2 10

ቃ 

 𝐴்=ቂ
2 0

−1 3
ቃ 

 𝐵்=ቂ
0 2

−1 −1
ቃ 

 𝐴் + 𝐵் = ቂ
2 0

−1 3
ቃ + ቂ

0 2
−1 −1

ቃ = ቂ
2 2

−2 2
ቃ 

Wyznaczniki stopnia 1, 2 i 3 

Definicja (rekurencyjna) Wyznacznikiem det 𝐴 lub |𝐴| macierzy kwadratowej 𝐴 𝑛-go 

stopnia (𝑛 = 1,2,3) nazywa się liczba określona w wymieniony niżej sposób 

 𝑛 = 1: det[𝑎ଵଵ] = 𝑎ଵଵ 

 𝑛 = 2: ቚ
𝑎ଵଵ 𝑎ଵଶ

𝑎ଶଵ 𝑎ଶଶ
ቚ = 𝑎ଵଵ ⋅ 𝑎ଶଶ − 𝑎ଵଶ ⋅ 𝑎ଶଵ 
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 𝑛 = 3: อ

𝑎ଵଵ 𝑎ଵଶ 𝑎ଵଷ

𝑎ଶଵ 𝑎ଶଶ 𝑎ଶଷ

𝑎ଷଵ 𝑎ଷଶ 𝑎ଷଷ

อ = 𝑎ଵଵ ⋅ 𝑎ଶଶ ⋅ 𝑎ଷଷ + 𝑎ଵଶ ⋅ 𝑎ଶଷ ⋅ 𝑎ଷଵ + 𝑎ଶଵ ⋅ 𝑎ଷଶ ⋅ 𝑎ଵଷ −

𝑎ଷଵ ⋅ 𝑎ଶଶ ⋅ 𝑎ଵଷ − 𝑎ଶଵ ⋅ 𝑎ଵଶ ⋅ 𝑎ଷଷ − 𝑎ଷଶ ⋅ 𝑎ଶଷ ⋅ 𝑎ଵଵ 

Wskazówka: przy obliczeniu wyznaczników 3-go stopnia również można wykorzystać 

metodę Sarrusa (są dwie wersje) bądź metodę trójkątów 

 metoda Sarrusa 

อ

𝑎ଵଵ 𝑎ଵଶ 𝑎ଵଷ

𝑎ଶଵ 𝑎ଶଶ 𝑎ଶଷ

𝑎ଷଵ 𝑎ଷଶ 𝑎ଷଷ

อ

𝑎ଵଵ 𝑎ଵଶ

𝑎ଶଵ 𝑎ଶଶ

𝑎ଷଵ 𝑎ଷଶ

= 

= อ

𝒂𝟏𝟏   
 𝒂𝟐𝟐  
  𝒂𝟑𝟑

อ + ቤ
 𝒂𝟏𝟐  
  𝒂𝟐𝟑

   
ቤ

 
 

𝒂𝟑𝟏

+ ቤ
  𝒂𝟏𝟑

   
   

ቤ

  
𝒂𝟐𝟏  

 𝒂𝟑𝟐

− 

− อ

  𝒂𝟏𝟑

 𝒂𝟐𝟐  
𝒂𝟑𝟏   

อ − ቤ

   
  𝒂𝟐𝟑

 𝒂𝟑𝟐  
ቤ

𝒂𝟏𝟏

 
 

− ቤ

   
   
  𝒂𝟑𝟑

ቤ
 𝒂𝟏𝟐

𝒂𝟐𝟏  
  

= 

= 𝑎ଵଵ𝑎ଶଶ𝑎ଷଷ + 𝑎ଵଶ𝑎ଶଷ𝑎ଷଵ + 𝑎ଵଷ𝑎ଶଵ𝑎ଷଶ − 𝑎ଷଵ𝑎ଶଶ𝑎ଵଷ − 𝑎ଷଶ𝑎ଶଷ𝑎ଵଵ − 𝑎ଷଷ𝑎ଶଵ𝑎ଵଶ 

lub 

อ

𝑎ଵଵ 𝑎ଵଶ 𝑎ଵଷ

𝑎ଶଵ 𝑎ଶଶ 𝑎ଶଷ

𝑎ଷଵ 𝑎ଷଶ 𝑎ଷଷ

อ =

𝑎ଵଵ 𝑎ଵଶ 𝑎ଵଷ

𝑎ଶଵ 𝑎ଶଶ 𝑎ଶଷ

 

= อ

𝒂𝟏𝟏   
 𝒂𝟐𝟐  
  𝒂𝟑𝟑

อ +
ቤ

   
𝒂𝟐𝟏   

 𝒂𝟑𝟐  
ቤ

            𝒂𝟏𝟑

+
ቤ

   
   

𝒂𝟑𝟏         
ቤ

    𝒂𝟏𝟐  
  𝒂𝟐𝟑

− 

− อ

  𝒂𝟏𝟑

 𝒂𝟐𝟐  
𝒂𝟑𝟏   

อ −
ቤ

   
  𝒂𝟐𝟑

   𝒂𝟑𝟐  
ቤ

𝒂𝟏𝟏            

−
ቤ

   
   
             𝒂𝟑𝟑

ቤ =

 𝒂𝟏𝟐  
𝒂𝟐𝟏   

 

= 𝑎ଵଵ𝑎ଶଶ𝑎ଷଷ + 𝑎ଶଵ𝑎ଷଶ𝑎ଵଷ + 𝑎ଷଵ𝑎ଵଶ𝑎ଶଷ − 𝑎ଷଵ𝑎ଶଶ𝑎ଵଷ − 𝑎ଵଵ𝑎ଷଶ𝑎ଶଷ − 𝑎ଶଵ𝑎ଵଶ𝑎ଷଷ 

 

 metoda trójkątów 

อ

𝑎ଵଵ 𝑎ଵଶ 𝑎ଵଷ

𝑎ଶଵ 𝑎ଶଶ 𝑎ଶଷ

𝑎ଷଵ 𝑎ଷଶ 𝑎ଷଷ

อ = 

= อ

𝒂𝟏𝟏   
 𝒂𝟐𝟐  
  𝒂𝟑𝟑

อ + อ

 𝒂𝟏𝟐  
  𝒂𝟐𝟑

𝒂𝟑𝟏   
อ + อ

  𝒂𝟏𝟑

𝒂𝟐𝟏   
 𝒂𝟑𝟐  

อ − 
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− อ

  𝒂𝟏𝟑

 𝒂𝟐𝟐  
𝒂𝟑𝟏   

อ − อ

 𝒂𝟏𝟐  
𝒂𝟐𝟏   

  𝒂𝟑𝟑

อ − อ

𝒂𝟏𝟏   
  𝒂𝟐𝟑

 𝒂𝟑𝟐  
อ = 

= 𝑎ଵଵ𝑎ଶଶ𝑎ଷଷ + 𝑎ଵଶ𝑎ଶଷ𝑎ଷଵ + 𝑎ଶଵ𝑎ଷଶ𝑎ଵଷ − 𝑎ଷଵ𝑎ଶଶ𝑎ଵଷ − 𝑎ଶଵ𝑎ଵଶ𝑎ଷଷ − 𝑎ଷଶ𝑎ଶଷ𝑎ଵଵ 

Przykład Obliczyć wyznaczniki 

 ቚ
5 −1
1 2

ቚ 

 ቚ
sin 1 − cos 1
cos 1 sin 1

ቚ 

 อ
1 1 2
3 5 8

13 21 34
อ 

Rozwiązanie  

 ቚ
5 −1
1 2

ቚ = 5 ⋅ 2 − (−1) ⋅ 1 = 8 

 ቚ
sin 1 − cos 1
cos 1 sin 1

ቚ = sin 1 ⋅ sin 1 − (− cos 1) ⋅ cos 1 = sinଶ 1 + cosଶ 1 = 1 

 อ
1 1 2
3 5 8

13 21 34
อ = 1 ⋅ 5 ⋅ 34 + 3 ⋅ 21 ⋅ 2 + 1 ⋅ 8 ⋅ 13 − 13 ⋅ 5 ⋅ 2 − 21 ⋅ 8 ⋅ 1 − 3 ⋅

1 ⋅ 34 = 0 

Przykład Rozwiązać równanie 

อ
1 0 0
𝑎 5 − 𝑥 0
𝑏 𝑐 𝑥 + 3

อ = 0 

Rozwiązanie  

อ
1 0 0
𝑎 5 − 𝑥 0
𝑏 𝑐 𝑥 + 3

อ = 0 

อ
1 0 0
𝑎 5 − 𝑥 0
𝑏 𝑐 𝑥 + 3

อ = (5 − 𝑥)(𝑥 + 3) + 0 + 0 − 0 − 0 − 0 = 0 

(5 − 𝑥)(𝑥 + 3) = 0 

𝑥 = −3 ∨ 𝑥 = 5 

Dopełnienia algebraiczne, wyznaczniki ≥ 𝟒 stopni, macierz odwrotna 

Definicja Minorem (lub podwyznacznikiem) 𝑀௜௝ macierzy kwadratowej nazywa się  

wyznacznik macierzy po wykreśleniu 𝑖-go wiersza a 𝑗-ej kolumny. Dopełnieniem 

algebraicznym 𝐷௜௝ nazywa się liczba 𝐷௜௝ = (−1)௜ା௝ ⋅ 𝑀௜௝. 

Dopełnienie algebraiczne 𝐷௜௝ różni się od minoru 𝑀௜௝ tylko znakiem i to nie zawsze. 

Macierz kwadratowa ma tyle minorów (dopełnień algebraicznych) ile ma elementów. 

Inaczej mówiąc, macierz 𝑛-go stopnia ma dokładnie 𝑛ଶ minorów i 𝑛ଶ dopełnień 

algebraicznych. 
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Definicja Niech 𝐴 jest macierzą 𝑛-go stopnia. Wtedy macierz elementami której 

występują dopełnienia algebraiczne 

ൣ𝐷௜௝൧ = ቎

𝐷ଵଵ 𝐷ଵଶ

𝐷ଶଵ 𝐷ଶଶ

… 𝐷ଵ௡

… 𝐷ଶ௡… …
𝐷௡ଵ 𝐷௡ଶ

… …
… 𝐷௡௡

቏ 

nazywa się macierzą dopełnień algebraicznych. Transponowanie macierzy dopełnień 

algebraicznych nazywa się macierzą dołączoną macierzy 𝐴 

𝐴஽ = ൣ𝐷௜௝൧
்
 

Macierz dopełnień algebraicznych oraz macierz dołączona macierzy kwadratowej zawsze 

istnieją. 

Definicja Macierz 𝐴ିଵ  nazywa się odwrotną macierzą macierzy 𝑛-go stopnia 𝐴 (o ile 

istnieje), jeśli 

𝐴𝐴ିଵ = 𝐴ିଵ𝐴 = 𝐼௡ 

Twierdzenie Macierz odwrotna macierzy 𝐴 istnieje wtedy i tylko wtedy, gdy wyznacznik 

macierzy 𝐴 różni się od zera.  

Innymi słowy, ∃𝐴ିଵ ⇔ det 𝐴 ≠ 0. 

Metody na znalezienie macierzy odwrotnej (pod warunkiem, że ona istnieje): 

 metoda macierzy dołączonej (lub dopełnień algebraicznych): macierz odwrotną 

można znaleźć ze wzoru 

𝐴ିଵ =
1

det 𝐴
⋅ 𝐴஽ =

1

det 𝐴
ൣ𝐷௜௝൧

்
 

 metoda macierzy klatkowej (lub eliminacji Gaussa): (1) układamy macierz 

klatkową ൣ𝐴 | 𝐼௡൧, dopisując obok macierzy 𝑛-go stopnia 𝐴 macierz jednostkową 

𝐼௡; (2) za pomocą operacji elementarnych na wierszach macierzy klatkowej (tzw. 

operacji Gaussa), w lewej części robimy macierz jednostkową 𝐼௡ (jeżeli macierz 

odwrotna 𝐴ିଵ istnieje, to odpowiednia lista operacji elementarnych zawsze 

istnieje) ൣ 𝐴 | 𝐼௡൧ ~ … ~ [𝐼௡ | …]; (3) wtedy po prawej stronie otrzymanej macierzy 

klatkowej będzie macierz odwrotna, tzn. 

ൣ𝐴 | 𝐼௡൧ ~ operacje elementarne na wierszach ~ [𝐼௡ | 𝐴ିଵ] 

(przy wykorzystaniu metody macierzy klatkowej pamiętamy, że operacje 

elementarne wykonujemy tylko i wyłącznie na wierszach oraz na obu częściach 

macierzy klatkowej). 
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Przykład Dla macierzy 𝐴 = ቂ
2 3

−3 4
ቃ znaleźć dopełnienia algebraiczne 𝐷௜௝ , 𝑖, 𝑗 = 1,2തതതത 

oraz macierz odwrotną 𝐴ିଵ (gdy ona istnieje) oraz sprawdzić czy znaleziona macierz będzie 

odwrotną do macierzy 𝐴. 

Rozwiązanie 

𝐴 = ቂ
2 3

−3 4
ቃ 

𝑀ଵଵ = 4 

𝑀ଵଶ = −3 

𝑀ଶଵ = 3 

𝑀ଶଶ = 2 

𝐷ଵଵ = (−1)ଵାଵ𝑀ଵଵ = 4 

𝐷ଵଶ = (−1)ଵାଶ𝑀ଵଶ = 3 

𝐷ଶଵ = (−1)ଶାଵ𝑀ଶଵ = −3 

𝐷ଶଶ = (−1)ଶାଶ𝑀ଶଶ = 2 

det 𝐴 = ቚ
2 3

−3 4
ቚ = 17 ≠ 0 ⟹ ∃𝐴ିଵ 

ൣ𝐷௜௝൧ = ቂ
4 3

−3 2
ቃ 

𝐴஽ = ቂ
4 3

−3 2
ቃ

்

= ቂ
4 −3
3 2

ቃ 

𝐴ିଵ =
1

17
ቂ
4 −3
3 2

ቃ = ൦

4

17
−

3

17
3

17
    

2

17

൪ 

Sprawdźmy, czy macierz 𝐴ିଵ =
ଵ

ଵ଻
ቂ
4 −3
3 2

ቃ naprawdę będzie odwrotną 𝐴 = ቂ
2 3

−3 4
ቃ: 

𝐴 ⋅ 𝐴ିଵ = ቂ
2 3

−3 4
ቃ ⋅

1

17
ቂ
4 −3
3 2

ቃ =
1

17
൤

2 ⋅ 4 + 3 ⋅ 3 2 ⋅ (−3) + 3 ⋅ 2
(−3) ⋅ 4 + 4 ⋅ 3 (−3) ⋅ (−3) + 4 ⋅ 2

൨

=
1

17
ቂ
17 0
0 17

ቃ = ቂ
1 0
0 17

ቃ 

𝐴ିଵ ⋅ 𝐴 =
1

17
ቂ
4 −3
3 2

ቃ ⋅ ቂ
2 3

−3 4
ቃ =

1

17
൤
4 ⋅ 2 + (−3) ⋅ (−3) 4 ⋅ 3 + (−3) ⋅ 4

3 ⋅ 2 + 2 ⋅ (−3) 3 ⋅ 3 + 2 ⋅ 4
൨

=
1

17
ቂ
17 0
0 17

ቃ = ቂ
1 0
0 1

ቃ 

Tak, macierz 𝐴ିଵ jest odwrotna macierzy 𝐴. 

Przykład Dla macierzy 𝐴 = ൥
3 4 4
1 −1 0
0 2 1

൩ znaleźć dopełnienia algebraiczne 𝐷௜௝ , 𝑖, 𝑗 =

1,3തതതത oraz macierz odwrotną 𝐴ିଵ (o ile ona istnieje). 

Rozwiązanie  

𝑀ଵଵ = ቚ
−1 0
2 1

ቚ = −1 𝑀ଵଶ = ቚ
1 0
0 1

ቚ = 1 𝑀ଵଷ = ቚ
1 −1
0 2

ቚ = 2 
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𝑀ଶଵ = ቚ
4 4
2 1

ቚ = −4 

𝑀ଶଶ = ቚ
3 4
0 1

ቚ = 3 

𝑀ଶଷ = ቚ
3 4
0 2

ቚ = 6 

𝑀ଷଵ = ቚ
4 4

−1 0
ቚ = 4 

𝑀ଷଶ = ቚ
3 4
1 0

ቚ = −4 

𝑀ଷଷ = ቚ
3 4
1 −1

ቚ = −7 

𝐷ଵଵ = (−1)ଵାଵ𝑀ଵଵ = −1 

𝐷ଵଶ = (−1)ଵାଶ𝑀ଵଶ = −1 

𝐷ଵଷ = (−1)ଵାଷ𝑀ଵଷ = 2 

𝐷ଶଵ = (−1)ଶାଵ𝑀ଶଵ = 4 

𝐷ଶଶ = (−1)ଶାଶ𝑀ଶଶ = 3 

𝐷ଶଷ = (−1)ଶାଷ𝑀ଶଷ = −6 

𝐷ଷଵ = (−1)ଷାଵ𝑀ଷଵ = 4 

𝐷ଷଶ = (−1)ଷାଶ𝑀ଷଶ = 4 

𝐷ଷଷ = (−1)ଷାଷ𝑀ଷଷ = −7

det 𝐴 = อ
3 4 4
1 −1 0
0 2 1

อ = 1 ≠ 0 ⟹ ∃𝐴ିଵ 

ൣ𝐷௜௝൧ = ൥
−1 −1 2
4 3 −6
4 4 −7

൩ 

𝐴஽ = ൥
−1 −1 2
4 3 −6
4 4 −7

൩

்

= ൥
−1 4 4
−1 3 4
2 −6 −7

൩ 

𝐴ିଵ =
1

1
൥
−1 4 4
−1 3 4
2 −6 −7

൩ = ൥
−1 4 4
−1 3 4
2 −6 −7

൩ 

Rozwinięcie Laplaca: obliczyć wyznaczniki 4-go i wzwyż stopni można za pomocą 

rozwinięcia Laplaca, w którym: (1) wybieramy wiersz bądź kolumnę według której będziemy 

rozwijać wyznacznik (wiersz lub kolumna, gdzie znajduje się największa ilość liczb zerowych);  

(2) rozwijamy według wybranego wiersza lub kolumny jak niżej 

 rozwinięcie według 𝑖-go wiersza 

ተ

ተ

𝑎ଵଵ 𝑎ଵଶ 𝑎ଵଷ

𝑎ଶଵ 𝑎ଶଶ 𝑎ଶଷ

… … …

𝑎ଵସ … 𝑎ଵ௡

𝑎ଶସ … 𝑎ଶ௡

… … …
𝒂𝒊𝟏 𝒂𝒊𝟐 𝒂𝒊𝟑

… … …
𝑎௡ଵ 𝑎௡ଶ 𝑎௡ଷ

𝒂𝒊𝟒 … 𝒂𝒊𝒏

… … …
𝑎௡ସ … 𝑎௡௡

ተ

ተ

= 𝑎௜ଵ𝐷௜ଵ + 𝑎௜ଶ𝐷௜ଶ + 𝑎௜ଷ𝐷௜ଷ + 𝑎௜ସ𝐷௜ସ + ⋯ + 𝑎௜௡𝐷௜௡ 

 rozwinięcie według 𝑗-ej kolumny 

ተ

ተ

𝑎ଵଵ 𝑎ଵଶ …
𝑎ଶଵ 𝑎ଶଶ …
𝑎ଷଵ 𝑎ଷଶ …

𝒂𝟏𝒋 … 𝑎ଵ௡

𝒂𝟐𝒋 … 𝑎ଶ௡

𝒂𝟑𝒋 … 𝑎ଷ௡

𝑎ସଵ 𝑎ସଶ …
… … …

𝑎௡ଵ 𝑎௡ଶ …

𝒂𝟒𝒋 … 𝑎ସ௡

… … …
𝒂𝒏𝒋 … 𝑎௡௡

ተ

ተ

= 𝑎ଵ௝𝐷ଵ௝ + 𝑎ଶ௝𝐷ଶ௝ + 𝑎ଷ௝𝐷ଷ௝ + 𝑎ସ௝𝐷ସ௝ + ⋯ + 𝑎௡௝𝐷௡௝ 

Rozwinięcie Laplaca również ma miejsce dla wyznaczników 2-go i 3-go stopni.  

Przykład Obliczyć wyznacznik 4-go stopnia 
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ቮ

1 0
0 2

−2 0
0 1

1 0
−3 1

0 1
3 5

ቮ 

Rozwiązanie  

ቮ

1 0
0 2

−2 0
0 1

1 0
−3 1

0 1
3 5

ቮ =   [ rozwijamy według 2-go wiersza ]   = 0 ⋅ 𝐷ଶଵ + 2 ⋅ 𝐷ଶଶ + 0 ⋅

𝐷ଶଷ + 1 ⋅ 𝐷ଶସ = 2𝐷ଶଶ + 𝐷ଶସ = ൳𝐷௜௝ = (−1)௜ା௝𝑀௜௝൷ = 2(−1)ଶାଶ𝑀ଶଶ + (−1)ଶାସ𝑀ଶସ =

2𝑀ଶଶ + 𝑀ଶସ = , 

𝑀ଶଶ = อ
1 −2 0
1 0 1

−3 3 5
อ = 13 𝑀ଶସ = อ

1 0 −2
1 0 0

−3 1 3
อ = −2 

= 2 ⋅ 13 + (−2) = 24 

Równania macierzowe 

Przykład Rozwiązać równanie macierzowe 𝑋𝐴 = 3𝐵 + 𝐶், gdzie  

𝐴 = ൥
3 4 4
1 −1 0
0 2 1

൩ , 𝐵 = [1 −1 3], 𝐶 = ൥
1
0
2

൩ 

Rozwiązanie  

𝑋𝐴 = 3𝐵 + 𝐶் | ⋅ 𝐴ିଵ po lewej stronie 

𝑋𝐴𝐴ିଵ = (3𝐵 + 𝐶்)𝐴ିଵ 

𝑋𝐼ଷ = (3𝐵 + 𝐶்)𝐴ିଵ 

𝑋 = (3𝐵 + 𝐶்)𝐴ିଵ 

𝐵 = [1 −1 3] ⇒ 3𝐵 = [3 −3 9] 

𝐶 = ൥
1
0
2

൩ ⇒ 𝐶் = [1 0 2] 

3𝐵 + 𝐶் = [3 −3 9] + [1 0 2] = [4 −3 11] 

𝐴 = ൥
3 4 4
1 −1 0
0 2 1

൩ ⇒ 𝐴ିଵ = ൥
−1 4 4
−1 3 4
2 −6 −7

൩ 

𝑋 = (3𝐵 + 𝐶்)𝐴ିଵ = [4 −3 11] ⋅ ൥
−1 4 4
−1 3 4
2 −6 −7

൩ = [21 −59 −73] 

Układy równań liniowych 

Definicja Układem 𝑛 równań z 𝑛 niewiadomymi (𝑥ଵ; 𝑥ଶ; … ; 𝑥௡) gdy 𝑛 = 1,3തതതത oraz w 

ogólnej postaci nazywają się poniższe układy równań 

 𝑛 = 1:  𝑎ଵଵ𝑥 = 𝑏ଵ 
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 𝑛 = 2:  ൜
𝑎ଵଵ𝑥ଵ + 𝑎ଵଶ𝑥ଶ = 𝑏ଵ

𝑎ଶଵ𝑥ଵ + 𝑎ଶଶ𝑥ଶ = 𝑏ଶ
 

 𝑛 = 3:  ൝
𝑎ଵଵ𝑥ଵ + 𝑎ଵଶ𝑥ଶ + 𝑎ଵଷ𝑥ଷ = 𝑏ଵ

𝑎ଶଵ𝑥ଵ + 𝑎ଶଶ𝑥ଶ + 𝑎ଶଷ𝑥ଷ = 𝑏ଶ

𝑎ଷଵ𝑥ଵ + 𝑎ଷଶ𝑥ଶ + 𝑎ଷଷ𝑥ଷ = 𝑏ଷ

 

 𝑛:          ቐ

𝑎ଵଵ𝑥ଵ + 𝑎ଵଶ𝑥ଶ + ⋯ + 𝑎ଵ௡𝑥௡ = 𝑏ଵ

𝑎ଶଵ𝑥ଵ + 𝑎ଶଶ𝑥ଶ + ⋯ + 𝑎ଶ௡𝑥௡ = 𝑏ଶ…
𝑎௡ଵ𝑥ଵ + 𝑎௡ଶ𝑥ଶ + ⋯ + 𝑎௡௡𝑥௡ = 𝑏௡

 

Liczby 𝑎௜௝ ∈ ℝ zwane są współczynnikami układu równań, 𝑏௜ ∈ ℝ – wyrazami wolnymi. 

Wektor liczb ቀ𝑥ଵ
(଴)

; 𝑥ଶ
(଴)

; … ; 𝑥௡
(଴)

ቁ nazywa się rozwiązaniem układu równań (z 𝑛 

niewiadomymi), jeżeli podstawiając wartości 𝑥௜
(଴)

, 𝑖 = 1, 𝑛തതതതത zamiast odpowiednich zmiennych 

𝑥௜ , 𝑖 = 1, 𝑛തതതതത otrzymamy prawidłowe równości. Układ równań z zależności od ilości rozwiązań 

nazywa się 

 oznaczony, gdy ma dokładnie jedno rozwiązanie; 

 nieoznaczony, gdy ma nieskończenie wiele rozwiązań; 

 sprzeczny, gdy nie ma rozwiązań. 

Różne postaci układów równań liniowych (z trzema i z 𝑛 niewiadomymi): 

൝

𝑎ଵଵ𝑥ଵ + 𝑎ଵଶ𝑥ଶ + 𝑎ଵଷ𝑥ଷ = 𝑏ଵ

𝑎ଶଵ𝑥ଵ + 𝑎ଶଶ𝑥ଶ + 𝑎ଶଷ𝑥ଷ = 𝑏ଶ

𝑎ଷଵ𝑥ଵ + 𝑎ଷଶ𝑥ଶ + 𝑎ଷଷ𝑥ଷ = 𝑏ଷ

 

൥

𝑎ଵଵ 𝑎ଵଶ 𝑎ଵଷ

𝑎ଶଵ 𝑎ଶଶ 𝑎ଶଷ

𝑎ଷଵ 𝑎ଷଶ 𝑎ଷଷ

อ

𝑏ଵ

𝑏ଶ

𝑏ଷ

൩ 

൥

𝑎ଵଵ 𝑎ଵଶ 𝑎ଵଷ

𝑎ଶଵ 𝑎ଶଶ 𝑎ଶଷ

𝑎ଷଵ 𝑎ଷଶ 𝑎ଷଷ

൩ ൥

𝑥ଵ

𝑥ଶ

𝑥ଷ

൩ = ൥

𝑏ଵ

𝑏ଶ

𝑏ଷ

൩ 

ቐ

𝑎ଵଵ𝑥ଵ + 𝑎ଵଶ𝑥ଶ + ⋯ + 𝑎ଵ௡𝑥௡ = 𝑏ଵ

𝑎ଶଵ𝑥ଵ + 𝑎ଶଶ𝑥ଶ + ⋯ + 𝑎ଶ௡𝑥௡ = 𝑏ଶ…
𝑎௡ଵ𝑥ଵ + 𝑎௡ଶ𝑥ଶ + ⋯ + 𝑎௡௡𝑥௡ = 𝑏௡

 

቎

𝑎ଵଵ 𝑎ଵଶ

𝑎ଶଵ 𝑎ଶଶ

… 𝑎ଵ௡

… 𝑎ଶ௡… …
𝑎௡ଵ 𝑎௡ଶ

… …
… 𝑎௡௡

ቮ

𝑏ଵ

𝑏ଶ…
𝑏௡

቏ 

቎

𝑎ଵଵ 𝑎ଵଶ

𝑎ଶଵ 𝑎ଶଶ

… 𝑎ଵ௡

… 𝑎ଶ௡… …
𝑎௡ଵ 𝑎௡ଶ

… …
… 𝑎௡௡

቏ ቎

𝑥ଵ

𝑥ଶ…
𝑥௡

቏ = ቎

𝑏ଵ

𝑏ଶ…
𝑏௡

቏ 

gdzie macierz ቎

𝑎ଵଵ 𝑎ଵଶ

𝑎ଶଵ 𝑎ଶଶ

… 𝑎ଵ௡

… 𝑎ଶ௡… …
𝑎௡ଵ 𝑎௡ଶ

… …
… 𝑎௡௡

቏ nazywa się macierzą współczynników,  

቎

𝑎ଵଵ 𝑎ଵଶ

𝑎ଶଵ 𝑎ଶଶ

… 𝑎ଵ௡

… 𝑎ଶ௡… …
𝑎௡ଵ 𝑎௡ଶ

… …
… 𝑎௡௡

ቮ

𝑏ଵ

𝑏ଶ…
𝑏௡

቏ – macierzą rozszerzoną układu równań liniowych, wektor ቎

𝑥ଵ

𝑥ଶ…
𝑥௡

቏ 
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nazywa się wektorem zmiennych, wektor ቎

𝑏ଵ

𝑏ଶ…
𝑏௡

቏ nazywa się wektorem wyrazów wolnych, a 

kolumna ቎ … ቮ

𝑏ଵ

𝑏ଶ…
𝑏௡

቏ – kolumną wyrazów wolnych. 

Dla rozwiązania układu równań liniowych zwykle wykorzystujemy jedną z trzech 

poniższych metod: 

 metoda Cramera (dla układów oznaczonych bądź sprzecznych oraz tylko i 

wyłącznie gdy liczba równań i liczba niewiadomych są równe sobie); 

 metoda macierzy odwrotnej (dla układów równań oznaczonych oraz tylko i 

wyłącznie gdy liczba równań i liczba niewiadomych są równe sobie); 

 metoda eliminacji Gaussa (dla wszystkich układów równań, w tym dla takich, w 

których liczba równań i liczba niewiadomych różnią się). 

Metoda Cramera: głownie polega na obliczaniu (𝑛 + 1) wyznaczników 𝑛-go stopna w 

przypadku układu równań z 𝑛 niewiadomymi. Dla układu równań z trzema niewiadomymi 

metoda Cramera wygląda następująco: 

൝

𝑎ଵଵ𝑥ଵ + 𝑎ଵଶ𝑥ଶ + 𝑎ଵଷ𝑥ଷ = 𝑏ଵ

𝑎ଶଵ𝑥ଵ + 𝑎ଶଶ𝑥ଶ + 𝑎ଶଷ𝑥ଷ = 𝑏ଶ

𝑎ଷଵ𝑥ଵ + 𝑎ଷଶ𝑥ଶ + 𝑎ଷଷ𝑥ଷ = 𝑏ଷ

 

 przepisujemy układ za pomocą macierzy rozszerzonej: 

൥

𝑎ଵଵ 𝑎ଵଶ 𝑎ଵଷ

𝑎ଶଵ 𝑎ଶଶ 𝑎ଶଷ

𝑎ଷଵ 𝑎ଷଶ 𝑎ଷଷ

อ

𝑏ଵ

𝑏ଶ

𝑏ଷ

൩ 

 obliczamy wyznaczniki: 

Δ = อ

𝑎ଵଵ 𝑎ଵଶ 𝑎ଵଷ

𝑎ଶଵ 𝑎ଶଶ 𝑎ଶଷ

𝑎ଷଵ 𝑎ଷଶ 𝑎ଷଷ

อ 

 

 

 

Δଵ = อ

𝑏ଵ 𝑎ଵଶ 𝑎ଵଷ

𝑏ଶ 𝑎ଶଶ 𝑎ଶଷ

𝑏ଷ 𝑎ଷଶ 𝑎ଷଷ

อ

Δଶ = อ

𝑎ଵଵ 𝑏ଵ 𝑎ଵଷ

𝑎ଶଵ 𝑏ଶ 𝑎ଶଷ

𝑎ଷଵ 𝑏ଷ 𝑎ଷଷ

อ

Δଷ = อ

𝑎ଵଵ 𝑎ଵଶ 𝑏ଵ

𝑎ଶଵ 𝑎ଶଶ 𝑏ଶ

𝑎ଷଵ 𝑎ଷଶ 𝑏ଷ

อ

 

 w zależności od wartości wyznaczników szukamy rozwiązanie układu równań (o 

ile ono istnieje): 

 Δ ≠ 0 ⇒ układ równań oznaczony, a rozwiązaniem występują liczby  
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𝑥ଵ =
Δଵ

Δ
, 𝑥ଶ =

Δଶ

Δ
, 𝑥ଷ =

Δଷ

Δ
 

 Δ = 0 oraz choćby jeden wyznacznik Δ௜ ≠ 0  (∃𝑖 ∈ {1; 2; 3}) ⟹ układ 

równań sprzeczny; 

 Δ = 0 oraz Δଵ = Δଶ = Δଷ = 0 ⇒ układ równań nieoznaczony, tzn. ma 

nieskończenie wiele rozwiązań, ale odpowiedzi na pytania jakie są te 

rozwiązania metoda Cramera nie daje. 

W przypadku zwiększenia bądź zmniejszenia liczby niewiadomych wraz z odpowiednią zmianą 

liczby równań sama metoda nie ulegnie zmian, a różnica polega w tym, że zwiększy się tylko 

liczba wyznaczników do obliczania i ich stopni. 

Metoda macierzy odwrotnej: głownie polega na poszukiwaniu macierzy odwrotnej (o 

ile ona istnieje). Dla układu równań z trzema niewiadomymi metoda macierzy odwrotnej 

wygląda następująco: 

൝

𝑎ଵଵ𝑥ଵ + 𝑎ଵଶ𝑥ଶ + 𝑎ଵଷ𝑥ଷ = 𝑏ଵ

𝑎ଶଵ𝑥ଵ + 𝑎ଶଶ𝑥ଶ + 𝑎ଶଷ𝑥ଷ = 𝑏ଶ

𝑎ଷଵ𝑥ଵ + 𝑎ଷଶ𝑥ଶ + 𝑎ଷଷ𝑥ଷ = 𝑏ଷ

 

 przepisujemy układ w postaci macierzowej: 

൥

𝑎ଵଵ 𝑎ଵଶ 𝑎ଵଷ

𝑎ଶଵ 𝑎ଶଶ 𝑎ଶଷ

𝑎ଷଵ 𝑎ଷଶ 𝑎ଷଷ

൩ ൥

𝑥ଵ

𝑥ଶ

𝑥ଷ

൩ = ൥

𝑏ଵ

𝑏ଶ

𝑏ଷ

൩ 

 układamy równanie macierzowe:  

𝐴 = ൥

𝑎ଵଵ 𝑎ଵଶ 𝑎ଵଷ

𝑎ଶଵ 𝑎ଶଶ 𝑎ଶଷ

𝑎ଷଵ 𝑎ଷଶ 𝑎ଷଷ

൩ , 𝑋 = ൥

𝑥ଵ

𝑥ଶ

𝑥ଷ

൩ , 𝐵 = ൥

𝑏ଵ

𝑏ଶ

𝑏ଷ

൩ 

𝐴𝑋 = 𝐵 

 rozwiązujemy równanie macierzowe, z czego otrzymujemy rozwiązanie układu 

równań liniowych: 

𝐴𝑋 = 𝐵 ⟹ 𝑋 = 𝐴ିଵ𝐵 ⟹ ൥

𝑥ଵ

𝑥ଶ

𝑥ଷ

൩ = 𝑋 = 𝐴ିଵ𝐵 

Definicja Układy równań nazywają się równoważnymi, jeśli zbiory ich rozwiązań są 

równe. 

Twierdzenie Przy wykonaniu poniższych operacji na równaniach, ciągle otrzymujemy 

równoważne układy równań: 

 tzw. operacje elementarne: 

 pomnożenie równania przez liczbę niezerową, 
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 zamiana dwóch równań miejscami, 

 dodawanie do jednego równania innego pomnożonego przez liczbę; 

 wykreślenie równania 0 = 0. 

Wymienione wyżej operacje elementarne ekwiwalentne operacjom elementarnym na 

wierszach macierzy rozszerzonej układu równań. 

Metoda eliminacji Gaussa: głownie polega na przekształcaniu macierzy rozszerzonej 

układu równań za pomocą operacji elementarnych. Metoda Gaussa działa na wszystkich 

(względem liczby rozwiązań) układach równań, w tym na takich, w których liczba równań i 

liczba niewiadomych różnią się. Schemat metody eliminacji Gaussa (krótsza wersja): 

 przepisujemy układ za pomocą macierzy rozszerzonej; 

 wykorzystując operacje elementarne tylko i wyłącznie na wierszach macierzy 

rozszerzonej układu równań oraz wykreślając zerowe wiersze, na miejscu 

macierzy współczynników robimy macierz schodkową (tzn. macierz, w której pod 

przekątną główną mamy zera); 

 z otrzymanej macierzy schodkowej wypisujemy układ równań, który 

rozwiązujemy od dołu (tzn. zaczynając od ostatniego równania). 

Pod minorem (bez zaznaczenia indeksów) będziemy również rozumieć wyznacznik 

macierzy po wykreśleniu jednego lub więcej wierszy lub/i kolumn. Taki minor jest określony 

zarówno dla macierzy kwadratowej, jak i takiej, która nie jest kwadratowa. 

Definicja Rządem macierzy 𝐴 nazywa się liczba 𝑟 = 𝑟𝑎𝑛𝑘(𝐴), taka że z macierzy 𝐴 

można wybrać (wykreślając wiersze i kolumny) choćby jeden niezerowy minor stopnia 𝑟, 

wtedy jak wszystkie minory stopni > 𝑟 będą zerowe. 

Twierdzenie Operacje elementarne na wierszach lub na kolumnach macierzy oraz 

wykreślenie zerowego wiersza lub kolumny nie zmieniają rzędu macierzy. 

Rząd macierzy można szukać na dwa sposoby:  

 najpierw obliczamy minory największego możliwego stopnia póki aż otrzymamy 

liczbę niezerową; jeśli taki minor istnieje, to rząd macierzy równa się stopniu tego 

minoru; jeżeli taki minor nie istnieje, powtarzamy procedurę dla minorów stopni 

o 1 mniejszych dopóki nie znajdziemy niezerowy minor, stopień którego będzie 

równać się rzędu macierzy; 

 za pomocą operacji elementarnych na wierszach bądź na kolumnach macierzy 

przekształcić ją w macierz schodkową, wtedy liczba niezerowych wierszy będzie 

równać się rządowi macierzy. 
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Twierdzenie (Kroneckera-Capellego) Układ równań ma rozwiązania wtedy i tylko 

wtedy, gdy rzędy macierzy współczynników i macierzy rozszerzonej układu równań są równe 

sobie. 

W praktyce powyższe twierdzenie oznacza, że jeśli po wykonaniu operacji elementarnych 

na wierszach macierzy rozszerzonej otrzymamy wiersz, w którym na miejscu współczynników 

będą liczby zerowe i odpowiedni wyraz wolny również wynosi 0, to układ równań ma 

rozwiązania, a jeśli w wierszu współczynniku będą zerowe, a wyraz wolny – nie, to układ 

równań będzie sprzeczny. 

Przykład Znaleźć ilości rozwiązań poniższych równań liniowych  

 ൜
5𝑥 − 3𝑦 = 2

𝑥 + 𝑦 = 2
  ൜

3𝑥 + 3𝑦 = 6
𝑥 + 𝑦 = 2

  ൜
3𝑥 + 3𝑦 = 3

𝑥 + 𝑦 = 2

Rozwiązanie  

Dla rozwiązania wykorzystamy metodę Cramera 

 ൜
5𝑥 − 3𝑦 = 2

𝑥 + 𝑦 = 2
 

ቂ
5 −3
1 1

ቚ
2
2

ቃ 

∆= ቚ
5 −3
1 1

ቚ = 5 − (−3) = 8 ≠ 0 ⟹   układ równań ma dokładnie jedno 

rozwiązanie 

 ൜
3𝑥 + 3𝑦 = 6

𝑥 + 𝑦 = 2
 

ቂ
3 3
1 1

ቚ
6
2

ቃ 

∆= ቚ
3 3
1 1

ቚ = 3 − 3 = 0 ⟹  układ równań ma nieskończenie wiele rozwiązań 

∆௫= ቚ
6 3
2 1

ቚ = 6 − 6 = 0

∆௬= ቚ
3 6
1 2

ቚ = 6 − 6 = 0
⟹   układ równań nie ma rozwiązań 

 ൜
3𝑥 + 3𝑦 = 3

𝑥 + 𝑦 = 2
 

ቂ
3 3
1 1

ቚ
3
2

ቃ 

∆= ቚ
3 3
1 1

ቚ = 6 − 6 = 0 ⟹ układ równań nie jest oznaczony 

∆௫= ቚ
3 3
2 1

ቚ = 3 − 6 = −3 ≠ 0 ⟹   układ równań nieoznaczony 

Przykład Rozwiązać oznaczony układ równań liniowych 
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൝

𝑥ଵ − 2𝑥ଶ + 𝑥ଷ = 2
2𝑥ଶ − 𝑥ଷ = −1

𝑥ଵ + 𝑥ଶ + 𝑥ଷ = 2
 

Rozwiązanie  

Dla rozwiązania wykorzystamy metodę Cramera 

൝

𝑥ଵ − 2𝑥ଶ + 𝑥ଷ = 2
2𝑥ଶ − 𝑥ଷ = −1

𝑥ଵ + 𝑥ଶ + 𝑥ଷ = 2
 

൝

𝑥ଵ − 2𝑥ଶ + 𝑥ଷ = 2
2𝑥ଶ + 0𝑥ଶ − 𝑥ଷ = −1

𝑥ଵ + 𝑥ଶ + 𝑥ଷ = 2
 

൥
1 −2 1
0 2 −1
1 1 1

อ
2

−1
2

൩ 

∆= อ
1 −2 1
0 2 −1
1 1 1

อ = 3 ≠ 0 

∆ଵ= อ
2 −2 1

−1 2 −1
2 1 1

อ = 3 

𝑥ଵ =
∆ଵ

∆
=

3

3
= 1 

∆ଶ= อ
1 2 1
0 −1 −1
1 2 1

อ = 0 

𝑥ଶ =
∆ଶ

∆
=

0

3
= 0 

∆ଷ= อ
1 −2 2
0 2 −1
1 1 2

อ = 3 

𝑥ଷ =
∆ଷ

∆
=

3

3
= 1 

Odpowiedź (1; 0; 1). 

Przykład Sprawdzać czy jest poniższy układ równań oznaczony. Jeśli tak, to rozwiązać 

൝

3𝑥ଵ + 4𝑥ଶ + 4𝑥ଷ = 0
𝑥ଵ − 𝑥ଶ = −1
2𝑥ଶ + 𝑥ଷ = 1

 

Rozwiązanie  

Dla rozwiązania wykorzystamy metodę macierzy odwrotnej 

൝

3𝑥ଵ + 4𝑥ଶ + 4𝑥ଷ = 0
𝑥ଵ − 𝑥ଶ = −1
2𝑥ଶ + 𝑥ଷ = 1

⟺ ൥
3 4 4
1 −1 0
0 2 1

൩ ൥

𝑥ଵ

𝑥ଶ

𝑥ଷ

൩ = ൥−
0
1
1

൩ ⟺ 𝐴𝑋 = 𝐵, gdzie 
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𝐴 = ൥
3 4 4
1 −1 0
0 2 1

൩ , 𝑋 = ൥

𝑥ଵ

𝑥ଶ

𝑥ଷ

൩ , 𝐵 = ൥−
0
1
1

൩ 

𝐴𝑋 = 𝐵 ⟹ 𝑋 = 𝐴ିଵ𝐵 

𝐴 = ൥
3 4 4
1 −1 0
0 2 1

൩ ⇒ 𝐴ିଵ = ൥
−1 4 4
−1 3 4
2 −6 −7

൩ ⇒ 

𝑋 = 𝐴ିଵ𝐵 = ൥
−1 4 4
−1 3 4
2 −6 −7

൩ ⋅ ൥−
0
1
1

൩ = ൥
0
1

−1
൩ ⇒ 

൥

𝑥ଵ

𝑥ଶ

𝑥ଷ

൩ = ൥
0
1

−1
൩ 

Odpowiedź (0; 1; −1). 

Przykład Rozwiązać oznaczony układ równań liniowych 

⎩
⎪
⎨

⎪
⎧

𝑥ଵ + 2𝑥ଶ + 3𝑥ଷ + 4𝑥ସ + 5𝑥ହ = 2
2𝑥ଵ + 3𝑥ଶ + 7𝑥ଷ + 10𝑥ସ + 13𝑥ହ = 12

3𝑥ଵ + 5𝑥ଶ + 11𝑥ଷ + 16𝑥ସ + 21𝑥ହ = 17
2𝑥ଵ − 7𝑥ଶ + 7𝑥ଷ + 7𝑥ସ + 2𝑥ହ = 57
𝑥ଵ + 4𝑥ଶ + 5𝑥ଷ + 3𝑥ସ + 10𝑥ହ = 7

 

Rozwiązanie  

Ponieważ liczba zmiennych i równań wynosi 5, to aby nie obliczać sześciu 

wyznaczników 5-go stopnia wykorzystamy metodę eliminacji Gaussa 

⎩
⎪
⎨

⎪
⎧

𝑥ଵ + 2𝑥ଶ + 3𝑥ଷ + 4𝑥ସ + 5𝑥ହ = 2
2𝑥ଵ + 3𝑥ଶ + 7𝑥ଷ + 10𝑥ସ + 13𝑥ହ = 12

3𝑥ଵ + 5𝑥ଶ + 11𝑥ଷ + 16𝑥ସ + 21𝑥ହ = 17
2𝑥ଵ − 7𝑥ଶ + 7𝑥ଷ + 7𝑥ସ + 2𝑥ହ = 57
𝑥ଵ + 4𝑥ଶ + 5𝑥ଷ + 3𝑥ସ + 10𝑥ହ = 7

 

⎣
⎢
⎢
⎢
⎡
1   2  3
2   3  7
3   5  11

4 5
10 13
16 21

 2 −7 7
 1 4 5

7 2
3 10

ተ
ተ

2
12
17
57
7 ⎦

⎥
⎥
⎥
⎤

𝑤ଵ(−2) + 𝑤ଶ

𝑤ଵ(−3) + 𝑤ଷ
~

𝑤ଵ(−2) + 𝑤ସ

𝑤ଵ(−1) + 𝑤ହ ⎣
⎢
⎢
⎢
⎡

1 2  3
0 −1  1
0 −1  2

4  5
2  3
4  6

  0 −11 1
  0 2 2

−1 −8
−1 5

ተ
ተ

2
8

11
53
5 ⎦

⎥
⎥
⎥
⎤

𝑤ଶ(−1)
~

 

⎣
⎢
⎢
⎢
⎡
 1 2 3
 0 1 −1
 0 −1   2

4 5
−2 −3
  4 6

0 −11 1
0 2 2

−1 −8
−1 5

ተ
ተ

2
−8
11
53
5 ⎦

⎥
⎥
⎥
⎤ 𝑤ଶ ⋅ 1 + 𝑤ଷ

𝑤ଶ ⋅ 11 + 𝑤ସ

~
𝑤ଶ(−2) + 𝑤ହ

 

⎣
⎢
⎢
⎢
⎡

1 2   3
0 1 −1
0 0   1

4 5
−2 −3
2 3

   0 0 −10
   0 0 4

−23 −41
3 11

ተ
ተ

2
−8
3

−35
21 ⎦

⎥
⎥
⎥
⎤ 𝑤ଷ ⋅ 10 + 𝑤ସ

𝑤ଷ(−4) + 𝑤ହ
~

 

⎣
⎢
⎢
⎢
⎡
  1   2 3
  0   1 −1
  0  0 1

4 5
−2 −3
2 3

0 0 0 
0 0 0 

−3 −11
−5 −1

ተ
ተ

2
−8
3

−5
9 ⎦

⎥
⎥
⎥
⎤

𝑤ସ(−2) + 𝑤ହ

~

⎣
⎢
⎢
⎢
⎡
  1   2 3
  0   1 −1
  0  0 1

4 5
−2 −3
2 3

0 0 0 
0 0 0 

−3 −11
1 21

ተ
ተ

2
−8
3

−5
19⎦

⎥
⎥
⎥
⎤

𝑤ସ ↔ 𝑤ହ

~
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⎣
⎢
⎢
⎢
⎡
  1   2 3
  0   1 −1
  0  0 1

4 5
−2 −3
2 3

0 0 0 
0 0 0 

1 21
−3 −11

ተ
ተ

2
−8
3

19
−5⎦

⎥
⎥
⎥
⎤

𝑤ସ ⋅ 3 + 𝑤ହ

~

⎣
⎢
⎢
⎢
⎡
  1   2 3
  0   1 −1
  0  0 1

4 5
−2 −3
2 3

0 0 0 
0 0 0 

1 21
0 52

ተ
ተ

2
−8
3

19
52⎦

⎥
⎥
⎥
⎤

𝑤ହ ⋅
1

52
~

 

⎣
⎢
⎢
⎢
⎡
  1   2 3
  0   1 −1
  0  0 1

4 5
−2 −3
2 3

0 0 0 
0 0 0 

1 21
0 1

ተ
ተ

2
−8
3

19
1 ⎦

⎥
⎥
⎥
⎤

⟹

⎩
⎪
⎨

⎪
⎧

𝑥ଵ + 2𝑥ଶ + 3𝑥ଷ + 4𝑥ସ + 5𝑥ହ = 2
𝑥ଶ − 𝑥ଷ − 2𝑥ସ − 3𝑥ହ = −8

𝑥ଷ + 2𝑥ସ + 3𝑥ହ = 3
𝑥ସ + 21𝑥ହ = 19

𝑥ହ = 1

 

𝑥ହ = 1 ⇒ ൭

𝑥ସ + 21𝑥ହ = 19
𝑥ସ = 19 − 21𝑥ହ

𝑥ସ = −2
൱ ⇒ ൭

𝑥ଷ + 2𝑥ସ + 3𝑥ହ = 3
𝑥ଷ = 3 − 2𝑥ସ − 3𝑥ହ

𝑥ଷ = 4
൱ ⇒ 

൭

𝑥ଶ − 𝑥ଷ − 2𝑥ସ − 3𝑥ହ = −8
𝑥ଶ = −8 + 𝑥ଷ + 2𝑥ସ + 3𝑥ହ

𝑥ଶ = −5
൱ ⇒ ൭

𝑥ଵ + 2𝑥ଶ + 3𝑥ଷ + 4𝑥ସ + 5𝑥ହ = 2
𝑥ଵ = 2 − 2𝑥ଶ − 3𝑥ଷ − 4𝑥ସ − 5𝑥ହ

𝑥ଵ = 3
൱ 

Odpowiedź (3; −5; 4; −2; 1). 

Przykład Udowodnić, że układ równań sprzeczny 

൝

𝑥ଵ + 2𝑥ଶ − 3𝑥ଷ = −1
5𝑥ଵ + 8𝑥ଶ + 𝑥ଷ = 5

2𝑥ଵ + 2𝑥ଶ + 10𝑥ଷ = 2
 

Rozwiązanie  

Wykorzystamy metodę eliminacji Gaussa 

൝

𝑥ଵ + 2𝑥ଶ − 3𝑥ଷ = −1
5𝑥ଵ + 8𝑥ଶ + 𝑥ଷ = 5

2𝑥ଵ + 2𝑥ଶ + 10𝑥ଷ = 2
⇔ ൥

1 2 −3
5 8 1
2 2 10

อ
−1
5
2

൩ 

൥
1 2 −3
5 8 1
2 2 10

อ
−1
5
2

൩
𝑤ଵ ⋅ (−5) + 𝑤ଶ

~
𝑤ଵ ⋅ (−2) + 𝑤ଷ

൥
1 2 −3
0 −2 16
0 −2 16

อ
−1
10
4

൩ 𝑤ଶ ൬−
1

2
൰

~
൥
1 2 −3
0 1 −8
0 −2 16

อ
−1
−5
6

൩
𝑤ଶ ⋅ 2 + 𝑤ଷ

~
 

൥
1 2 −3
0 1 −8
0 0 0

อ
1

−5
−4

൩ ⟹ ൝
𝑥ଵ + 2𝑥ଶ − 3𝑥ଷ = −1

𝑥ଶ − 8𝑥ଷ = −5
0 = −4

 

Otrzymaliśmy sprzeczne równanie 0 = −4, co oznacza że układ równań również jest 

sprzeczny.  

Z innej strony rząd macierzy współczynników wynosi 2, bo  

𝑟𝑧 ൥
1 2 −3
5 8 1
2 2 10

൩ = 𝑟𝑧 ൥
1 2 −3
0 1 −8
0 0 0

൩ = 2 

a rząd macierzy rozszerzonej układu równań wynosi 3, bo 

𝑟𝑧 ൥
1 2 −3
5 8 1
2 2 10

อ
−1
5
2

൩ = 𝑟𝑧 ൥
1 2 −3
0 1 −8
0 0 0

อ
1

−5
−4

൩ 



 

88 
 

co według twierdzenia Kroneckera-Capellego oznacza, że układ równań nie ma rozwiązań. 

Odpowiedź ∅. 

Przykład Rozwiązać nieoznaczony układ równań liniowych 

൝

𝑥ଵ + 2𝑥ଶ − 3𝑥ଷ = −1
5𝑥ଵ + 8𝑥ଶ + 𝑥ଷ = 5

2𝑥ଵ + 2𝑥ଶ + 10𝑥ଷ = 8
 

Rozwiązanie  

Ponieważ układ równań jest nieoznaczony, musimy wykorzystać metodę eliminacji 

Gaussa 

൥
1 2 −3
5 8 1
2 2 10

อ
−1
5
8

൩
𝑤ଵ ⋅ (−5) + 𝑤ଶ

~
𝑤ଵ ⋅ (−2) + 𝑤ଷ

൥
1 2 −3
0 −2 16
0 −2 16

อ
−1
10
10

൩

𝑤ଶ ⋅ (−1) + 𝑤ଷ
~

𝑤ଶ ⋅ ൬−
1

2
൰

൥
1 2 −3
0 1 −8
0 0 0

อ
−1
−5
0

൩ ~ 

ቂ
1 2 −3
0 1 −8

ቚ
−1
−5

ቃ ⟹ ൜
𝑥ଵ + 2𝑥ଶ + 3𝑥ଷ = −1

𝑥ଶ − 8𝑥ଷ = −5
⟹ ൝

𝑥ଵ = −13𝑡 + 9
𝑥ଶ = 8𝑡 − 5

𝑥ଷ = 𝑡
 

Odpowiedź {(−13𝑡 + 9; 8𝑡 − 5; 𝑡)|𝑡 ∈ ℝ}. 

1.8.  RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE 

Podstawowe pojęcia i twierdzenia 

Definicja Równanie postaci 𝐹൫𝑥, 𝑦, 𝑦ᇱ, 𝑦ᇱᇱ, … , 𝑦(௡)൯ = 0, zawierające niezależną 

zmienna 𝑥, niewiadomą funkcję 𝑦 = 𝑦(𝑥) wraz z jej pochodnymi 𝑦ᇱ, 𝑦ᇱᇱ, … , 𝑦(௡), nazywa się 

równaniem różniczkowym zwyczajnym. Rząd najwyższej pochodnej, zawierającej się w 

równaniu, nazywa się rzędem równania różniczkowego. 

Zwyczajność równania różniczkowego oznacza, że niewiadoma funkcja jest funkcją 

jednej zmiennej (dla funkcji dwu i więcej zmiennych mamy natomiast równania różniczkowe 

cząstkowe). 

Równanie różniczkowe zwyczajne niech będzie dalej zwane RR. 

W trakcie rozwiązywania RR pamiętamy różne notacji pochodnej, tzn. 𝑦(௡) =
ௗ೙௬

ௗ௫೙
 

𝑦ᇱ =
𝑑𝑦

𝑑𝑥
 𝑦ᇱᇱ =

𝑑ଶ𝑦

𝑑𝑥ଶ
 𝑦ᇱᇱᇱ =

𝑑ଷ𝑦

𝑑𝑥ଷ
 

Definicja Zbiór funkcji 𝑛-krotnie różniczkowalnych, z których każda spełnia RR, 

nazywa się rozwiązaniem ogólnym, a poszczególna funkcja nazywa się rozwiązaniem 

szczególnym równania różniczkowego. 

Zwykłe rozwiązanie ogólne równania różniczkowego rzędu 𝑛 załeży od 𝑛 stałych (tzw. 

stałych całkowania) 𝐶ଵ, 𝐶ଶ, … , 𝐶௡, ponieważ całka nieoznaczona określa się z dokładnością do 
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stałej. A rozwiązanie szczególne można otrzymać z rozwiązania ogólnego podstawiając 

odpowiednie wartości parametrów. 

Rozwiązanie ogólne rozwiązania różniczkowego 𝑦ᇱ = 𝑓(𝑥, 𝑦) nazywa się jeszcze całką 

ogólną RR, a rozwiązanie szczególne – całka szczególną RR.  

Definicja Zagadnieniem Cauchy’ego (zagadnieniem początkowym) nazywa się zadanie 

polegające na znalezieniu szczególnego rozwiązania równania różniczkowego rzędu 𝑛, które 

również spełnia 𝑛 warunków początkowych. 

Tak na przykład, zagadnienie Cauchy’ego rzędu 𝑘 ∈ {1; 2; 3} wygląda następująco: 

 ൜
𝐹(𝑥, 𝑦, 𝑦ᇱ) = 0

𝑦(𝑥଴) = 𝑦଴
 

 ቐ
𝐹(𝑥, 𝑦, 𝑦ᇱ, 𝑦′′) = 0

𝑦(𝑥଴) = 𝑦଴

𝑦′(𝑥଴) = 𝑦ଵ

  

⎩
⎨

⎧
𝐹(𝑥, 𝑦, 𝑦ᇱ, 𝑦ᇱᇱ, 𝑦′′′) = 0

𝑦(𝑥଴) = 𝑦଴

𝑦ᇱ(𝑥଴) = 𝑦ଵ

𝑦ᇱᇱ(𝑥଴) = 𝑦ଶ

 

Przykład Czy jest funkcja 𝑦 rozwiązaniem RR? 

 
𝑦ᇱ = 5𝑥ସ + 3𝑒௫

𝑦 = 𝑥ସ + 𝑒௫  

 
2√𝑥𝑦ᇱ = 1

𝑦 = √𝑥 + 𝐶
𝐶 ∈ ℝ

 

 
𝑦ᇱᇱ − 2𝑦ᇱ + 𝑦 = 0

𝑦 = 3𝑒௫ + 𝑥𝑒௫ + 1
 

 
𝑦ᇱᇱ = 4𝑒ଶ௫

𝑦 = 𝑒ଶ௫ + 𝐶ଵ𝑥 + 𝐶ଶ

𝐶ଵ, 𝐶ଶ ∈ ℝ

 

Rozwiązanie 

 
𝑦ᇱ = 5𝑥ସ + 3𝑒௫

𝑦 = 𝑥ସ + 𝑒௫  

𝑦 = 𝑥ସ + 𝑒௫ ⟹ 𝑦ᇱ = (𝑥ସ + 𝑒௫)ᇱ =4𝑥ଷ + 3𝑒௫ ≠ 5𝑥ସ + 3𝑒௫ 

nie jest rozwiązaniem RR 

 
2√𝑥𝑦ᇱ = 1

𝑦 = √𝑥 + 𝐶
𝐶 ∈ ℝ

 

𝑦 = √𝑥 + 𝐶 ⟹ 𝑦ᇱ = ൫√𝑥 + 𝐶൯
ᇱ

=
1

2√𝑥
⟹ 2√𝑥𝑦ᇱ = 2√𝑥 ⋅

1

2√𝑥
= 1 

jest rozwiązaniem RR 

 
𝑦ᇱᇱ − 2𝑦ᇱ + 𝑦 = 0

𝑦 = 3𝑒௫ + 𝑥𝑒௫ + 1
 

𝑦 = 3𝑒௫ + 𝑥𝑒௫ + 1 ⟹
𝑦ᇱ = 3𝑒௫ + 𝑒௫ + 𝑥𝑒௫ = 4𝑒௫ + 𝑥𝑒௫

𝑦ᇱᇱ = 4𝑒௫ + 𝑒௫ + 𝑥𝑒௫ = 5𝑒௫ + 𝑥𝑒௫ ⟹ 

𝑦ᇱᇱ − 2𝑦ᇱ + 𝑦 = 5𝑒௫ + 𝑥𝑒௫ − 2(4𝑒௫ + 𝑥𝑒௫) + 3𝑒௫ + 𝑥𝑒௫ + 1 = 1 ≠ 0 

nie jest rozwiązaniem RR 
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 
𝑦ᇱᇱ = 4𝑒ଶ௫

𝑦 = 𝑒ଶ௫ + 𝐶ଵ𝑥 + 𝐶ଶ

𝐶ଵ, 𝐶ଶ ∈ ℝ

 

𝑦 = 𝑒ଶ௫ + 𝐶ଵ𝑥 + 𝐶ଶ ⟹
𝑦ᇱ = (𝑒ଶ௫ + 𝐶ଵ𝑥 + 𝐶ଶ)ᇱ = 2𝑒ଶ௫ + 𝐶ଵ

𝑦ᇱᇱ = (2𝑒ଶ௫ + 𝐶ଵ)ᇱ = 4𝑒ଶ௫  

jest rozwiązaniem RR 

Przykład Czy spełnia rozwiązanie RR zaznaczony warunek początkowy? 

 
2√𝑥𝑦ᇱ = 1

𝑦 = √𝑥

𝑦(0) = 0

  
𝑦ᇱᇱ = 4𝑒ଶ௫

𝑦 = 𝑒ଶ௫ + 𝑥

𝑦(1) = 2

 

Rozwiązanie 

 
2√𝑥𝑦ᇱ = 1

𝑦 = √𝑥

𝑦(0) = 0

 

𝑦 = √𝑥 ⟹ 𝑦(0) = √0 = 0 

spełnia warunek początkowy 

 
𝑦ᇱᇱ = 4𝑒ଶ௫

𝑦 = 𝑒ଶ௫ + 𝑥

𝑦(1) = 2

 

𝑦 = 𝑒ଶ௫ + 𝑥 ⟹ 𝑦(1) = 𝑒ଶ + 1 ≠ 2 

nie spełnia warunku początkowego 

Rozwiązywanie wybranych równań różniczkowych  

nieliniowych rzędu pierwszego 

Definicja RR o zmiennych rozdzielonych nazywa się równanie postaci 𝑓(𝑦)𝑦ᇱ = 𝑔(𝑥).

Rozwiązanie RR o zmiennych rozdzielonych otrzymamy po całkowaniu obustronnym, 

które polega głownie na całkowaniu równości i wyłączaniu funkcji 𝑦 z otrzymanej równości (o 

ile to jest możliwe). Inaczej mówiąc, 

𝑓(𝑦)𝑦ᇱ = 𝑔(𝑥) 

𝑓(𝑦)d𝑦 = 𝑔(𝑥)d𝑥 

න 𝑓(𝑦)d𝑦 = න 𝑔(𝑥)d𝑥 

𝐹(𝑦) = 𝐺(𝑥) 

𝑦 = 𝐹ିଵ൫𝐺(𝑥)൯ 

Przykład Znaleźć rozwiązanie ogólne RR o zmiennych rozdzielonych 

 𝑦ᇱ = 6𝑥ଶ − sin 𝑥 + 1  d𝑦 = 3𝑥ଶd𝑥 
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 𝑒௬d𝑦 = (𝑒௫ + 4𝑥)d𝑥  𝑦ᇱ = 𝑒ୡ୭ୱ sin 𝑥 

Rozwiązanie 

 𝑦ᇱ = 6𝑥ଶ − sin 𝑥 + 1 

d𝑦

d𝑥
= 6𝑥ଶ − sin 𝑥 + 1 

d𝑦 = (6𝑥ଶ − sin 𝑥 + 1)d𝑥 

න 1 d𝑦 = න(6𝑥ଶ − sin 𝑥 + 1) d𝑥 

𝑦 + 𝐶ଵ = 2𝑥ଷ + cos 𝑥 + 𝑥 + 𝐶ଶ, 𝐶ଵ,ଶ ∈ ℝ 

niech 𝐶 = 𝐶ଶ − 𝐶ଵ 

𝑦 = 2𝑥ଷ + cos 𝑥 + 𝑥 + 𝐶, 𝐶 ∈ ℝ 

 d𝑦 = 3𝑥ଶd𝑥 

d𝑦 = 3𝑥ଶd𝑥 

න 1 d𝑦 = න 3𝑥ଶ d𝑥 

𝑦 = 𝑥ଷ + 𝐶, 𝐶 ∈ ℝ 

 𝑒௬d𝑦 = (𝑒௫ + 4𝑥)d𝑥 

𝑒௬d𝑦 = (𝑒௫ + 4𝑥)d𝑥 

න 𝑒௬ d𝑦 = න(𝑒௫ + 4𝑥) d𝑥 

𝑒௬ = 𝑒௫ + 2𝑥ଶ + 𝐶, 𝐶 ∈ ℝ 

ln 𝑒௬ = ln(𝑒௫ + 2𝑥ଶ + 𝐶) 

𝑦 = ln(𝑒௫ + 2𝑥ଶ + 𝐶) , 𝐶 ∈ ℝ 

 𝑦ᇱ = 𝑒ୡ୭ୱ ௫ sin 𝑥 

d𝑦

d𝑥
= 𝑒ୡ୭ୱ ௫ sin 𝑥 

d𝑦 = 𝑒ୡ୭ୱ ௫ sin 𝑥 d𝑥 

න 1  d𝑦 = න 𝑒ୡ୭ୱ ௫ sin 𝑥 d𝑥 

න 𝑒ୡ୭ୱ ௫ sin 𝑥  d𝑥 = ൶

cos 𝑥 = 𝑡
d(cos 𝑥) = d𝑡

− sin 𝑥 d𝑥 = d𝑡
sin 𝑥 d𝑥 = −d𝑡

ൺ = − න 𝑒௧ d𝑡 = −𝑒௧ + 𝐶 = ⟦𝑡 = cos 𝑥⟧

= −𝑒ୡ୭ୱ ௫ + 𝐶 

𝑦 = −𝑒ୡ୭ + 𝐶, 𝐶 ∈ ℝ 

Przykład Znaleźć rozwiązanie szczególne RR 
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 𝑦ᇱ = 6𝑥ଶ − sin 𝑥 + 1 

 d𝑦 = 3𝑥ଶd𝑥 

 𝑒௬d𝑦 = (𝑒௫ + 4𝑥)d𝑥 

 𝑦ᇱ = 𝑒ୡ୭ୱ ௫ sin 𝑥 

Rozwiązanie 

Rozwiązania szczególne otrzymujemy z rozwiązań ogólnych, podstawiając jakiekolwiek 

dopuszczalne wartości stałej 𝐶. Tak więc, 

 𝑦ᇱ = 6𝑥ଶ − sin 𝑥 + 1 

Rozwiązanie ogólne RR: 𝑦 = 2𝑥ଷ + cos 𝑥 + 𝑥 + 𝐶, 𝐶 ∈ ℝ 

Rozwiązanie szczególne: 𝐶 = 0 ⟹ 𝑦 = 2𝑥ଷ + cos 𝑥 + 𝑥 

 d𝑦 = 3𝑥ଶd𝑥 

Rozwiązanie ogólne RR: 𝑦 = 𝑥ଷ + 𝐶, 𝐶 ∈ ℝ 

Rozwiązanie szczególne: 𝐶 = 1 ⟹ 𝑦 = 𝑥ଷ + 1 

 𝑒௬d𝑦 = (𝑒௫ + 4𝑥)d𝑥 

Rozwiązanie ogólne RR: 𝑦 = ln(𝑒௫ + 2𝑥ଶ + 𝐶) , 𝐶 ∈ ℝ 

Rozwiązanie szczególne: 𝐶 = −2 ⟹ 𝑦 = ln(𝑒௫ + 2𝑥ଶ − 2) 

 𝑦ᇱ = 𝑒ୡ୭ୱ ௫ sin 𝑥 

Rozwiązanie ogólne RR: 𝑦 = −𝑒ୡ୭ୱ ௫ + 𝐶, 𝐶 ∈ ℝ 

Rozwiązanie szczególne: 𝐶 = 𝑒 ⟹ 𝑦 = 𝑒 − 𝑒ୡ୭ୱ ௫  

Przykład Rozwiązać zagadnienie Cauchy’ego 

 
𝑦ᇱ = 6𝑥ଶ − sin 𝑥 + 1

𝑦(0) = 7
 

 
d𝑦 = 3𝑥ଶd𝑥

𝑦(1) = 0
 

 
𝑒௬d𝑦 = (𝑒௫ + 4𝑥)d𝑥

𝑦(0) = 1
 

 
𝑦ᇱ = 𝑒ୡ୭ୱ ௫ sin 𝑥

𝑦 ቀ
గ

ଶ
ቁ = 3

 

Rozwiązanie 

Rozwiązania ogólne RR już mamy otrzymane w poprzednich przykładach. Na ogół, 

poniższe rozwiązania są tylko częścią od całego rozwiązania zagadnienia Cauchy’ego. 

 
𝑦ᇱ = 6𝑥ଶ − sin 𝑥 + 1

𝑦(0) = 7
 

Rozwiązanie ogólne RR: 𝑦 = 2𝑥ଷ + cos 𝑥 + 𝑥 + 𝐶, 𝐶 ∈ ℝ 

𝑦(0) = 0 + cos 0 + 𝐶 = 1 + 𝐶 = 7 

1 + 𝐶 = 7 ⟹ 𝐶 = 6 

Rozwiązanie zagadnienia Cauchy’ego: 𝑦 = 2𝑥ଷ + cos 𝑥 + 𝑥 + 6 
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 
d𝑦 = 3𝑥ଶd𝑥

𝑦(1) = 0
 

Rozwiązanie ogólne RR: 𝑦 = 𝑥ଷ + 𝐶, 𝐶 ∈ ℝ 

𝑦(1) = 1 + 𝐶 = 0 

1 + 𝐶 = 0 ⟹ 𝐶 = − 1 

Rozwiązanie zagadnienia Cauchy’ego: 𝑦 = 𝑥ଷ − 1 

 
𝑒௬d𝑦 = (𝑒௫ + 4𝑥)d𝑥

𝑦(0) = 1
 

Rozwiązanie ogólne RR: 𝑦 = ln(𝑒௫ + 2𝑥ଶ + 𝐶) , 𝐶 ∈ ℝ 

𝑦(0) = ln(1 + 0 + 𝐶) = 1 

ln(1 + 𝐶) = 1 ⟹ ln(1 + 𝐶) = ln 𝑒 ⟹ 𝐶 = 𝑒 − 1 

Rozwiązanie zagadnienia Cauchy’ego: 𝑦 = ln(𝑒௫ + 2𝑥ଶ + 𝑒 − 1) 

 
𝑦ᇱ = 𝑒ୡ୭ୱ ௫ sin 𝑥

𝑦 ቀ
గ

ଶ
ቁ = 3

 

Rozwiązanie ogólne RR: 𝑦 = −𝑒ୡ୭ୱ ௫ + 𝐶, 𝐶 ∈ ℝ 

𝑦 ቀ
𝜋

2
ቁ = −𝑒ୡ୭ୱ

గ
ଶ + 𝐶 = −𝑒଴ + 𝐶 = 𝐶 − 1 = 3 

𝐶 − 1 = 3 ⟹ 𝐶 = 4 

Rozwiązanie zagadnienia Cauchy’ego: 𝑦 = 4 − 𝑒ୡ୭ୱ ௫ 

Definicja RR liniowym rzędu pierwszego nazywa się równanie postaci  

𝑦ᇱ + 𝑝(𝑥)𝑦 = 𝑞(𝑥) 

Jeżeli 𝑞(𝑥) ≡ 0, to otrzymane równanie 𝑦ᇱ + 𝑝(𝑥)𝑦 = 0 nazywa się RR jednorodnym. Jeżeli 

𝑞(𝑥) ≠ 0, to otrzymane równanie nazywa się RR niejednorodnym. 

Równanie 𝑦ᇱ + 𝑝(𝑥)𝑦 = 0 jest również RR o zmiennych rozdzielonych. 

Twierdzenie Rozwiązanie ogólne równania różniczkowego liniowego rzędu pierwszego 

można znaleźć ze wzoru 

𝑦 = 𝑒ି௉(௫) ൬න 𝑞(𝑥)𝑒௉(௫)d𝑥 + 𝐶൰ , 𝐶 ∈ ℝ 

gdzie 𝑃(𝑥) = ∫ 𝑝(𝑥)d𝑥. 

W ostatnim wzorze, obliczając całki nieoznaczone, nie wpisujemy stałych, ponieważ stała 

𝐶 już jest w rozwiązaniu RR. 

Jest również inne metody dla rozwiązywania RR liniowego rzędu pierwszego. 

Przykład Rozwiązać RR liniowe rzędu pierwszego 

 𝑦ᇱ + 𝑦 = 1  𝑦ᇱ + 3𝑥ଶ𝑦 = 3𝑥ଶ 
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 𝑦ᇱ + 𝑦 = 2𝑒ଷ௫  𝑦ᇱ + 3𝑦 = cos 𝑥 

Rozwiązanie 

 𝑦ᇱ + 𝑦 = 1 

𝑦ᇱ + 𝑝(𝑥)𝑦 = 𝑞(𝑥)

𝑦ᇱ + 𝑦 = 1
⟹

𝑝(𝑥) = 1

𝑞(𝑥) = 1
 

𝑃(𝑥) = න 1 d𝑥 = 𝑥 

න 𝑞(𝑥)𝑒௉(௫) d𝑥 = න 𝑒௫ d𝑥 = 𝑒௫ 

𝑦 = 𝑒ି௫(𝑒௫ + 𝐶) = 𝐶𝑒ି௫ + 1, 𝐶 ∈ ℝ 

 𝑦ᇱ + 3𝑥ଶ𝑦 = 3𝑥ଶ 

𝑦ᇱ + 𝑝(𝑥)𝑦 = 𝑞(𝑥)

𝑦ᇱ + 3𝑥ଶ𝑦 = 3𝑥ଶ ⟹
𝑝(𝑥) = 3𝑥ଶ

𝑞(𝑥) = 3𝑥ଶ 

𝑃(𝑥) = න 3𝑥ଶ d𝑥 = 𝑥ଷ 

න 𝑞(𝑥)𝑒௉(௫) d𝑥 = න 3𝑥ଶ𝑒௫య
d𝑥 = ൵

𝑥ଷ = 𝑡
d(𝑥ଷ) = d𝑡

3𝑥ଶd𝑥 = d𝑡

൹ = න 𝑒௧ d𝑡 = 𝑒௧ = ⟦𝑡 = 𝑥ଷ⟧

= 𝑒௫య
 

𝑦 = 𝑒ି௫య
൫𝑒௫య

+ 𝐶൯ = 𝐶𝑒ି௫య
+ 1, 𝐶 ∈ ℝ 

 𝑦ᇱ + 𝑦 = 2𝑒ଷ௫ 

𝑦ᇱ + 𝑝(𝑥)𝑦 = 𝑞(𝑥)

𝑦ᇱ + 𝑦ᇱ = 2𝑒ଷ௫ ⟹
𝑝(𝑥) = 1

𝑞(𝑥) = 2𝑒ଷ௫ 

𝑃(𝑥) = න 1 d𝑥 = 𝑥 

න 𝑞(𝑥)𝑒௉(௫) d𝑥 = න 2𝑒ଷ௫ ⋅ 𝑒௫ d𝑥 = න 2𝑒ସ௫ d𝑥 =
1

2
𝑒ସ௫ 

𝑦 = 𝑒ି௫ ൬
1

2
𝑒ସ௫ + 𝐶൰ =

1

2
𝑒ଷ௫ + 𝐶𝑒ି௫ , 𝐶 ∈ ℝ 

 𝑦ᇱ + 3𝑦 = cos 𝑥 

𝑦ᇱ + 𝑝(𝑥)𝑦 = 𝑞(𝑥)

𝑦ᇱ + 3𝑦 = cos 𝑥
⟹

𝑝(𝑥) = 3

𝑞(𝑥) = cos 𝑥
 

𝑃(𝑥) = න 3 d𝑥 = 3𝑥 

න 𝑞(𝑥)𝑒௉(௫) d𝑥 = න cos 𝑥 ⋅ 𝑒ଷ௫ d𝑥 =  ; 
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𝐼 = න cos 𝑥 ⋅ 𝑒ଷ௫ d𝑥 = න 𝑒ଷ௫ d(sin 𝑥) = 𝑒ଷ௫ sin 𝑥 − න sin 𝑥 d𝑒ଷ௫

= 𝑒ଷ௫ sin 𝑥 − න 3𝑒ଷ௫ sin 𝑥 d𝑥 = 𝑒ଷ௫ sin 𝑥 − න 3𝑒ଷ௫ d(− cos 𝑥)

= 𝑒ଷ௫ sin 𝑥 + 3𝑒ଷ௫ cos 𝑥 − න cos 𝑥 d3𝑒ଷ௫

= 𝑒ଷ௫ sin 𝑥 + 3𝑒ଷ௫ cos 𝑥 − න 9𝑒ଷ௫ cos 𝑥 d𝑥

= 𝑒ଷ௫ sin 𝑥 + 3𝑒ଷ௫ cos 𝑥 − 9𝐼 

𝐼 = 𝑒ଷ௫ sin 𝑥 + 3𝑒ଷ௫ cos 𝑥 − 9𝐼 

10𝐼 = 𝑒ଷ௫ sin 𝑥 + 3𝑒ଷ௫ cos 𝑥 

𝐼 =
1

10
(𝑒ଷ௫ sin 𝑥 + 3𝑒ଷ௫ cos 𝑥); 

=
1

10
(𝑒ଷ௫ sin 𝑥 + 3𝑒ଷ௫ cos 𝑥) =

𝑒ଷ௫(sin 𝑥 + 3 cos 𝑥)

10
 

𝑦 = 𝑒ିଷ௫ ቆ
𝑒ଷ௫(sin 𝑥 + 3 cos 𝑥)

10
+ 𝐶ቇ =

sin 𝑥 + 3 cos 𝑥

10
+ 𝐶𝑒ିଷ௫ , 𝐶 ∈ ℝ 

Rozwiązywanie jednorodnych równań różniczkowych liniowych 

wyższych rzędów o stałych współczynnikach 

Definicja RR postaci 𝑎𝑦ᇱᇱ + 𝑏𝑦ᇱ + 𝑐𝑦 = 𝑓(𝑥), 𝑎, 𝑏, 𝑐 ∈ ℝ nazywa się RR liniowym rzędu 

drugiego o stałych współczynnikach (𝑎, 𝑏, 𝑐). Jeżeli dodatkowo 𝑓(𝑥) ≡ 0, otrzymane równanie 

𝑎𝑦ᇱᇱ + 𝑏𝑦ᇱ + 𝑐𝑦 = 0 nazywa się jednorodne. Jeżeli 𝑓(𝑥) ≠ 0, to otrzymane nazywa się 

niejednorodne. 

Definicja RR postaci 𝑎௡𝑦(௡) + 𝑎௡ିଵ𝑦(௡ିଵ) + ⋯ + 𝑎ଵ𝑦ᇱ + 𝑎଴𝑦 = 𝑓(𝑥), 𝑎௜ ∈ ℝ, 𝑖 = 0, 𝑛തതതതത 

nazywa się RR liniowym rzędu 𝑛 o stałych współczynnikach (𝑎଴, 𝑎ଵ, … , 𝑎௡). Jeżeli dodatkowo 

𝑓(𝑥) ≡ 0, otrzymane równanie nazywa się jednorodne, a jeżeli 𝑓(𝑥) ≠ 0, to – niejednorodne. 

Definicja Równaniem charakterystycznym RR liniowego rzędu drugiego  

𝑎𝑦ᇱᇱ + 𝑏𝑦ᇱ + 𝑐𝑦 = 𝑓(𝑥), 𝑎, 𝑏, 𝑐 ∈ ℝ 

nazywa się równanie 

𝑎𝜆ଶ + 𝑏𝜆 + 𝑐 = 0 

które otrzymujemy z RR po podstawieniu 𝑦ᇱᇱ = 𝜆ଶ, 𝑦ᇱ = 𝜆, 𝑦 = 1. 

Definicja Równaniem charakterystycznym RR liniowego rzędu 𝑛  

𝑎௡𝑦(௡) + 𝑎௡ିଵ𝑦(௡ିଵ) + ⋯ + 𝑎ଵ𝑦ᇱ + 𝑎଴𝑦 = 0 , 𝑎௜ ∈ ℝ, 𝑖 = 0, 𝑛തതതതത 

nazywa się równanie  

𝑎௡𝜆௡ + 𝑎௡ିଵ𝜆௡ିଵ + ⋯ + 𝑎ଵ𝜆 + 𝑎଴ = 0 
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które otrzymujemy z RR po podstawieniu 𝑦(௡) = 𝜆௡, 𝑦(௡ିଵ) = 𝜆௡ିଵ, … , 𝑦ᇱ = 𝜆, 𝑦 = 1. 

Równanie charakterystyczne rozwiązujemy w zbiorze liczb zespolonych, co oznacza, że 

równanie charakterystyczne rzędu 𝑛 zawsze musi mieć dokładnie 𝑛 rozwiązań (rozwiązanie 

krotności np. 2 jest to samo, co dwa jednakowe rozwiązania). 

Rozwiązania bazowe RR: W zależności od znalezionych rozwiązań równania 

charakterystycznego, otrzymujemy takie tzw. rozwiązania bazowe równania różniczkowego: 

 jeżeli pierwiastki rzeczywiste, to 

 𝜆 jest pierwiastkiem krotności 1 ⟹ jedno rozwiązanie bazowe 𝑦 = 𝑒ఒ௫ 

 𝜆 jest pierwiastkiem krotności 2 ⟹ dwa rozwiązania bazowe ቈ
𝑦ଵ = 𝑒ఒ௫

𝑦ଶ = 𝑥𝑒ఒ௫
 

 𝜆 jest pierwiastkiem krotności 3 ⟹ trzy rozwiązania bazowe ቎
𝑦ଵ = 𝑒ఒ௫

𝑦ଶ = 𝑥𝑒ఒ௫

𝑦ଷ = 𝑥ଶ𝑒ఒ௫

 

 jest pierwiastkiem krotności 𝑘 ⟹ 𝑘 rozwiązań bazowych 

⎣
⎢
⎢
⎢
⎡

𝑦ଵ = 𝑒ఒ௫

𝑦ଶ = 𝑥𝑒ఒ௫

𝑦ଷ = 𝑥ଶ𝑒ఒ௫

…
𝑦௞ =𝑥௞ିଵ𝑒ఒ௫

 

 jeżeli pierwiastki zespolone, to (𝑖 tj. jednostka urojona, 𝑖ଶ = −1) 

 𝜆 = 𝛼 ± 𝑖𝛽 są rozwiązaniami krotności 1 ⟹ dwa rozwiązania bazowe 

൤
𝑦ଵ = 𝑒ఈ௫ cos 𝛽𝑥

𝑦ଶ = 𝑒ఈ௫ sin 𝛽𝑥
 

 𝜆 = 𝛼 ± 𝑖𝛽 są rozwiązaniami krotności 2 ⟹ cztery rozwiązania bazowe 

൦

𝑦ଵ = 𝑒ఈ௫ cos 𝛽𝑥

𝑦ଶ = 𝑒ఈ௫ sin 𝛽𝑥

𝑦ଷ = 𝑥𝑒ఈ௫ cos 𝛽𝑥

𝑦ସ = 𝑥𝑒ఈ௫ sin 𝛽𝑥

 

 𝜆 = 𝛼 ± 𝑖𝛽 są rozwiązaniami krotności 3 ⟹ sześć rozwiązań bazowych 

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝑦ଵ = 𝑒ఈ௫ cos 𝛽𝑥

𝑦ଶ = 𝑒ఈ௫ sin 𝛽𝑥

𝑦ଷ = 𝑥𝑒ఈ௫ cos 𝛽𝑥

𝑦ସ = 𝑥𝑒ఈ௫ sin 𝛽𝑥

𝑦ହ = 𝑥ଶ𝑒ఈ௫ cos 𝛽𝑥

𝑦଺ = 𝑥ଶ𝑒ఈ௫ sin 𝛽𝑥

 

 𝜆 = 𝛼 ± 𝑖𝛽 są rozwiązaniami krotności 𝑘 ⟹ 2𝑘 rozwiązań bazowych 
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⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑦ଵ = 𝑒ఈ௫ cos 𝛽𝑥

𝑦ଶ = 𝑒ఈ௫ sin 𝛽𝑥

𝑦ଷ = 𝑥𝑒ఈ௫ cos 𝛽𝑥

𝑦ସ = 𝑥𝑒ఈ௫ sin 𝛽𝑥

𝑦ହ = 𝑥ଶ𝑒ఈ௫ cos 𝛽𝑥

𝑦଺ = 𝑥ଶ𝑒ఈ௫ sin 𝛽𝑥
…

𝑦ଶ௞ିଵ = 𝑥௞ିଵ𝑒ఈ௫ cos 𝛽𝑥

𝑦ଶ௞ = 𝑥௞ିଵ𝑒ఈ௫ sin 𝛽𝑥

 

Twierdzenie Schemat rozwiązania jednorodnych RR liniowych wyższych rzędów: 

𝑎௡𝑦(௡) + 𝑎௡ିଵ𝑦(௡ିଵ) + ⋯ + 𝑎ଵ𝑦ᇱ + 𝑎଴𝑦 = 0 , 𝑎௜ ∈ ℝ, 𝑖 = 0, 𝑛തതതതത 

 układamy równanie charakterystyczne 

𝑎௡𝜆௡ + 𝑎௡ିଵ𝜆௡ିଵ + ⋯ + 𝑎ଵ𝜆 + 𝑎଴ = 0 

 rozwiązujemy równanie charakterystyczne ⟹ 𝑛 rozwiązań 𝜆ଵ, 𝜆ଶ, … , 𝜆௡ 

 generujemy funkcje bazowe 𝑦ଵ, 𝑦ଶ, … , 𝑦௡ w zależności od otrzymanych wyżej 

rozwiązań równania charakterystycznego 

 wypisujemy kombinację liniową rozwiązań bazowych 

𝑦 = 𝐶ଵ𝑦ଵ + 𝐶ଶ𝑦ଶ + ⋯ + 𝐶௡𝑦௡ 

która zależy od 𝑛 stałych 𝐶௜ ∈ ℝ, 𝑖 = 0, 𝑛തതതതത oraz jest rozwiązaniem ogólnym 

jednorodnego RR rzędu 𝑛. 

Przykład Rozwiązać RR liniowe wyższych rzędów 

 𝑦ᇱᇱ + 5𝑦ᇱ + 6𝑦 = 0 

 𝑦ᇱᇱ − 6𝑦ᇱ + 9𝑦 = 0 

 𝑦ᇱᇱᇱ − 5𝑦ᇱᇱ + 4𝑦ᇱ = 0 

 𝑦ᇱᇱ + 𝑦 = 0 

 𝑦ᇱᇱ − 4𝑦ᇱ + 13𝑦 = 0 

 𝑦ூ௏ + 9𝑦ᇱᇱ = 0

Rozwiązanie 

 𝑦ᇱᇱ + 5𝑦ᇱ + 6𝑦 = 0 

𝜆ଶ + 5𝜆 + 6 = 0 

𝜆ଵ = −3 
𝜆ଶ = −2

⟹
𝑦ଵ = 𝑒ିଷ௫

𝑦ଶ = 𝑒ିଶ௫ 

𝑦 = 𝐶ଵ𝑒ିଷ௫ + 𝐶ଶ𝑒ିଶ௫ , 𝐶ଵ,ଶ ∈ ℝ 

 𝑦ᇱᇱ − 6𝑦ᇱ + 9𝑦 = 0 

𝜆ଶ − 6𝜆 + 9 = 0 

𝜆ଵ,ଶ = 3 ⟹
𝑦ଵ = 𝑒ଷ௫

𝑦ଶ = 𝑥𝑒ଷ௫ 

𝑦 = 𝐶ଵ𝑒ଷ௫ + 𝐶ଶ𝑥𝑒ଷ௫, 𝐶ଵ,ଶ ∈ ℝ 

 𝑦ᇱᇱᇱ − 5𝑦ᇱᇱ + 4𝑦ᇱ = 0 
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𝜆ଷ − 5𝜆ଶ + 4𝜆 = 0 

𝜆(𝜆ଶ − 5𝜆 + 4) = 0 

𝜆ଵ = 0 
𝜆ଶ = 1
𝜆ଷ = 4

⟹

𝑦ଵ = 𝑒଴௫ = 1

𝑦ଶ = 𝑒௫

𝑦ଷ = 𝑒ସ௫

 

𝑦 = 𝐶ଵ + 𝐶ଶ𝑒௫ + 𝐶ଷ𝑒ସ௫, 𝐶ଵ, 𝐶ଶ, 𝐶ଷ ∈ ℝ 

 𝑦ᇱᇱ + 𝑦 = 0 

𝜆ଶ + 1 = 0 

𝜆ଵ = −1 

𝜆ଵ,ଶ = ±𝑖

𝜆ଵ,ଶ = 0 ± 1𝑖
⟹

𝑦ଵ = 𝑒଴௫ cos(1 ⋅ 𝑥) = cos 𝑥

𝑦ଶ = 𝑒଴௫ sin(1 ⋅ 𝑥) = sin 𝑥
 

𝑦 = 𝐶ଵ cos 𝑥 + 𝐶ଶ sin 𝑥 , 𝐶ଵ,ଶ ∈ ℝ 

 𝑦ᇱᇱ − 4𝑦ᇱ + 13𝑦 = 0 

𝜆ଶ − 4𝜆 + 13 = 0 

Δ = −36 = (6𝑖)ଶ ⟹ √Δ = ±6𝑖 

𝜆ଵ,ଶ =
4 ± 6𝑖

2
= 2 ± 3𝑖 ⟹

𝑦ଵ = 𝑒ଶ௫ cos 3𝑥

𝑦ଶ = 𝑒ଶ௫ sin 3𝑥
 

𝑦 = 𝐶ଵ𝑒ଶ௫ cos 3𝑥 + 𝐶ଶ𝑒ଶ௫ sin 3𝑥 , 𝐶ଵ,ଶ ∈ ℝ 

 𝑦ூ௏ + 9𝑦ᇱᇱ = 0 

𝜆ସ + 9𝜆ଶ = 0 

𝜆ଶ(𝜆ଶ + 9) = 0 

𝜆ଶ = 0
𝜆ଵ,ଶ = 0

∨
𝜆ଶ + 9 = 0

𝜆ଶ = −9
𝜆ଷ,ସ = ±3𝑖

 

𝜆ଵ,ଶ = 0

𝜆ଷ,ସ = ±3𝑖
⟹

𝑦ଵ = 1
𝑦ଶ = 𝑥

𝑦ଷ = cos 3𝑥
𝑦ସ = sin 3𝑥

 

𝑦 = 𝐶ଵ + 𝐶ଶ𝑥 + 𝐶ଷ cos 3𝑥 + 𝐶ସ 𝑠𝑖𝑛3𝑥, 𝐶ଵ, 𝐶ଶ, 𝐶ଷ, 𝐶ସ ∈ ℝ 

Przykład Rozwiązać zagadnienia Cauchy’ego 

 
𝑦ᇱᇱ + 5𝑦ᇱ + 6𝑦 = 0

𝑦(0) = 5

𝑦ᇱ(0) = −12

 
 

𝑦ᇱᇱᇱ − 5𝑦ᇱᇱ + 4𝑦ᇱ = 0

𝑦(0) = 2

𝑦ᇱ(0) = 4

𝑦ᇱᇱ(0) = 16

 

Rozwiązanie 
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Rozwiązania ogólne RR już mamy otrzymane w poprzednich przykładach. Na ogół, 

poniższe rozwiązania są tylko częścią od całego rozwiązania zagadnienia Cauchy’ego. 

 
𝑦ᇱᇱ + 5𝑦ᇱ + 6𝑦 = 0

𝑦(0) = 5

𝑦ᇱ(0) = −12

 

Rozwiązanie ogólne RR: 𝑦 = 𝐶ଵ𝑒ିଷ௫ + 𝐶ଶ𝑒ିଶ௫ , 𝐶ଵ,ଶ ∈ ℝ 

𝑦ᇱ = −3𝐶ଵ𝑒ିଷ௫ − 2𝐶ଶ𝑒ିଶ௫ 

𝑦(0) = 𝐶ଵ + 𝐶ଶ

𝑦ᇱ(0) = −3𝐶ଵ − 2𝐶ଶ
⟹ ൜

𝐶ଵ + 𝐶ଶ = 5
−3𝐶ଵ − 2𝐶ଶ = −12

⟹
𝐶ଵ = 2
𝐶ଶ = 3

⟹ 

rozwiązanie zagadnienia Cauchy’ego: 𝑦 = 2𝑒ିଷ௫ + 3𝑒ିଶ௫ 

 

𝑦ᇱᇱᇱ − 5𝑦ᇱᇱ + 4𝑦ᇱ = 0

𝑦(0) = 2

𝑦ᇱ(0) = 4

𝑦ᇱᇱ(0) = 16

 

Rozwiązanie ogólne RR: 𝑦 = 𝐶ଵ + 𝐶ଶ𝑒௫ + 𝐶ଷ𝑒ସ௫, 𝐶ଵ, 𝐶ଶ, 𝐶ଷ ∈ ℝ 

𝑦ᇱ = 𝐶ଶ𝑒௫ + 4𝐶ଷ𝑒ସ௫ 

𝑦ᇱᇱ = 𝐶ଶ𝑒௫ + 16𝐶ଷ𝑒ସ௫ 

𝑦(0) = 𝐶ଵ + 𝐶ଶ + 𝐶ଷ = 2

𝑦ᇱ(0) = 𝐶ଶ + 4𝐶ଷ = 4

𝑦ᇱᇱ(0) = 𝐶ଶ + 16𝐶ଷ = 16

⟹ ൝

𝐶ଵ + 𝐶ଶ + 𝐶ଷ = 2
𝐶ଶ + 4𝐶ଷ = 4

𝐶ଶ + 16𝐶ଷ = 16
⟹

𝐶ଵ = 1
𝐶ଶ = 0
𝐶ଷ = 1

⟹ 

rozwiązanie zagadnienia Cauchy’ego: 𝑦 = 1 + 𝑒ସ௫ 

Interpretacja geometryczna RR rzędu pierwszego 

Niech dane jest RR rzędu pierwszego 𝑥ᇱ = 𝑓(𝑡, 𝑥), rozwiązaniem którego niech będzie 

funkcja 𝑥 = 𝑥(𝑡), przechodząca przez punkt (𝑡଴; 𝑥଴), 𝑥଴ = 𝑥(𝑡଴).   

Tak na przykład, jeśli jednowymiarowy ruch punktu materialnego określony równaniem 

różniczkowym 𝑥ᇱᇱ(𝑡) =
ி

௠
, to, zakładając warunki początkowe 

𝑥(𝑡଴) = 𝑥଴

𝑥ᇱ(𝑡଴) = 𝑥ଵ
, rozwiązanie 

zagadnienia Cauchy’ego określa trajektorię ruchu. Bez warunków początkowych, otrzymamy 

cały zbiór trajektorii (w zależności od stałych całkowania). 

Z innej strony z rachunku różniczkowego funkcji jednej zmiennej widomo, że 𝑦ᇱ(𝑥଴) =

tg 𝛼, gdzie 𝛼 – tj. kąt nachylenia stycznej do wykresu funkcji 𝑦 = 𝑦(𝑥) w punkcie (𝑥଴; 𝑦଴) a 

dodatniego kierunku osi 𝑂𝑥. Wykorzystując to, można zdefiniować pole kierunków RR i 

krzywe całkowe RR [12]. 

Niektóre zastosowania równań różniczkowych 

Równania różniczkowe mają swoje zastosowanie niemal wszędzie, gdzie jest zmiana, 

która w swoją kolej określa się różniczką (lub pochodną). Jak już było zaznaczono w 
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rozdziałach różniczkowego i całkowego rachunków, dynamika ruchu jednowymiarowego 

punktu materialnego obiektu według drugiego prawa Newtona [13]: 

𝐹 = 𝑚𝑎 

Ostatnia równość, po podstawieniu zamiast przyspieszenia 𝑎 pochodną prędkości 𝑣ᇱ(𝑡) oraz 

drugą pochodną drogi 𝑠′′(𝑡), przepisuje się w postaciach 

𝑚𝑎 = 𝐹 ⟹ 𝑚𝑣ᇱ(𝑡) = 𝐹 ⟹ 𝑚𝑠ᇱᇱ(𝑡) = 𝐹 

Zakładając, że siła nie zmienia się, tzn. 𝐹 = const, otrzymamy równanie takie różniczkowe 

rzędu drugiego 

𝑠ᇱᇱ(𝑡) =
𝐹

𝑚
 

Rozwiązaniem którego jest funkcja 𝑠(𝑡) =
ி

ଶ௠
+ 𝐶ଵ𝑡 + 𝐶ଶ, 𝐶ଵ,ଶ ∈ ℝ 

Przykład Znaleźć trajektorię ruchu jednowymiarowego punktu materialnego masy 𝑚 =

3 na które działa stała siła 𝐹 = 12. 

Rozwiązanie 

Zgodnie z drugim prawem Newtona 𝐹 = 𝑚𝑎 ⟺ 𝑎 =
ி

௠
. Podstawiając 𝑎 = 𝑥′′(𝑡) 

otrzymamy równanie różniczkowe drugiego rzędu 𝑥ᇱᇱ(𝑡) =
ி

௠
. 

𝑚 = 3
𝐹 = 12

⟹ 𝑥ᇱᇱ(𝑡) =
12

3
= 4 

𝑥ᇱᇱ(𝑡) = 4 

න 𝑥ᇱᇱ(𝑡) d𝑡 = න 4 d𝑡 

𝑥ᇱ(𝑡) = 4𝑡 + 𝐶ଵ 

න 𝑥ᇱ(𝑡) d𝑡 = න(4𝑡 + 𝐶ଵ) d𝑡 

𝑥(𝑡) = 2𝑡ଶ + 𝐶ଵ𝑡 + 𝐶ଶ, 𝐶ଵ,ଶ ∈ ℝ 

Trajektoria ruchu jednowymiarowego punktu materialnego jest określona funkcją  

𝑥(𝑡) = 2𝑡ଶ + 𝐶ଵ𝑡 + 𝐶ଶ, gdzie 𝐶ଵ,ଶ – to są tzw. stałe całkowanie, tzn. dowolne stałe rzeczywiste. 

Innym przykładem jest równanie związane z drganiem harmonicznym (tzn. drganiem 

ciała, na które działa siła 𝐹⃗) [13], które w jednowymiarowym przypadku ma postać  

𝐹 = −𝑘𝑥(𝑡) 

gdzie 𝑥(𝑡) – tj. wartość wychylenia z położenia równowagi (zależy od czasu), 𝑘 > 0 – stała, a 

znam minus związany z tym, że siła 𝐹 skierowana przeciwnie do wychylenia. 

Przykład Rozwiązać poniższe równanie jednowymiarowego drgania harmonicznego 

ciała z masą 𝑚 = 1   
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𝐹 = −9𝑥(𝑡) 

Rozwiązanie 

Zgodnie z drugim prawem Newtona  

𝐹 = 𝑚𝑎 = ⟦𝑎 = 𝑥ᇱᇱ(𝑡)⟧ = 𝑚𝑥ᇱᇱ(𝑡) = −9𝑥(𝑡) 

𝑚𝑥ᇱᇱ(𝑡) = −9𝑥(𝑡) 

𝑥ᇱᇱ(𝑡) = −9𝑥(𝑡) 

𝑥ᇱᇱ(𝑡) + 9𝑥(𝑡) = 0 

𝜆ଶ + 9 = 0 

 𝜆ଵ,ଶ = ±3𝑖 

𝜆ଵ,ଶ = ±3𝑖 ⟹
𝑥ଵ(𝑡) = cos 3𝑡

𝑥ଶ(𝑡) = sin 3𝑡
 

𝑥(𝑡) = 𝐶ଵ𝑥ଵ(𝑡) + 𝐶ଶ𝑥ଶ(𝑡), 𝐶ଵ,ଶ ∈ ℝ 

𝑥(𝑡) = 𝐶ଵ cos 3𝑡 + 𝐶ଶ sin 3𝑡 , 𝐶ଵ,ଶ ∈ ℝ 

Istnieje 𝜑, takie że cos 𝜑 =
஼భ

ට஼భ
మା஼మ

మ
, sin 𝜑 =

஼మ

ට஼భ
మା஼మ

మ
, skąd wynikają poniższe równości 

𝑥(𝑡) = ට𝐶ଵ
ଶ + 𝐶ଶ

ଶ ቆ
𝐶ଵ

ඥ𝐶ଵ
ଶ + 𝐶ଶ

ଶ
cos 3𝑡 +

𝐶ଶ

ඥ𝐶ଵ
ଶ + 𝐶ଶ

ଶ
sin 3𝑡ቇ

= ට𝐶ଵ
ଶ + 𝐶ଶ

ଶ(cos 𝜑 cos 3𝑡 + sin 𝜑 sin 3𝑡)

= ⟦cos 𝛼 cos 𝛽 + sin 𝛼 sin 𝛽 = cos(𝛼 − 𝛽)⟧ = ට𝐶ଵ
ଶ + 𝐶ଶ

ଶ ⋅ cos( 𝜑 − 3𝑡)

= ⟦cos(−𝛾) = cos 𝛾⟧ = ට𝐶ଵ
ଶ + 𝐶ଶ

ଶ ⋅ cos( 3𝑡 − 𝜑) 

Tak więc, funkcja drgania harmonicznego ciała z masą 𝑚 = 1 ma postać 

𝑥(𝑡) = ට𝐶ଵ
ଶ + 𝐶ଶ

ଶ ⋅ cos( 3𝑡 − 𝜑) 

gdzie ඥ𝐶ଵ
ଶ + 𝐶ଶ

ଶ określa amplitudę drgań, a 𝜑 – ich fazę. 

1.9. OBLICZANIE CAŁEK PODWÓJNYCH, POTRÓJNYCH, 

KRZYWOLINIOWYCH I POWIERZCHNIOWYCH 

Definicja Całką podwójną funkcji 𝑓(𝑥, 𝑦) w domkniętym obszarze 𝐷ଶ ⊂ ℝଶ nazywa się 

całka 

ඵ 𝑓(𝑥, 𝑦)

 

஽మ

d𝑥 d𝑦 

Całkę podwójną można obliczyć z jednej z wn. równości (w zależności od obszaru 𝐷ଶ): 
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 𝐷ଶ = ൜(𝑥; 𝑦) ∈ ℝଶฬ
𝑥ଵ ≤ 𝑥 ≤ 𝑥ଶ

𝑔ଵ(𝑥) ≤ 𝑦 ≤ 𝑔ଶ(𝑥)
 ൠ: 

ඵ 𝑓(𝑥, 𝑦)

 

஽మ

d𝑥 d𝑦= න න 𝑓(𝑥; 𝑦) d𝑦 d𝑥

௚మ(௫)

௚భ(௫)

௫మ

௫భ

 

 𝐷ଶ = ൜(𝑥; 𝑦) ∈ ℝଶฬ
𝑦ଵ ≤ 𝑦 ≤ 𝑦ଶ

ℎଵ(𝑦) ≤ 𝑥 ≤ ℎଶ(𝑦)
 ൠ: 

ඵ 𝑓(𝑥, 𝑦)

 

஽మ

d𝑥 d𝑦= න න 𝑓(𝑥; 𝑦) d𝑥 d𝑦

௛మ(௬)

௛భ(௬)

௬మ

௬భ

 

Długość odcinka 〈𝑥ଵ, 𝑥ଶ〉 ⊂ ℝ można znaleźć za pomocą całki ∫ 1
௫మ

௫భ
d𝑥 = 𝑥ଶ − 𝑥ଵ. 

Twierdzenie Pole płaskiego obszaru 𝐷ଶ ⊂ ℝଶ można znaleźć za pomocą całki 

podwójnej,  mianowicie  

ඵ 1

 

஽మ

d𝑥 d𝑦 

Definicja Całką potrójną funkcji 𝑓(𝑥, 𝑦, 𝑧) w domkniętym obszarze 𝐷ଷ ⊂ ℝଷ nazywa 

się całka  

ම 𝑓(𝑥, 𝑦, 𝑧)

 

஽య

d𝑥 d𝑦 d𝑧 

Niech 𝐷ଷ = ቐ(𝑥; 𝑦; 𝑧) ∈ ℝଷቮ

𝑥ଵ ≤ 𝑥 ≤ 𝑥ଶ

𝑔ଵ(𝑥) ≤ 𝑦 ≤ 𝑔ଶ(𝑥)

ℎଵ(𝑥, 𝑦) ≤ 𝑧 ≤ ℎଶ(𝑥, 𝑦)
 ቑ, wtedy całkę potrójną można 

obliczyć z równości 

ම 𝑓(𝑥, 𝑦, 𝑧)

 

஽య

d𝑥 d𝑦 d𝑧 = න න න 𝑓(𝑥; 𝑦) d𝑧 d𝑦 d𝑥

௛మ(௫,௬)

௛భ(௫,௬)

௚మ(௫)

௚భ(௫)

௫మ

௫భ

 

Twierdzenie Objętość bryły 𝐷ଷ ⊂ ℝଶ można znaleźć za pomocą całki potrójnej,  

mianowicie  

ම 1

 

஽య

d𝑥 d𝑦 d𝑧 

Definicja Całką 𝑛-krotną funkcji 𝑓(𝑥ଵ, 𝑥ଶ, … , 𝑥௡) nazywa się całka 

න න … න 𝑓(𝑥ଵ, 𝑥ଶ, … , 𝑥௡) 𝑑𝑥ଵ 𝑑𝑥ଶ  …  𝑑𝑥௡

           𝐷௡   
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Całką krzywoliniową nazywa się całka, w której funkcja podcałkowa przyjmuje swoje 

wartości wzdłuż krzywej. W przypadku krzywej zamkniętej, otrzymamy tzw. całkę okrężną. 

Całką powierzchniową nazywa się całka z powierzchnią w jakości obszaru całkowania. 

Przykład Obliczyć całki podwójne: 

 ∬ (3𝑥ଶ + 8𝑥𝑦)d𝑥 d𝑦
 

஽మ , 𝐷ଶ = ൜(𝑥; 𝑦)ฬ
0 ≤ 𝑥 ≤ 1

𝑥ଶ ≤ 𝑦 ≤ 𝑥
ൠ 

 ∬ 4𝑥𝑦
 

஽మ d𝑥 d𝑦, 𝐷ଶ = ൜(𝑥; 𝑦)ฬ
1 ≤ 𝑦 ≤ 2

𝑦ଶ ≤ 𝑥 ≤ 𝑦ଷൠ 

Rozwiązanie  

 ∬ (3𝑥ଶ + 8𝑥𝑦)d𝑥 d𝑦
 

஽మ = ∫ ൫∫ (3𝑥ଶ + 8𝑥𝑦) d𝑦
௫

௫మ ൯d𝑥 =
ଵ

଴
; 

∫ (3𝑥ଶ + 8𝑥𝑦) d𝑦
௫

௫మ = [3𝑥ଶ𝑦 + 4𝑥𝑦ଶ]
௬ୀ௫మ
௬ୀ௫

= (3𝑥ଷ + 4𝑥ଷ) − (3𝑥ସ + 4𝑥ହ) =

 7𝑥ଷ − 3𝑥ସ − 4𝑥ହ; 

= ∫ (7𝑥ଷ − 3𝑥ସ − 4𝑥ହ)d𝑥 = ቂ
଻

ସ
𝑥ସ −

ଷ

ହ
𝑥ହ −

ଶ

ଷ
𝑥଺ቃ

଴

ଵ

= ቀ
଻

ସ
−

ଷ

ହ
−

ଶ

ଷ
ቁ − 0 =

ଶଽ

଺଴

ଵ

଴
  

 ∬ 4𝑥𝑦
 

஽మ d𝑥 d𝑦 = ∫ ቀ∫ 4𝑥𝑦 d𝑥
௬య

௬మ ቁ d𝑦 =
ଶ

ଵ
; 

∫ 4𝑥𝑦 d𝑥
௬య

௬మ = [2𝑥ଶ𝑦]
௫ୀ௬మ
௫ୀ௬య

= 2𝑦଻ − 2𝑦ହ ; 

= ∫ (2𝑦଻ − 2𝑦ହ)d𝑥 = ቂ
ଵ

ସ
𝑦଼ −

ଵ

ଷ
𝑦଺ቃ

ଵ

ଶଶ

ଵ
= 42,75  

Przykład Wykorzystując całkę podwójną, znaleźć pole koła o promieniu 𝑟 = 1. 

Rozwiązanie 

𝑥ଶ + 𝑦ଶ = 𝑟ଶ

𝑥ଶ + 𝑦ଶ = 1

𝑦 = ±ඥ1 − 𝑥ଶ, −1 ≤ 𝑥 ≤ 1

⟹ 𝐷 = ൜(𝑥, 𝑦)ฬ
−1 ≤ 𝑥 ≤ 1

−√1 − 𝑥ଶ ≤ 𝑦 ≤ √1 − 𝑥ଶൠ 

Wtedy pole kola równa się  

ඵ 1

 

஽

 d𝑥 d𝑦 = න ቌ න 1

√ଵି௫మ

ି√ଵି௫మ

d𝑦ቍ d𝑥

ଵ

ିଵ

= න ቀ[𝑦]
௬ୀି√ଵି௫మ

௬ୀ√ଵି௫మ
ቁ d𝑥

ଵ

ିଵ

= න ቀ2ඥ1 − 𝑥ଶቁ d𝑥

ଵ

ିଵ

= ; 

z jednego z przykładów w rozdziale Rachunek całkowy wynika, że  

න ඥ1 − 𝑥ଶ d𝑥 =
1

2
ቀ𝑥ඥ1 − 𝑥ଶ + arcsin 𝑥ቁ + 𝐶 

a więc 

= 2 ⋅
1

2
ቂ𝑥ඥ1 − 𝑥ଶ + arcsin 𝑥ቃ

ିଵ

ଵ

= arcsin 1 − arcsin(−1) =
𝜋

2
− ቀ−

𝜋

2
ቁ = 𝜋 

Przykład Wykorzystując całkę potrójną, znaleźć wzór na obliczanie objętości walca o 

wysokości ℎ i średnicy 𝑟. 
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Rozwiązanie  

𝑟
ℎ

⟹ 𝐷 = ൝(𝑥, 𝑦)อ

−𝑟 ≤ 𝑥 ≤ 𝑟

−√𝑟ଶ − 𝑥ଶ ≤ 𝑦 ≤ √𝑟ଶ − 𝑥ଶ

0 ≤ 𝑧 ≤ ℎ

ൡ 

Wtedy objętość walca równa się 

ම 1

 

஽

d𝑥 d𝑦 d𝑧 = න න න 1

√௥మି௫మ

ି√௥మି௫మ

d𝑦

௥

ି௥

d𝑥

௛

଴

d𝑧 =
ଵ

; 

න 1

√௥మି௫మ

ି√௥మି௫మ

d𝑦 = [𝑦]
௬ୀି√௥మି௫మ

௬ୀ√௥మି௫మ
= ඥ𝑟ଶ − 𝑥ଶ − ቀ−ඥ𝑟ଶ − 𝑥ଶቁ = 2ඥ𝑟ଶ − 𝑥ଶ 

=
ଵ

න න 2ඥ𝑟ଶ − 𝑥ଶ

௥

ି௥

d𝑥

௛

଴

d𝑧 =
ଶ
 

podobnie do jednego z przykładów rozdziału Rachunek całkowy, można znaleźć całkę 

∫ √𝑟ଶ − 𝑥ଶ d𝑥 =
ଵ

ଶ
ቀ𝑥√𝑟ଶ − 𝑥ଶ + 𝑟ଶ arcsin

௫

௥
ቁ + 𝐶 ⟹  

න 2ඥ4 − 𝑥ଶ

௥

ି௥

d𝑥 = ቂ𝑥ඥ𝑟ଶ − 𝑥ଶ + 𝑟ଶ arcsin
𝑥

𝑟
ቃ

௫ୀି௥

௫ୀ௥

= 𝑟ଶ arcsin 1 − 𝑟ଶ arcsin(−1) = 𝜋𝑟ଶ; 

=
ଶ

න 𝜋𝑟ଶ

௛

଴

d𝑧 = [𝜋𝑟ଶ𝑧]଴
௛ = 𝜋𝑟ଶℎ 

1.10. OBLICZANIE CAŁEK ORAZ ROZWIĄZYWANIE RÓWNAŃ 

NIELINIOWYCH PRZY POMOCY METOD NUMERYCZNYCH 

Obliczanie całek oznaczonych 

Metody numeryczne najczęściej wykorzystujemy do aproksymacji funkcji, obliczania 

całek oznaczonych oraz rozwiązywania równań różniczkowych bądź ich układów, w 

przypadku gdy to nie jest możliwe (lub bardzo skomplikowane) aby znaleźć dokładne 

rozwiązanie analityczne. Natomiast za pomocą przybliżonych metod obliczeniowych (w tym 

ww. metod numerycznych), otrzymamy rozwiązanie na tyle bliskie do dokładnego na ile jest to 

potrzebne (od poziomu aproksymacji zależy ilość odpowiednich obliczeń). 

Tak, dla obliczania całki oznaczonej można wykorzystać metodę prostokątów (lewych, 

prawych bądź średnich), metodę trapezów, metodę Simpsona lub metodę Gaussa. Wszystkie 

metody numeryczne obliczanie całek oznaczonych głownie polegają na obliczaniu pola figury 

płaskiej ograniczonej wykresem funkcji a osią 𝑂𝑥 w odpowiednim odcinku. 
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Jedną z najłatwiejszych z ww. metod jest metoda prostokątów, która również nie 

wykazuje większych trudności przy napisaniu programu komputerowego (w np. C++, Pyton). 

Metoda prostokątów średnich. Krótki schemat metody na przykładzie obliczania całki 

oznaczonej ∫ 𝑓(𝑥)
௕

௔
d𝑥 funkcji 𝑓(𝑥) całkowalnej w przedziale 〈𝑎; 𝑏〉, takiej że 𝑓(𝑥) ≥ 0, 𝑥 ∈

〈𝑎; 𝑏〉 wygląda następująco: 

𝑓(𝑥) ≥ 0, 𝑥 ∈ 〈𝑎; 𝑏〉

න 𝑓(𝑥)
௕

௔

d𝑥 ≈?
 

 przedział całkowania 〈𝑎; 𝑏〉 dzielimy na 𝑛 odcinków jednakowej długości 𝑙௡ =
௕ି௔

௡
 

(liczbę odcinków 𝑛 wybieramy sami) 

〈𝑎; 𝑏〉 = 〈𝑎; 𝑎 + 𝑙௡〉 ∪ 〈𝑎 + 𝑙௡; 𝑎 + 2𝑙௡〉 ∪ 〈𝑎 + 2𝑙௡; 𝑎 + 3𝑙௡〉 ∪ … ∪ 〈𝑏 − 𝑙௡; 𝑏〉 

〈𝑎; 𝑏〉 = ራ〈𝑎 + (𝑘 − 1)𝑙௡; 𝑎 + 𝑘𝑙௡〉

௡

௞ୀଵ

 

 w każdym odcinku szukamy wartość funkcji 𝑓(𝑥௞) dokładnie w jego środku, tzn. 

w punktach 𝑥௞ =
௔ା(௞ିଵ)௟೙ା௔ା௞௟೙

ଶ
= 𝑎 + (𝑘 − 0,5)𝑙௡, 𝑘 = 1, 𝑛തതതതത, oraz szkicujemy 

prostokąty, w których jedną stroną występuje odcinek 〈𝑎 + 𝑘𝑙௡; 𝑎 + (𝑘 + 1)𝑙௡〉, a 

długość drugiej strony równa się ww. środkowej wartości funkcji w tym odcinku 

 obliczamy pola 𝑆௞ wyżej zaprojektowanych prostokątów i sumujemy otrzymane 

wartości 

𝑆௞ = 𝑙௡𝑓(𝑥௞) = 𝑙௡𝑓(𝑎 + (𝑘 − 0,5)𝑙௡), 𝑘 = 1, 𝑛തതതതത 

෍ 𝑆௞

௡

௞ୀଵ

= ෍ 𝑙௡𝑓(𝑎 + (𝑘 − 0,5)𝑙௡)

௡

௞ୀଵ

= 𝑙௡ ෍ 𝑓(𝑎 + (𝑘 − 0,5)𝑙௡)

௡

௞ୀଵ

 

 wtedy z zastosowania całki oznaczonej (rozdział Rachunek całkowy funkcji jednej 

zmiennej) wynika przybliżona równość 

න 𝑓(𝑥)

௕

௔

𝑑𝑥 ≈ ෍ 𝑆௞

௡

௞ୀଵ

 

z czego otrzymujemy wzór na obliczenie przybliżone całki oznaczonej funkcji 

𝑓(𝑥) o dodatnich wartościach w przedziale 〈𝑎; 𝑏〉 (liczbę 𝑛 wybieramy sami) 

න 𝑓(𝑥)

௕

௔

𝑑𝑥 ≈ 𝑙௡ ෍ 𝑓(𝑎 + (𝑘 − 0,5)𝑙௡)

௡

௞ୀଵ

𝑙௡ =
𝑏 − 𝑎

𝑛
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Przy wybieraniu liczby odcinków 𝑛, wykorzystujemy zasadę, że wartości funkcji na 

końcach każdego z otrzymanych odcinków nie zbyt wiele różnią się. Ogólnie im większa liczba 

𝑛, tym lepszą aproksymację otrzymamy. 

Podobnie do metody prostokątów średnich, za pomocą metody prostokątów lewych / 

prawych otrzymamy przybliżoną wartość całki oznaczonej 

න 𝑓(𝑥)

௕

௔

𝑑𝑥 ≈ 𝑙௡ ෍ 𝑓(𝑎 + (𝑘 − 1)𝑙௡)

௡

௞ୀଵ

𝑙௡ =
𝑏 − 𝑎

𝑛

 

⎝

⎜
⎛න 𝑓(𝑥)

௕

௔

𝑑𝑥 ≈ 𝑙௡ ෍ 𝑓(𝑎 + 𝑘𝑙௡)

௡

௞ୀଵ

𝑙௡ =
𝑏 − 𝑎

𝑛 ⎠

⎟
⎞

 

Przykład Obliczyć całkę oznaczoną za pomocą metody prostokątów ∫ 3𝑥ଶd𝑥
ଵ

଴
, 

wykorzystując przy tym różne liczby odcinków. Porównać otrzymane odpowiedzi z dokładnym 

rozwiązaniem ∫ 3𝑥ଶd𝑥
ଵ

଴
= 1. 

Rozwiązanie 

Do obliczania całki wykorzystamy środkową wersję metody prostokątów. 

න 𝑓(𝑥)d𝑥

௕

௔

න 3𝑥ଶd𝑥

ଵ

଴

⟹
𝑎 = 0
𝑏 = 1

𝑓(𝑥) = 3𝑥ଶ
 

 przedział całkowania dzielimy na 5 odcinków: 

wtedy długość odcinków wynosi 𝑙ହ =
ଵି଴

ହ
= 0,2 

〈0; 1〉 = 〈0; 0,2〉 ∪ 〈0,2; 0,4〉 ∪ 〈0,4; 0,6〉 ∪ 〈0,6; 0,8〉 ∪ 〈0,8; 1〉 

𝑥௞ − środek odcinka

𝑘 = 1,5തതതത  
𝑓(𝑥௞) = 3𝑥௞

ଶ

𝑘 = 1,5തതതത
 

𝑆௞ = 𝑙ହ𝑓(𝑥௞) = 0,6𝑥௞
ଶ

𝑘 = 1,5തതതത
 

0,1 0,03 0,006 

0,3 0,27 0,054 

0,5 0,75 0,15 

0,7 1,47 0,294 

0,9 2,43 0,486 

𝑆 = ෍ 𝑆௞

ହ

௞ୀଵ

= 0,99 

Różnica pomiędzy dokładną a przybliżoną wartościami całki oznaczonej równa się  

|1 − 0,99| = 0,01 

 przedział całkowania dzielimy na 10 odcinków: 
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wtedy długość odcinków wynosi 𝑙ଵ଴ =
ଵି଴

ଵ଴
= 0,1 

〈0; 1〉 = 〈0; 0,1〉 ∪ 〈0,1; 0,2〉 ∪ 〈0,2; 0,3〉 ∪ 〈0,3; 0,4〉 ∪ 〈0,4; 0,5〉 ∪ 〈0,5; 0,6〉

∪ 〈0,7; 0,8〉 ∪ 〈0,8; 0,9〉 ∪ 〈0,9; 1〉 

𝑥௞ − środek odcinka

𝑘 = 1,10തതതതതത  
𝑓(𝑥௞) = 3𝑥௞

ଶ

𝑘 = 1,10തതതതതത
 

𝑆௞ = 𝑙ଵ଴𝑓(𝑥௞) = 0,3𝑥௞
ଶ

𝑘 = 1,10തതതതതത
 

0,05 0,0075 0,00075 

0,15 0,0675 0,00675 

0,25 0,1875 0,01875 

0,35 0,3675 0,03675 

0,45 0,6075 0,06075 

0,55 0,9075 0,09075 

0,65 1,2675 0,12675 

0,75 1,6875 0,16875 

0,85 2,1675 0,21675 

0,95 2,7075 0,27075 

𝑆 = ෍ 𝑆௞

ଵ଴

௞ୀଵ

= 0,9975 

Różnica pomiędzy dokładną a przybliżoną wartościami całki oznaczonej równa się  

|1 − 0,9975| = 0,0025 

Rozwiązywanie równań różniczkowych 

(w tym nieliniowych) 

Do metod numerycznych rozwiązywania równań różniczkowych należą takie, jak metoda 

Eulera, metoda Rungego-Kuty, metoda Adamsa ta inne. Obejrzyjmy metodę Eulera (zwaną 

jeszcze metodą Eulera-Taylora) [16] dla równania różniczkowego rzędu pierwszego 𝑦ᇱ =

𝑓(𝑥, 𝑦) z warunkiem początkowym 𝑦(𝑥଴) = 𝑦଴ 

𝑦ᇱ = 𝑓(𝑥, 𝑦) 

d𝑦

d𝑥
= 𝑓(𝑥, 𝑦) 

d𝑦 = 𝑓(𝑥, 𝑦)d𝑥 

න 1

௬೔శభ

௬೔

d𝑦 = න 𝑓(𝑥, 𝑦)

௫೔శభ

௫೔

d𝑥 

[𝑦]௬೙

௬೙శభ = න 𝑓(𝑥, 𝑦)

௫೔శభ

௫೔

d𝑥 
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𝑦௡ାଵ − 𝑦௡ = න 𝑓(𝑥, 𝑦)

௫೔శభ

௫೔

d𝑥 

𝑦௡ାଵ = 𝑦௡ + න 𝑓(𝑥, 𝑦)

௫೔శభ

௫೔

d𝑥 

Po wykorzystaniu metody prostokątów lewych do obliczania całki ∫ 𝑓(𝑥, 𝑦)
௫೔శభ

௫೔
d𝑥 z 

liczbą odcinków 𝑛 = 1, otrzymamy równość ∫ 𝑓(𝑥, 𝑦)
௫೔శభ

௫೔
d𝑥 ≈ (𝑥௜ାଵ − 𝑥௜)𝑓(𝑥௜, 𝑦௜), a więc 

𝑦௡ାଵ = 𝑦௡ + (𝑥௜ାଵ − 𝑥௜)𝑓(𝑥௜, 𝑦௜) 

Przykład Znaleźć rozwiązanie przybliżone równania różniczkowego wykorzystując 

metodę Eulera 

𝑒௬d𝑦 = (𝑒௫ + 4𝑥)d𝑥 

przy warunku początkowym 𝑦(0) = 1. Porównać otrzymaną odpowiedź z rozwiązaniem 

analitycznym 𝑦 = ln(𝑒௫ + 2𝑥ଶ + 𝑒 − 1). 

Rozwiązanie 

d𝑦

d𝑥
= 𝑒௫ + 4𝑥 

d𝑦

d𝑥
= 𝑓(𝑥, 𝑦)

d𝑦

d𝑥
= (𝑒௫ + 4𝑥)𝑒ି௬

⟹ 𝑓(𝑥, 𝑦) = (𝑒௫ + 4𝑥)𝑒ି௬ 

Wybierając krok ℎ = 0,2 otrzymamy 

𝑥଴ = 0

𝑦଴ = 𝑦(𝑥଴) = 1
𝑥௜ାଵ = 𝑥௜ + ℎ

𝑦௜ାଵ = 𝑦௜ + ℎ𝑓(𝑥௜, 𝑦௜)
𝑖 ≥ 1

 

𝑥଴ = 0 𝑦଴ = 𝑦(𝑥଴) = 1 𝑓(𝑥଴, 𝑦଴) = 𝑒ିଵ ≈ 0,368 

𝑥௜ାଵ = 𝑥௜ + ℎ 𝑦௜ାଵ = 𝑦௜ + ℎ𝑓(𝑥௜ , 𝑦௜) 𝑓(𝑥, 𝑦) = (𝑒௫ + 4𝑥)𝑒ି௬ 

𝑥ଵ = 0,2 𝑦ଵ = 𝑦଴ + 0,2𝑓(𝑥଴, 𝑦଴) ≈ 1,074 𝑓(𝑥ଵ, 𝑦ଵ) ≈ 0,691 

𝑥ଶ = 0,4 𝑦ଶ = 𝑦ଵ + 0,2𝑓(𝑥ଵ, 𝑦ଵ)  ≈ 1,212 𝑓(𝑥ଶ, 𝑦ଶ) ≈ 0,92 

𝑥ଷ = 0,6 𝑦ଷ = 𝑦ଶ + 0,2𝑓(𝑥ଶ, 𝑦ଶ)  ≈ 1,396 𝑓(𝑥ଷ, 𝑦ଷ) ≈ 1,046 

𝑥ସ = 0,8 𝑦ସ = 𝑦ଷ + 0,2𝑓(𝑥ଷ, 𝑦ଷ)  ≈ 1,605 𝑓(𝑥ସ, 𝑦ସ) ≈ 1,09 

𝑥ହ = 1 𝑦ହ = 𝑦ସ + 0,2𝑓(𝑥ସ, 𝑦ସ)  ≈ 1,823 𝑓(𝑥ହ, 𝑦ହ) ≈ 1,085 

𝑥଺ = 1,2 𝑦଺ = 𝑦ହ + 0,2𝑓(𝑥ହ, 𝑦ହ)  ≈ 2,04 𝑓(𝑥଺, 𝑦଺) ≈ 1,056 

𝑥଻ = 1,4 𝑦଻ = 𝑦଺ + 0,2𝑓(𝑥଺, 𝑦଺)  ≈ 2,251 𝑓(𝑥଻, 𝑦଻) ≈ 1,016 

𝑥଼ = 1,6 𝑦଼ = 𝑦଻ + 0,2𝑓(𝑥଻, 𝑦଻)  ≈ 2,454 𝑓(𝑥଼, 𝑦଼) ≈ 0,975 

𝑥ଽ = 1,8 𝑦ଽ = 𝑦଼ + 0,2𝑓(𝑥଼, 𝑦଼)  ≈ 2,65 𝑓(𝑥ଽ, 𝑦ଽ) ≈ 0,937 
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𝑥ଵ଴ = 2 𝑦ଵ଴ = 𝑦ଽ + 0,2𝑓(𝑥ଽ, 𝑦ଽ)  ≈ 2,837 𝑓(𝑥ଵ଴, 𝑦ଵ଴) ≈ 0,901 

… … … 

W powyższej tabeli dane dotyczące przybliżenia rozwiązania równania różniczkowego  

𝑒௬d𝑦 = (𝑒௫ + 4𝑥)d𝑥

𝑦(0) = 1
, 

rozwiązaniem analitycznym którego jest funkcja  

𝑦 = ln(𝑒௫ + 2𝑥ଶ + 𝑒 − 1). 

W następna tabela porówna wartości rozwiązania przybliżonego 𝑦௜ a odpowiedni wartości 

dokładnego rozwiązania analitycznego: 

argument 

𝑥௜ 

aproksymacja 

𝑦௜ାଵ 

przybliżone wartości 

dokładnego rozwiązania 

𝑦(𝑥௜), gdzie

𝑦 = ln(𝑒௫ + 2𝑥ଶ + 𝑒 − 1)
 

dokładność aproksymacji 

|𝑦௜ାଵ − 𝑦(𝑥௜)| 

𝑥଴ = 0 𝑦଴ = 1 𝑦(𝑥଴) = 1 0 

𝑥ଵ = 0,2 𝑦ଵ ≈ 1,074 𝑦(𝑥ଵ) = ln ൬𝑒 + √𝑒
ఱ

−
23

25
൰ ≈ 1,105 0,031 

𝑥ଶ = 0,4 𝑦ଶ  ≈ 1,212 𝑦(𝑥ଶ) = ln ൬𝑒 + ඥ𝑒ଶఱ
−

17

25
൰ ≈ 1,261 0,049 

𝑥ଷ = 0,6 𝑦ଷ  ≈ 1,396 𝑦(𝑥ଷ) = ln ൬𝑒 + ඥ𝑒ଷఱ
−

7

25
൰ ≈ 1,45 0,054 

𝑥ସ = 0,8 𝑦ସ  ≈ 1,605 𝑦(𝑥ସ) = ln ൬𝑒 + ඥ𝑒ସఱ
+

7

25
൰ ≈ 1,653 0,045 

𝑥ହ = 1 𝑦ହ  ≈ 1,823 𝑦(𝑥ହ) = ln(2𝑒 + 1) ≈ 1,862 0,039 

𝑥଺ = 1,2 𝑦଺  ≈ 2,04 𝑦(𝑥଺) = ln ൬𝑒 + ඥ𝑒଺ఱ
+

47

25
൰ ≈ 2,07 0,03 

𝑥଻ = 1,4 𝑦଻  ≈ 2,251 𝑦(𝑥଻) = ln ൬𝑒 + ඥ𝑒଻ఱ
+

73

25
൰ ≈ 2,271 0,216 

𝑥଼ = 1,6 𝑦଼  ≈ 2,454 𝑦(𝑥଼) = ln ൬𝑒 + ඥ𝑒଼ఱ
+

103

25
൰ ≈ 2,467 0,013 

𝑥ଽ = 1,8 𝑦ଽ  ≈ 2,65 𝑦(𝑥ଽ) = ln ൬𝑒 + ඥ𝑒ଽఱ
+

137

25
൰ ≈ 2,657 0,007 

𝑥ଵ଴ = 2 𝑦ଵ଴  ≈ 2,837 𝑦(𝑥ଵ଴) = ln(𝑒 + 𝑒ଶ + 7) ≈ 2,84 0,003 

… … … … 

Zwiększają krok ℎ pogorsza się sytuacja z dokładnością aproksymacji. Natomiast przy 

zmniejszeniu kroku ℎ otrzymujemy wartości bliższe do odpowiednich wartości dokładnego 

rozwiązania równania różniczkowego. 

1.11.  Zakończenie 

W powyższych materiałach przedstawiono podstawowe rozdziały zarówno z zakresu 

algebry liniowej, tak i analizy matematycznej, które są niezbędne dla różnego rodzaju badań w 
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fizyce, technice i innych naukach potrzebnych do studiów na kierunku Mechanika i Budowa 

Maszyn. 

Większość rozdziałów napisano bez oparcia na konkretne źródło, ale są również takie, do 

napisania których było wykorzystano odpowiednie książki (cytowania zaznaczone) lub strony 

internetowe Wikipedia Wolna encyklopedia, wyznacznik.pl, Khan Academy, chatGPT. 
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Paweł Sobczak 

2. FIZYKA W MECHANICE I BUDOWIE MASZYN 

2.1. Wstęp 

Fizyka to nauka przyrodnicza zajmująca się badaniem fundamentalnych i uniwersalnych cech 

świata materialnego oraz zachodzących w nim zjawisk. Jej głównym celem jest odkrywanie 

praw rządzących przyrodą, które mają wpływ na wszystkie procesy fizyczne. Gdy zrozumiemy 

prawa fizyki i zjawiska zachodzące we Wszechświecie, będziemy mogli zatasować tą wiedzę 

w technice i inżynierii. Niniejszy rozdział jest jedynie pewnym wstępem do fizyki którą 

poznacie Państwo na zajęciach. To przypomnienie pewnych wielkości fizycznych, praw  

i definicji. Ze względu na ograniczenia objętościowe poruszone zostały tylko wybrane aspekty, 

a wszystkie poznacie Państwo na zajęciach. Zajęcia z przedmiotu fizyka będą się składać  

z wykładów, ćwiczeń na których będziemy rozwiązywać zadania i problemy inżynierskie oraz 

laboratoriów na których będziecie Państwo dokonywać pomiarów wielkości fizycznych, 

opracowywania wyników pomiarów, analizy danych, czy oszacowania niepewności 

pomiarowych. Dlatego rozdział zawiera zarówno wybrane wiadomości teoretyczne, 

przykładowy protokół z laboratoriów i rozwiązanie zadania.  

2.2. Wybrane zagadania fizyczne 

2.2.1. Wielkości fizyczne, jednostki 

Prawa fizyki wyrażają związki między różnymi wielkościami fizycznymi poprzez różnego 

rodzaju wzory, czy równania. Warto zaznaczyć, że wyróżniamy wielkości podstawowe, takie 

jak np. masę, czas, długość (m, t, d) oraz wielkości pochodne, np. prędkość, siłę (v, F). 

Wielkości pochodne powstają z pewnych działań na wielkościach podstawowych, np. v = s/t.  

Wielkości fizyczne są wyrażone w pewnych jednostkach np. kilogramach, sekundach, metrach. 

Wyróżniamy jednostki podstawowe (np. kg, m, s) i pochodne (np. m/s, kg∙m/s2) oraz wtórne 

(np. J, N). W Polsce obowiązuje Międzynarodowy Układ Jednostek Miar SI1, który stosowany 

jest na całym Świecie, jako podstawowy język nauki, technologii, przemysłu  

i ogólnoświatowego handlu. Jest to spójny układ siedmiu jednostek podstawowych (Rys. 1.): 

kilograma, metra, sekundy, ampera, kelwina, mola, kandeli.  

                                                           
1 https://www.gum.gov.pl/pl/redefinicja-si/tablice-z-ukladem-si/3269,Nowe-tablice-z-ukladem-Jednostek-Miar-
SI-po-redefinicji-juz-dostepne.html  Dostęp: 20.09.2024. 
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Rys. 1. Jednostki podstawowe układu SI. 

https://www.gum.gov.pl/pl/redefinicja-si/tablice-z-ukladem-si/3269,Nowe-tablice-z-ukladem-Jednostek-Miar-SI-

po-redefinicji-juz-dostepne.html Dostęp: 20.09.2024. 

Do układu SI zaliczamy także jednostki pochodne oraz pochodne o nazwach specjalnych. Na 

Rys. 1. przedstawione zostały również stałe (np. h, c, e) na których podstawie są definiowane 

właśnie jednostki podstawowe. Fizyka opisuje obiekty różnej wielkości, dlatego jest 

konieczność stosowania różnych przedrostków jednostek miar (np. mili, mikro nano), co 

zostało pokazane na rysunku Rys. 2. Przedrostki określające wielokrotne i podwielokrotne 

jednostki miar.       

 

Rys. 2. Przedrostki jednostki miar. 

https://www.gum.gov.pl/pl/redefinicja-si/przedrostki-si/5474,Przedrostki-SI.html Dostęp: 20.09.2024. 

Wielkości fizyczne dzielimy na wielkości wektorowe i skalarne. Wielkości skalarne (np. masa, 

objętość, czas, ładunek, temperatura, praca), by je wyrazić wystarczy podać wartość i jednostkę. 

Z kolei wielkości wektorowe (np. prędkość, przyspieszenie, siła, pęd, natężenie pola), by je 

opisać nie wystarczy podać wartość i jednostkę. Do pełnego opisu potrzebują wartości, 

kierunku, zwrotu i punktu przyłożenia. Wielkości skalarne (skalary), to porostu liczby. Zupełnie 
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inne podejście stosuje się do wielkości wektorowych (wektorów), które można dodawać, 

odejmować, rozkładać na składowe, czyli te operacje które poznaliście Państwo  

w szkole średniej. Wielkości wektorowe zaznacza się w tekście poprzez pogrubienie lub 

strzałkę nad daną wielkością. W tym miejscu jednak chciałby zwróci uwagę na mnożenie 

wektorów. Wyróżniamy dwa sposoby mnożenia wektorów. Zakładamy, że mamy dwa wektory 

a i b. 

 Pierwszy sposób, tak zwany iloczyn skalarny. Wyniku mnożenia dwóch wektorów  

w sposób skalarny powstaje zwykła liczba (skalar). Iloczyn skalarny zaznacza się we 

wzorze poprzez kropkę (∙) 

𝒂 ∙ 𝒃 = |𝑎| ∙ |𝑏| 𝑐𝑜𝑠𝛼. 

Przykładem może być praca (W) 

𝑊 = 𝐹⃗ ∙ 𝑠 𝑐𝑜𝑠𝛼. 

 Drugi sposób,  to tak zwany iloczyn wektorowy. Wyniku mnożenia dwóch wektorów 

otrzymujemy nowy wektor c, którego kierunek i zwrot określa reguła prawej dłoni lub 

śruby prawoskrętnej. Iloczyn wektorowy zaznacza się we wzorze poprzez znak (×)  

𝒄 = 𝒂 × 𝒃 = |𝑎| ∙ |𝑏| 𝑠𝑖𝑛𝛼. 

Wektor c jest prostopadły do płaszczyzny wyznaczonej przez wektory a i b. 

2.2.2. Praca, moc energia 

Pracę (W) wykonaną przez stałą siłę F definiuje się jako iloczyn skalarny tej siły F i wektora 

przesunięcia s.    𝑊 = 𝑭 ∙ 𝒔 = 𝐹𝑠𝑐𝑜𝑠𝛼 [J] 

Praca jest dodatnia gdy kąt α < 90°, gdy α = 90° praca wynosi 0 (wektor siły i przesunięcia jest 

prostopadły, cos (90°) wynosi 0). Maksymalna wartość pracy jest gdy wektory siły  

i przesunięcia są równoległe i maja ten sam zwrot (cos (0°) wynosi 1). Gdy jeszcze 

uwzględnimy siłę tarcia T, która ma przeciwny zwrot, co siła F, wówczas praca ma wartość 

ujemną (cos(180°) wynosi -1) i wtedy mówimy o pracy wykonanej przez siłę tarcia T.  

𝑊 = 𝑻 ∙ 𝒔 = 𝑇𝑠𝑐𝑜𝑠𝛼 [J] 

Pracę (W) wykonaną przez siłę zmienną F można wyrazić poprzez całkę. Pole powierzchni 

pod krzywą na wykresie F(X) równa się liczbowo pracy (W) wykonanej przez siłę F na 
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odcinku x1 – x2. Przykładowa praca wykonana przez siłę zmienną F została przedstawiona na 

Rys. 3. 

 

Rys. 3. Pole powierzchni pod krzywą na wykresie F(X) równa się pracy (W). 

Opracowanie własne. 

𝑊 =  ∫ 𝐹(𝑥)𝑑𝑥
௫మ

௫భ
. 

Moc (P) definiujemy jako ilość wykonanej pracy W lub przekazanej energii do czasu  

t w jakim została ona wykonana 

𝑃 =
ௐ

௧
 ቂ

ூ௃

ଵ௦
= 1Wቃ. 

Moc 1W jest bardzo mała, dlatego bardzo często stosuje się jednostkę kilowata 1kW.  

W przypadku urządzeń mechanicznych moc też podawana jest w koniach mechanicznych 

(KM). Wartość 1KM, to w przybliżeniu 0,74 kW. 

Gdy ciało jest w ruchu to posiada energię kinetyczną (Ek). Rozważamy energię kinetyczną ciała 

poruszającego się ze stałą prędkością v. Połowę iloczynu masy ciała i kwadratu prędkości 

nazywamy energią kinetyczną (Ek) ciała o masie m  

𝐸௞ =
௠௩మ

ଶ
 [𝐽]. 

Gdy ciało jest na pewnej wykoście h względem podłoża, to wówczas ma nagromadzoną pracę 

W w postaci energii potencjalnej grawitacji (Ep). Rozważamy, że ciało znajduje się blisko 

powierzchni Ziemi, wówczas energię potencjalną grawitacji możemy zapisać w postaci 

iloczynu masy m, przyspieszenia ziemskiego g i wysokości h na jakiej znajduje się ciało 

𝐸௣ = 𝑚𝑔ℎ [𝐽]. 
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Można wyróżnić jeszcze inne formy energii (np. energię potencjalną sprężystości), jednak nie 

będziemy ich tutaj rozważać. Warto jednak zaznaczyć, że jedną formę energii można zamienić 

w inną, każda przemiana jednak związana jest ze stratą. Suma energii potencjalnej grawitacji 

(Ep) i energii kinetycznej (Ek) nazywa się energią mechaniczną (Em) lub całkowitą, której 

wartość jest stała w pewnym izolowanym układzie 

𝐸௠ =  𝐸௣ +  𝐸௞. 

2.2.3. Wybrane zagadnienia z kinematyki 

Kinematyka jest to dział fizyki zajmujący się opisem ruchu ciał (bez badania przyczyn ruchu).  

Z kinematyką są związane następujące pojęcia: 

 ruch jest to zmiana położenia jednego ciała względem drugich wraz z upływem czasu, 

 układ tych drugich ciał nazywamy układem odniesienia, 

 ruch jest pojęciem względnym, zależy od  wyboru układu odniesienia, 

 punkt materialny to obiekt obdarzony masą, którego rozmiary (objętość) możemy 

zaniedbać. Taki opis jest prawidłowy dla ruchu postępowego gdy ciała nie obracają się, 

ani nie wykonują drgań. 

Prędkość (v) definiujemy jako zmianę położenia ciała w jednostce czasu 

𝑣 =  
௫ି ௫బ

௧ି ௧బ
 ቂ

௠

௦
ቃ. 

Gdy wykreślimy na układzie współrzędnym zależność zmiany położenia w czasie, to od kąta 

nachylenia prostej x(t) zależy wartość prędkości. 

Prędkość chwilowa jest pochodną drogi względem czasu. Aby określić wartość prędkości 

chwilowej w danym punkcie na wykresie x(t), należy narysować styczną do krzywej w tym 

punkcie. Współczynnik nachylenia stycznej (tangens kąta nachylenia) jest równy prędkości 

chwilowej w wybranym momencie 

𝑣 =  
ௗ௫

ௗ௧
 . 

Prędkość średnią oblicza się gdy ciało porusza się ruchem zmiennym, tzn. ciało ciągle zmienia 

wartość swojej prędkości w czasie. Można ją obliczyć jako iloraz całkowitej zmiany położenia 

(przesunięcia) do całkowitego czasu, w którym ta zmiana zaszła:    

𝑣ś௥ =  
∆௫

∆௧
=  

௦భା௦మା …

௧భା௧మା …
 . 
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Prędkość średnia opisuje ogólne tempo zmiany położenia w czasie, nie uwzględnia ona 

chwilowych zmian prędkości w trakcie ruchu – odzwierciedla jedynie wynik końcowy, jak 

szybko i w jakim kierunku przemieścił się obiekt w danym czasie. 

Przyspieszenie (a) określa tempo zmiany prędkości. Będziemy rozważać przyspieszenie bądź 

opóźnienie jednostajne. Jeżeli ciało przyspiesza lub hamuje i jego prędkość zmienia się 

jednostajnie z czasem, to przyspieszenie a tego ciała jest stałe. Gdy: 

 (a > 0) to ruch jednostajnie przyspieszonym (prędkość wzrasta), 

 (a < 0) to ruch jednostajnie opóźniony (prędkość maleje). 

𝑎 =  
∆௩

ௗ௧
 ቂ

௠

௦మ
ቃ lub 𝑎 =  

ௗ௩

ௗ௧
 

By opisać prędkość (v) ciała i położenie (s) ciała w ruchu jednostajnym zmiennym 

wykorzystuje się wzory:  

𝑣 =  𝑣଴ + 𝑎𝑡 ቂ
௠

௦
ቃ, 

𝑠 =  𝑠଴ + 𝑣଴𝑡 +
௔௧మ

ଶ
 [𝑚]. 

Zakładamy, że przyspieszanie ma wartość stałą a = const.  

Swobodny spadek ciał w pobliżu powierzchni Ziemi, to przykład ruchu jednostajnie 

zmiennego. Przyspieszenie którego doznaje swobodnie spadające ciało nazywane 

jest przyspieszeniem ziemskim (grawitacyjnym) 𝒈 = 9,81 ቂ
௠

௦మ
ቃ. Swobodny spadek możemy 

analizować na dwa sposoby: 1) korzystając z przemiany energii potencjalnej grawitacji  

w energię kinetyczną, 2) korzystając ze wzorów na ruch jednostajnie zmienny, gdzie a = g. 

Poniżej są wyprowadzone wzory na czas (t) spadku ciała, wysokość (h) na której znajduje się 

ciało oraz prędkość (v) jaką uzyska ciało przed uderzeniem w ziemię (tzw. prędkość końcową) 

𝑡 = ට
ଶ௛

௚
 [𝑠],  ℎ =

௚௧మ

ଶ
 [𝑚],  𝑣௞ =  ඥ2𝑔ℎ ቂ

௠

௦
ቃ. 

2.2.4. Wybrane zagadnienia z dynamiki 

Dynamika jest to dział fizyki zajmuje się opisem ruchu uwzględniając przyczyny ruchu. 

Wyróżniamy: 

 mechanikę klasyczną – stosujemy gdy ciała poruszają się z małymi prędkościami  

(w porównaniu z prędkością światła c), 
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 mechanikę kwantową – stosujemy gdy ciała poruszają się z prędkościami  

o porównywalnej wartości z prędkością światła c. 

Pęd ciała (p) definiujemy jako iloczyn jego masy i prędkości (wektorowej) 

𝒑 = 𝑚 ∙ 𝒗 ቂ𝑘𝑔
௠

௦
ቃ. 

Definicja siły (F) – jeżeli na ciało o masie m działa siła F, to definiujemy ją jako zmianę pędu 

w czasie           𝑭 =  
ௗ𝒑

ௗ௧
 [𝑁]. 

Zakładamy, że m ma wartość stałą. Jeżeli wprowadzimy do wzoru na siłę (F) wyżej 

zdefiniowany pęd (p) otrzymamy znany już wzór ze szkoły podstawowej, że 𝑭 = 𝑚 ∙ 𝒂,  

𝑭 =  
ௗ(௠𝒗)

ௗ௧
=  

ௗ௠

ௗ௧
𝒗 + 𝑚

ௗ௩

ௗ௧
   𝑭 = 𝑚

ௗ𝒗

ௗ௧
= 𝑚𝒂 . 

Zasady dynamiki Newtona: 

 I zasada dynamiki Newtona 

Ciało, na które nie działa żadna siła (lub gdy siła wypadkowa jest równa zeru) pozostaje 

w spoczynku lub porusza się ze stałą prędkością po linii prostej. 

 II zasada dynamiki Newtona 

Tempo zmian pędu ciała jest równe sile wypadkowej działającej na to ciało. Dla ciała 

o stałej masie sprowadza się to do iloczynu masy i przyspieszenia ciała. 

 III zasada dynamiki Newtona 

Gdy dwa ciała oddziałują ze sobą, siła, którą ciało pierwsze wywiera na ciało drugie, 

jest równa co do wartości i przeciwnie skierowana do siły, którą ciało drugie wywiera 

na ciało pierwsze. 

Układ inercjalny i nieinercjalny: 

 I zasada dynamiki stwierdza, że jeżeli na ciało nie działa żadna siła (lub gdy Fw = 0), to 

istnieje taki układ odniesienia, w którym to ciało spoczywa lub porusza się ruchem 

jednostajnym prostoliniowym. Taki układ nazywamy układem inercjalnym, 

 Zasady dynamiki są spełnione w układzie inercjalnym, 

 Układ odniesienia, w którym na ciało działają siły bezwładności nosi nazwę układu 

nieineracjalnego,     

 W układach inercjalnych rządzą takie sama prawa. 
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Siły bezwładności: 

 Iloczyn masy i przyspieszenia (ze znakiem minus) nazywamy siłą bezwładności Fb 

𝑭𝒃 =  −𝑚 ∙ 𝒂 [𝑁], 

 minus oznacza, że zwrot siły bezwładności jest przeciwny do zwrotu przyspieszenia 

układu, 

 Siła pojawiająca się w nieinercjalnym układzie odniesienia, będąca wynikiem 

przyspieszenia tego układu, 

 Siła bezładności jest siłą pozorną, która pojawia się tylko w układach nieinercjalnych, 

czyli takich, które poruszają się z przyspieszeniem. W odróżnieniu od rzeczywistych 

sił, siły bezwładności nie wynikają z bezpośredniego oddziaływania między ciałami, 

lecz są efektem przyspieszenia układu odniesienia, w którym dokonujemy obserwacji, 

 Przykładem siły bezwładności jest Siła Coriolisa.  

Pojęcia tarcia: 

 Maksymalna siła tarcia statycznego Ts jest równa tej krytycznej sile, którą musimy 

przyłożyć, żeby ruszyć ciało z miejsca, 

 Dla suchej powierzchni Ts spełnia dwa prawa: 

o Ts jest w przybliżeniu niezależna od wielkości pola powierzchni styku ciał;  

o Ts jest proporcjonalna do siły z jaką jedna powierzchnia naciska na drugą;  

 Współczynnik tarcia statycznego µs 

µ௦ =  
𝑻𝒔

𝑭𝑵
 , 

 Gdy działająca siła F jest większa od Ts to ciało zostanie wprawione w ruch – wówczas 

występuje tarcie kinetyczne, 

 Tarcie kinetyczne oprócz dwóch praw dla tarcia statycznego spełnia jeszcze jedno 

prawo: 

o Tk nie zależy od prędkości względnej poruszania się powierzchni; 

 Współczynnik tarcia kinetycznego µk 

µ௞ =  
𝑻𝒌

𝑭𝑵
 , 

 µk < µs – współczynnik tarcia kinetycznego jest mniejszy od współczynnik tarcia 

statycznego. 
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Równia pochyła – analiza ruchu ciała na równi pochyłej, wyznaczenie siły wypadkowej  

i przyspieszenia ciała z uwzględnieniem tarcia.  

 

Rys. 4. Rozkład sił na równi pochyłej. 

https://fizyka-kursy.pl/blog/rownia-pochyla Dostęp: 20.09.2024. 

Ciało o masie m znajduje się na równi pochyłej pod kątem α do poziomu. Na ciało działa ciężar 

Q (siła ciężkości) pionowo w dół. Q rozkłada się na dwie składowe, siłę nacisku N i siłę 

suwająco ciało z równi pochyłej Fs. Zgodnie z III zasadą dynamiki Newtona reakcją na siłę  

N jest siła FN o tym samy kierunku jednak przeciwnym zwrocie. Siły N i FN równoważą się 

wzajemnie. Na ciało jeszcze działa siła tarcia T. Ciężar możemy wyrazić wzorem  

𝑸 = 𝑚 ∙ 𝒈 [𝑁]. 

Po rozłożeniu ciężaru (Q) na składowe mamy (N i Fs). N jest równoważone przez  FN. Pozostaje 

jedynie siła suwająca ciało z równi Fs, która jest pomniejszona o siłę tarcia T. Siłę wypadkową 

możemy zapisać                                      𝑭𝒘 = 𝑭𝒔 − 𝑻.   

sin 𝛼 =
𝑭𝒔

𝑸
     𝑭𝒔 = 𝑸 sin 𝛼  

cos 𝛼 =
𝑵

𝑸
     𝑵 = 𝑸 cos 𝛼  

Siła tarcia wynosi 𝑻 = 𝑓 ∙ 𝑵, gdzie f to współczynnik tarcia. Podstawiamy teraz do wzoru na 

siłę wypadkową wartość siły suwającej i tarcia 

𝑭𝒘 = 𝑸 sin 𝛼 − 𝑓 ∙ 𝑵, 

𝑭𝒘 = 𝑸 sin 𝛼 − 𝑓 ∙ 𝑸 cos 𝛼, 
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𝑭𝒘 = 𝑚𝑔 ∙ sin 𝛼 − 𝑓𝑚𝑔 ∙ cos 𝛼, 

𝑭𝒘 = 𝑚𝑔(sin 𝛼 − 𝑓 ∙ cos 𝛼) [𝑁]. 

Gdy obliczyliśmy wartość siły wypadkowej dla ciała znajdującego się na równi pochyłej 

możemy teraz obliczyć wartość przyspieszenia jakiego dozna ciało. Przyspieszenie definiuje 

się jako wartość siły wypadkowej przez masę ciała 

𝒂 =  
𝑭𝒘

௠
 , 

𝒂 =  
௠௚(ୱ୧୬ ఈି௙∙ୡ୭ୱ ఈ) [ே]

௠
 , 

𝒂 =  𝑔(sin 𝛼 − 𝑓 ∙ cos 𝛼) ቂ
௠

௦మ
ቃ . 

Prawo powszechnego ciążenia: każde dwa ciała o masach m1 i m2 przyciągają się wzajemnie 

siłą grawitacji wprost proporcjonalną do iloczynu mas, a odwrotnie proporcjonalną do 

kwadratu odległości między nimi 

𝑭𝟏 =  𝑭𝟐 = 𝐺
௠భ௠మ

௥మ
, 

gdzie G to stała grawitacji, G = 6,67·10-11 Nm2/kg2. Jak już zostało to wyżej wspomniane, ciężar 

ciała (siła grawitacji) wyraża się wzorem  

𝑸 = 𝑚 ∙ 𝒈 [𝑁]. 

Elementy wytrzymałościowe ciał stałych 

Prawo Hooke’a: Przyrost długości ∆l, jakiego doznaje ciało sprężyste rozciągane siłą osiową 

F, jest wprost proporcjonalny do wartości tej siły i do długości początkowej l0 ciała oraz 

odwrotnie proporcjonalny do jego pola przekroju poprzecznego S, a ponadto jest zależny od 

rodzaju materiału. Zachowanie ciała sprężystego na które działa osiowa siła rozciągająca 

zostało pokazane na Rys. 5.    

 

Rys. 5. Rozciągane siłą osiową próbki, prawo Hooke’a. 

http://www.fizykon.org/statyka_osr_ciagle/sprezystosc_prawo_hooke.htm Dostęp: 20.09.2024. 
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Rodzaj materiału określa współczynnik proporcjonalności k lub moduł Younga E 

∆𝑙 = 𝑘 
𝑭𝑙଴

𝑆
 

k – współczynnikiem proporcjonalności 

E – moduł sprężystości podłużnej, moduł Younga [Pa] 

Związek pomiędzy współczynnikiem proporcjonalności, a modułem sprężystości podłużnej, 

modułem Younga określa wzór 

ଵ

௞
= 𝐸. 

Pojęcie naprężenia (σ) – określa się jako wartość liczbową siły przypadającej na jednostkę 

pola przekroju poprzecznego odkształcanego ciała 

𝝈 =  
𝑭

ௌ
 [Pa] . 

Prawo Hooke’a można wyrazić przy użyciu naprężenia i modułu sprężystości podłużnej, 

modułu Younga w następujący sposób  

∆𝑙 =  
𝝈௟బ

ா
. 

Różne materiały są badane w maszynach wytrzymałościowych, które pozwalają zbadać 

własności poszczególnych materiałów, zachowanie materiału (próbki) w zależności od siły  

i naprężenia oraz wyznaczyć wartość naprężenia, po przekroczeniu którego następuje 

rozerwanie materiału. Maszyny podczas próby generują wykresy podobne do tego pokazanego 

na Rys. 6. Na wykresie można dostrzec charakterystyczne punkty:    

 P – granica proporcjonalności,  

 S – granica sprężystości,  

 Q – granica płynności ,  

 R – punkt, w którym jest osiągnięte naprężenie Rr zwanego wytrzymałością na 

rozciąganie, 

 T – rozerwanie. 
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Rys. 6. Badanie wytrzymałościowe próbki materiału. 

Kamiński, W., Kamiński, Z. (2020). Fizyka dla kandydatów na wyższe uczelnie techniczne tom I, PWN. 

Prawo Hooke’a ma tylko zastosowanie na odcinku OP. Rr to wartość naprężenia,  

po przekroczeniu którego następuje rozerwanie materiału, która np. dla stali wynosi ok.   

Rr = 3∙108 Pa. Wytrzymałość materiału na rozciąganie zależy od: 

 jednorodności materiału, 

 obecności rys, pęcherzyków gazu, 

 temperatury, 

 czasu działania siły, jej zmienności, itp. 

Ze względu bezpieczeństwa w obliczeniach konstrukcyjnych wprowadza się współczynnik 

bezpieczeństwa n. Określa on ile razy naprężenie dopuszczalne kr, które może wystąpić  

w materiale, powinno być mniejsze od jego wytrzymałości Rr. Dla przeciętnej konstrukcji 

n przyjmuje wartość od 5 do 10. 

𝑘௥ =  
𝑅௥

𝑛
 

2.3. Wprowadzenie do pracowni fizycznej 

2.3.1. Niepewności pomiarowe  

Każde ciało fizyczne lub zjawisko fizyczne ma wiele cech mierzalnych, które będziemy 

mierzyć na pracowni fizycznej i wyrażać w jednostkach układu SI. Pomiarów będziemy 

dokonywać za pomocą narzędzi pomiarowych, takich jak: suwmiarka, waga, termometr itp. 

Pomiary dzielimy na: 

 bezpośrednie – wynik pomiaru odczytujemy bezpośrednio z narzędzia 

pomiarowego (np. pomiar czasu stoperem, pomiar długości suwmiarką itp.), 
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 pośrednie – wielkość którą chcemy wyznaczyć nie uzyskujemy bezpośrednio  

z narzędzia pomiarowego lecz obliczeń ze wzoru po uprzednim pomiarze kilku 

wielkości w sposób bezpośredni (np. pomiar prędkości ciała, na początku mierzymy 

bezpośrednio przemieszczenie s i czas trwania ruchu t, a następnie za pomocą 

obliczeń wyznaczamy prędkość v = s/t ). 

 Każda mierzona wielkość fizyczna ma swoją wartość rzeczywistą (xo) – oczekiwaną, z pomiaru 

uzyskujemy wartości pomiarowe (x). Różnica wartości rzeczywistej i zmierzonej nazywa się 

błędem rzeczywistym lub rzeczywistą niepewnością pomiarową  

𝑥௢ − 𝑥 =  ∆𝑥௥௭. 

Warto zaznaczyć, że wartości rzeczywiste wielkości fizycznych są nieznane. Szacuje się 

przedział x ± Δx w którym z dużym założonym prawdopodobieństwem miesić się wartość 

rzeczywista xo. Połowę szerokości tego przedziału będziemy nazywać niepewnością 

pomiarową Δx pomiaru x. Niepewność pomiarową dzielimy na:  

 systematyczną związaną z aparaturą pomiarową i zastosowaną metodę pomiarową, 

 przypadkową związaną tylko i wyłącznie z przedmiotem pomiaru (przedmiotem 

badań), a nie z przyrządem pomiarowym. 

Całkowita niepewność systematyczna wynosi:  

∆𝑥 =  ∆𝑥ௗ +  ∆𝑥௞ + ∆𝑥௢ , 

gdzie: 

Δxd – to wartość najmniejszej podziałki na skali urządzenia (np. w przypadku linijki to 1mm), 

Δxk – to dokładność wzorowania zależna od zakresu i klasy narzędzia pomiarowego, 

Δxo – to wartość niepewności pochodzącej od obserwatora (połowa szerokości wahań 

wskazówki, połowa najmniejszej podziałki na skali). 

Z kolei miara niepewności przypadkowej jest odchylenie standardowe pojedynczego pomiaru 

Sx lub odchylnie standardowe wartości średniej. Maksymalna niepewność przypadkowa wynosi  

𝑆௫̅ = 3𝑆௫ , 

gdzie: 
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𝑆௑ത = ඩ
1

𝑛(𝑛 − 1)
෍(𝑥௜ − 𝑥̅)ଶ

௡

௜ୀଵ

 

gdzie: 𝑥 =
ଵ

௡
∑ 𝑥௜

௡
௜ୀଵ – średnia arytmetyczna (z pomiarów bezpośrednich) 

xi – wartości kolejnych pomiarów, 

n – liczba pomiarów. 

Zatem całkowitą niepewność pomiarowa obliczamy 

∆𝑥 =  ∆𝑥ௗ +  ∆𝑥௞ + ∆𝑥௢ +  3𝑆௫. 

Po obliczeniu całkowitej niepewności pomiarowej dokonujemy stosownego (zgodnie  

z zasadami zaokrąglania pomiarów) zaokrąglenia wartości niepewności oraz wyniku pomiaru 

(wartości średniej) do takiego miejsca znaczącego jakim jest ostatnie miejsce znaczące 

niepewności pomiarowej i zestawiamy   

𝑥 = (𝑥̅ − ∆𝑥௖)[𝑗𝑒𝑑𝑛𝑜𝑠𝑡𝑘𝑎]. 

W przypadku pomiarów pośrednich niepewność pomiarową oblicza się ze wzoru 

𝛥𝑧 =
𝑧௠௔௫ − 𝑧௠௜௡

2
 

gdzie: zmax i zmin oznaczają odpowiednio maksymalna i minimalną wartość pomiaru 

pośredniego. 

W przypadku gdy funkcję Z da się przedstawić w postaci iloczynowej, jak poniżej 

𝑧 = 𝐶 ∗ 𝑥ଵ
௔భ ∗ 𝑥ଶ

௔మ ∗ … ∗ 𝑥௡
௔೙  

do obliczenia niepewności całkowitej pomiaru pośredniego można zastosować wzór 

uproszczony:  

𝛥𝑧 = 𝑧 ቀቂ𝑎ଵ
௱௫భ

௫భ
ቃ + ቂ𝑎ଶ

௱௫మ

௫మ
ቃ + ⋯ + ቂ𝑎௡

௱௫೙

௫೙
ቃቁ.  

2.3.2. Przykładowy protokół z pracowni fizycznej  

Imię i nazwisko:      

Rok:                           Semestr: 

Kierunek: Podpis: 

Data opracowania: Ćwiczenie prowadził: Ocena: 
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I. Temat: Wyznaczenie współczynnika załamania światła metodą kąta najmniejszego 

odchylania. 

 

II. Wstęp: 

1. Cele doświadczenia: 

 Wyznaczenie współczynnika załamania światła metodą kąta najmniejszego 

odchylenia za pomocą spektrometru i pryzmatu, przy użyciu lampy rtęciowej. 

o Pomiar kąta najmniejszego odchylania 

o Pomiar kąta łamiącego w pryzmacie  

Załamanie światła następuje na granicy dwóch ośrodków przezroczystych o różnej 

gęstości. Miarą załamania światła jest współczynnik załamania n, który wyznacza się  

z zależności: 

𝑛 =
sin 𝛼

sin 𝛽
 

α – kąt padania światła 

β – kąt załamania światła 

 

Rys. 1. Załamanie światła w pryzmacie 

 

 Kąt padania światła (angle of incident i) – kąt QON = α 

 Kąt załamania światła (angle of refraction r) – kąt MOO’ = β 

 Kąt najmniejszego odchylenia (angle of deviation 𝜹) – kąt SLK = 𝜹 

 Kąt łamiący pryzmatu (=angle of refractive A) – kąt BAC = 𝝋  

Z powyższego rysunku wynika kilka zależności: 
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𝛽 =
ଵ

ଶ
𝜑 𝛼 =

ଵ

ଶ
(𝛿 + 𝜑)  𝛿 = 2(𝛼 − 𝛽)   

𝑛 =
௦௜௡

భ

మ
(ఋ ା ఝ)

௦௜௡
భ

మ
ఝ

  𝜑 =
ଵ

ଶ
൫𝛾௟ + 𝛾௣൯ 𝛿 = |𝜀௟ − 𝜀௢|   𝑙𝑢𝑏    𝛿 = ห𝜀௣ − 𝜀௢ห  

2. Przebieg doświadczeń: 

Do pomiaru kąta łamiącego i najmniejszego odchylenia używamy spektrometru, który składa 

się z następujących części: kolimatora, stolika, lunety i kątomierza. 

 

Rys. 2. Budowa spektrometru 

Doświadczenie 1.  

Wyznaczenie kąta łamiącego 𝝋 w pryzmacie 

Uruchom lampę rtęciową. Kolimator spektrometru umieść blisko źródła światła. Usuń 

szczelinę z lamy, jeżeli intensywność światła jest niska. Ustaw odpowiednią szerokość 

szczeliny kolimatora (szczelina musi być wąska, tak by uzyskać intensywną wiązkę światła). 

Następnie obróć lunetę do bezpośredniego widzenia szczeliny (na wprost kolimatora)  

i ustaw okular lunety, aby uzyskać wyraźny obraz szczeliny. Ustaw linię pionową na środku 

szczeliny. Umieść pryzmat na stole jak to zostało pokazane na Rys. 3. (chropowatą ścianką do 

lunety).  Pryzmat powinien by ustawiony na stoliku w taki sposób, aby światło z kolimatora 

biegło w przybliżeniu równolegle do dwusiecznej kąta łamiącego. Wiązka światła rozdzieli się 

na dwie wiązki tworzące ze sobą kąt  𝛾௟ + 𝛾௣.. Mierzymy kąty  𝛾௟ i 𝛾௣. 

 



 

127 
 

 

Rys. 4. Pomiar kąta łamiącego w pryzmacie 

 

Mierzymy kąty  𝛾௟ i 𝛾௣ naprowadzając lunetę na kierunek badanego promienia  

i doprowadzamy do położenia, w którym obraz szczeliny poryje się ze środkiem pola widzenia, 

oznaczonym pionową kreską (z lewej i prawej strony pryzmatu).  

𝜑 =
1

2
൫𝛾௟ + 𝛾௣൯ 

Doświadczenie 2. 

Wyznaczanie kąta najmniejszego odchylania 𝜹 w pryzmacie 

Uruchom lampę rtęciową. Kolimator spektrometru umieść blisko źródła światła. Usuń 

szczelinę z lamy, jeżeli intensywność światła jest niska. Ustaw odpowiednią szerokość 

szczeliny kolimatora (szczelina musi być wąska, tak by uzyskać intensywną wiązkę światła). 

Następnie obróć lunetę do bezpośredniego widzenia szczeliny (na wprost kolimatora)  

i ustaw okular lunety, aby uzyskać wyraźny obraz szczeliny. Ustaw linię pionową na środku 

szczeliny, a następnie dokonaj pomiaru kąta 𝜀௢. 

W celu wyznaczenia kąta najmniejszego odchylenia ustawiamy pryzmat na stoliku 

spektrometru tak, aby wiązka z kolimatora biegła prostopadle do dwusiecznej kąta łamiącego 

(zgodnie z Rys. 5). Następnie obracaj lunetę w lewą stronę, tak by poszukać czystego widma 

światła białego. Wybierz sobie jedną linie widmową (np. czerwoną). Obserwując widmo  

w lunecie obracaj stolikiem optycznym w lewo. Zaobserwuj taką sytuację, że poszczególne 

linie widmowe zatrzymają się, a następnie zaczną zmieniać swój kierunek. Wówczas 

naprowadzamy lunetę na wybraną linie widmową i doprowadzamy do położenia, w którym 

środek wybranej linii widomej pokrywa się  z pionową kreską, odczytujemy kąt 𝜀௟. 
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Rys. 5. Pomiar kąta najmniejszego odchylania w pryzmacie 

III. Pomiary: 

Doświadczenie 1.  

Wyznaczenie kąta łamiącego 𝝋 w pryzmacie 

Mierzymy kąty  𝛾௟ i 𝛾௣. 

∆𝛾௟೏
= 0,5°    ∆𝛾௟೚

=  
ଵ

ଶ
∙ 0,5 = 0,25° 

∆𝛾௣೏
= 0,5°   ∆𝛾௣ =

ଵ

ଶ
∙ 0,5 = 0,25° 

Lp. 𝛾௟ 𝛾௣ 

1. 57,5° 62,5° 

2. 57,0° 63,0° 

3. 57,5° 62,5° 

4. 57,0° 63,0° 

5. 57,0° 63,5° 

 

Doświadczenie 2.  

Wyznaczanie kąta najmniejszego odchylania 𝜹 w pryzmacie 

Mierzymy kąty 𝜀௢ 𝑖 𝜀௟. 

∆𝜀௢೏
= 0,5°    ∆𝜀௢೚

=
ଵ

ଶ
∙ 0,5 = 0,25° 

∆𝜀௟೏
= 0,5°    ∆𝜀௟೚

=
ଵ

ଶ
∙ 0,5 = 0,25° 
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Lp. 𝜀௟ 𝜀௢ 

1.  0,0° 38,0° 

2. 0,0° 38,0° 

3.  0,0° 38,0° 

4. 0,0° 38,0° 

5. 0,0° 38,5° 

 

IV. Opracowanie wyników: 

Doświadczenie 1. 

𝛾̅௟ =
𝛾ଵ + 𝛾ଶ + 𝛾ଷ + 𝛾ସ + 𝛾ହ

5
=

57,5° + 57,0° + 57,5° + 57,0° + 57,0°

5
= 57,2° 

𝑠ఊഥ೗
=

0,273861279

√5
= 0,122474487 

∆𝛾௟ = ∆𝛾௟೏
+ ∆𝛾௟೚

+ 3 ∗ 𝑠ఊഥ೗
= 0,5 + 0,25 + 3 ∗ 0,122474487 = 1,117423461 ≈ 1,1° 

𝛾̅௣ =
𝛾ଵ + 𝛾ଶ + 𝛾ଷ + 𝛾ସ + 𝛾ହ

5
=

62,5° + 63,0° + 62,5° + 63,0° + 63,5°

5
= 62,9° 

𝑠ఊഥ೛
=

0,418330013

√5
= 0,187082869 

∆𝛾௣ = ∆𝛾௣೏
+ ∆𝛾௣೚

+ 3 ∗ 𝑠ఊഥ೛
= 0,5 + 0,25 + 3 ∗ 0,187082869 = 1,311248607 ≈ 1,3° 

Wynik doświadczenia: 

𝜸ഥ𝒍 =  (𝟓𝟕, 𝟐°   ∓    𝟏, 𝟏°) 

𝜸ഥ𝒑  =  (𝟔𝟐, 𝟗°   ∓    𝟏, 𝟑°) 

Doświadczenie 2. 

𝜀௟̅ =
𝜀ଵ + 𝜀ଶ + 𝜀ଷ + 𝜀ସ + 𝜀ହ

5
= 0° 

𝑠ఌത೗
=

0

√5
= 0 

∆𝜀௟ = ∆𝜀௟೏
+ ∆𝜀௟೚

+ 3 ∗ 𝑠ఌത೗
= 0,5 + 0,25 + 3 ∗ 0 = 0,750° ≈ 0,8° 
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𝜀௢̅ =
𝜀ଵ + 𝜀ଶ + 𝜀ଷ + 𝜀ସ + 𝜀ହ

5
=

38,0° + 38,0° + 38,0° + 38,0° + 38,5°

5
= 38,1° 

𝑠ఌത೚
=

0,223606798

√5
= 0,10000000001 

∆𝜀௢ = ∆𝜀௢೏
+ ∆𝜀௢೚

+ 3 ∗ 𝑠ఌത೚
= 0,5 + 0,25 + 3 ∗ 0,10000000001 = 1,05° ≈ 1,1° 

Wynik doświadczenia: 

𝜺ത𝒍 =  (𝟎, 𝟎°   ∓    𝟎, 𝟖°) 

𝜺ത𝒐  =  (𝟑𝟖, 𝟏°   ∓    𝟏, 𝟏°) 

Wyznaczanie kąta łamiącego pryzmat 

𝜑 =
1

2
൫𝛾̅௟ + 𝛾̅௣൯ =

1

2
(57,2° + 62,9°) = 60,05° ≈ 60,1° 

∆𝜑௠௜௡ =
1

2
൫−∆𝛾௟ − ∆𝛾௣൯ =

1

2
(−1,1° − 1,3°) =

1

2
(−2,4°) = −1,2° 

∆𝜑௠௔௫ =
1

2
൫∆𝛾௟ + ∆𝛾௣൯ =

1

2
(1,1° + 1,3°) =

1

2
(2,4°) = 1,2° 

∆𝜑 =
1

2
(∆𝜑௠௔௫ − ∆𝜑௠௜௡) =

1

2
(1,2° − (−1,2°)) =

1

2
(2,4°) = 1,2° 

Kąt łamiący pryzmat wynosi: 

𝝋 =  (𝟔𝟎, 𝟏   ∓    𝟏, 𝟐)   [°] 

Wyznaczanie kąta najmniejszego odchylenia w pryzmacie 

𝛿 = |𝜀௟̅ − 𝜀௢̅| = |0° − 38,1°| = 38,1° 

∆𝛿௠௜௡ = (−∆𝜀௟ − ∆𝜀௢) = (−0,8° − 1,1°) = −1,9° 

∆𝛿௠௔௫ = (∆𝜀௟ + ∆𝜀௢) = (0,8° + 1,1°) = 1,9° 

∆𝛿 =
1

2
(∆𝛿௠௔௫ − ∆𝛿௠௜௡) =

1

2
(1,9° − (−1,9°)) = 1,9° 

Kąt najmniejszego odchylenia wynosi: 

𝜹 =  (𝟑𝟖, 𝟏   ∓    𝟏, 𝟗)   [°] 
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Wyznaczanie kąta załamania światła 

𝛽 =
1

2
𝜑 =

1

2
∗ 60,1° = 30,05° ≈ 30,1° 

∆𝛽௠௜௡ =
1

2
(−∆𝜑) =

1

2
(−1,2°) = −0,6° 

∆𝛽௠௔௫ =
1

2
(∆𝜑) =

1

2
(1,2°) = 0,6° 

∆𝛽 =
1

2
(∆𝛽௠௔௫ − ∆𝛽௠௜௡) =

1

2
(0,6° − (−0,6°)) = 0,6° 

Kąt załamania światła wynosi: 

𝜷 =  (𝟑𝟎, 𝟏   ∓    𝟎, 𝟔)   [°] 

Wyznaczenie kąta padania światła 

𝛼 =
1

2
(𝛿 + 𝜑) =

1

2
(38,1° + 60,1°) = 49,1° 

∆𝛼௠௜௡ =
1

2
(−∆𝛿 − ∆𝜑) =

1

2
(−1,9° − 1,2°) = −1,55° ≈ −1,6° 

∆𝛼௠௔௫ =
1

2
(∆𝛿 + ∆𝜑) =

1

2
(1,9° + 1,2°) = 1,55° ≈ 1,6° 

∆𝛼 =
1

2
(∆𝛼௠௔௫ − ∆𝛼௠௜௡) =

1

2
(1,6° − (−1,6°)) = 1,6° 

Kąt padania światła wynosi: 

𝜶 =  ( 𝟒𝟗, 𝟏   ∓    𝟏, 𝟔)   [°] 

Wyznaczanie współczynnika załamania światła 

∆𝑛

𝑛
= |1| ฬ

sin ∆𝛼

sin 𝛼
ฬ + |−1| ฬ

sin ∆𝛽

sin 𝛽
ฬ =

sin(1,6°)

sin(49,1°)
+

sin(0,6°)

sin(30,1°)
= 0,057820968 

𝑛 =
sin 𝛼

sin 𝛽
=

sin(49,1°)

sin(30,1°)
= 1,507153 ≈ 1,51 

∆𝑛 = 0,00871 ≈ 0,009 

Współczynnik załamania światła wynosi: 

𝒏 =  (     𝟏, 𝟓𝟏   ∓    𝟎, 𝟎𝟎𝟗     ) 
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V. Wnioski: 

Współczynnik załamania światła, który wyznaczyliśmy jest zgodny z wartością tablicową, 

bowiem dla badanego pryzmatu wynosił 1,51. 

2.4. Zadania 

2.4.1. Przykładowe rozwiązanie zadania 

Do regulacji prędkości ruchu obrotowego są stosowane regulatory Watta. Składają się one 

z dwóch kul połączonych z osią obrotu za pomocą przegubowo zawieszonych prętów. Przy 

zwiększaniu się prędkości obrotowej regulatora – kule pod wpływem wzrastającej siły 

odśrodkowej bezwładności unoszą się, podnosząc osadzony przesuwnie na osi suwak. Ruch 

suwaka może być wykorzystany do otwierania i przymykania zaworów w przewodzie parowym 

lub do innej czynności regulacyjnej. Obliczyć kąt nachylenia ramion regulatora, jeżeli długość 

prętów, na których zawieszone są kule, wynosi 200 mm, a oś regulatora wykonuje 2 obroty na 

sekundę2. 

 

Dane:  l = 200 m, f = 2 Hz, l = 0,2 m, g = 9,81 m/s2 

Szukane: α = ?  

Wzory:  

𝑄 = 𝑚𝑔 

𝑣 =
2𝜋𝑟

𝑇
 

𝐹஻ =
𝑚𝑣ଶ

𝑟
 

𝑇 =
1

𝑓
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Q – ciężar ciała 

FB – siła bezwładności (siła odśrodkowa) 

N – siła naciągu pręta  

𝑡𝑔𝛼 =  
𝐹஻

𝑄
 

sin 𝛼 =  
௥

௟
 𝑟 = 𝑙 sin 𝛼 

𝑣 = 2𝜋𝑟𝑓 𝑣 = 2𝜋𝑓𝑙 sin 𝛼 

𝐹஻ =
𝑚(2𝜋𝑓𝑙 sin 𝛼)ଶ

𝑟
 

𝐹஻ =
𝑚(2𝜋𝑓𝑙 sin 𝛼)ଶ

𝑙 sin 𝛼
 

𝐹஻ = 𝑚4𝜋ଶ𝑓ଶ𝑙 sin 𝛼 

𝑡𝑔𝛼 =  
𝑚4𝜋ଶ𝑓ଶ𝑙 sin 𝛼

𝑚𝑔
 

𝑡𝑔𝛼 =  
sin 𝛼

cos 𝛼
 

sin 𝛼

cos 𝛼
=  

4𝜋ଶ𝑓ଶ𝑙 sin 𝛼

𝑔
 

1

cos 𝛼
=  

4𝜋ଶ𝑓ଶ𝑙

𝑔
 

cos 𝛼 =  
𝑔

4𝜋ଶ𝑓ଶ𝑙
 

cos 𝛼 =  
9,81

4 ∙ 3,14ଶ ∙ 2ଶ ∙ 0,2
= 0,31 

Z tablic matematycznym możemy odczytać, że α = 71◦. 

 

Odpowiedź:  

Kąt nachylenia ramion regulatora wynosi  71◦. 
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2.4.2. Zadania  

Zadanie 1   

Na mniejszy tłok prasy hydraulicznej o średnicy 10 cm działa siła 80 N przesuwając go  

o 40 cm. Obliczyć siłę nacisku prasy oraz przesunięcie większego tłoka, jeżeli jego średnica 

wynosi 60 cm. Porównać pracę wykonaną przez obydwa tłoki2.  

 

Zadanie 2 

Na spadkownicy Atwooda, służącej do pomiaru przyspieszeń, zrównoważono dwa odważniki 

po 100 g, a następnie obciążono dodatkowo jeden z nich ciężarkiem 10 g. Obliczyć 

przyspieszenie jakiego dozna układ ciężarków, oraz czas ruchu układu, jeśli wysokości 

h dodatkowo obciążonego ciężarka od zderzaka ograniczającego jego ruch wynosi 1,61 m2.     

 

Zadanie 3 

Jak długo należy gotować 0,5 litra wody w czajniku bezprzewodowym o mocy 2200 W, aby 

doprowadzić ją do wrzenia. Temperatura początkowa wody w czajniku to 24 C, a ciepło 

właściwe wody wynosi 4200 J/kgC. Jakie natężenie prądu elektrycznego przepływa przez 

                                                           
2 Kamiński, W., Kamiński, Z. (2020). Fizyka dla kandydatów na wyższe uczelnie techniczne tom I, PWN 
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grzałkę, jeżeli czajnik jest podłączony do gniazda w domowej instalacji elektrycznej? Pomiń 

straty energii.    

2.5. Zakończenie 

Rozdział ten stanowi jedynie wprowadzenie do świata fizyki, obejmując wybrane zagadnienia 

teoretyczne. Wszystkie materiały związane z pełnym zakresem przedmiotu otrzymacie Państwo 

w formie elektronicznej podczas zajęć. W ramach tego rozdziału przedstawiono metody 

szacowania niepewności pomiarowych oraz zaprezentowano przykładowy protokół dotyczący 

wyznaczania współczynnika złamania światła n. Dodatkowo zamieszczono również przykład 

rozwiązania zadania z fizyki.  

2.6. Bibliografia 

1. Kamiński, W., Kamiński, Z. (2020). Fizyka dla kandydatów na wyższe uczelnie 

techniczne tom I i II. Wydawnictwo Naukowe PWN. 

2. Moebs, W., J. Ling, S., Sanny J. (2018) Fizyka dla szkół wyższych. Tom 1-3. 

OpenStax (PDF) 

3. Orear, J. (2015). Fizyka tom 1/2, Wydawnictwo Naukowo-Techniczne. 

4. Holliday, D., Resnick, R., Walker, J. (2015). Podstawy fizyki Tom I-V. Wydawnictwo 

Naukowe PWN. 

5. Jędrzejewski, J., Kruczek, W., Kujawski, A. (2017). Zbiór zadań z fizyki. Tom 1-2. 

Warszawa: WNT.  

6. Różański, S. A., (2014) ZBIÓR ZADAŃ Z FIZYKI Z PRZYKŁADOWYMI 

ROZWIĄZANIAMI. PWSZ w Pile 

7. Szuba, S. (2010). Ćwiczenia laboratoryjne z fizyki, Poznań: Wydawnictwo 

Poznańskiej Księgarni Akademickiej. 
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Piotr Świta 
 

3. WYTRZYMAŁOŚĆ MATERIAŁÓW W MECHANICE I BUDOWIE MASZYN 
 

 
3.1. Wstęp 

 
Wytrzymałość materiałów w programie studiów to istotny przedmiot podstawowy 

mający bezpośrednie powiązanie z zagadnieniami konstrukcyjnymi. Tematyka ta daje 

podstawy ekonomicznego dobrania kształtów i wymiarów, jak również materiału każdej części 

maszyny lub urządzenia technicznego. Wytrzymałość materiałów to dział mechaniki, gdzie 

analizowane są odkształcenia, naprężenia i przemieszczenia elementów konstrukcji (maszyny 

lub innego urządzenia technicznego) wywołane na skutek działania obciążeń. Skutki działania 

obciążeń nazywane są wytężeniem, stanem odkształcenia i naprężenia lub odpowiedzią 

materiału. Bazą wyjściową do ustalenia takich informacji jest doświadczenie. W ramach 

wytrzymałości materiałów przeprowadza się badania doświadczalne, przede wszystkim 

badania właściwości mechanicznych materiałów. Nie zawsze jednak jest ekonomicznie 

uzasadnione, aby w każdym przypadku przeprowadzać doświadczenie. Dlatego wykorzystuje 

się metody analityczne lub numeryczne (np. Metoda Elementów Skończonych, Metoda 

Elementów Brzegowych). W mechanice rozpatrywane są zarówno ciała sztywne, jak i cała 

odkształcalne. W przypadku analizy ciał odkształcalnych podstawą omawianego zagadnienia 

jest teoria sprężystości i teoria plastyczności. Wytrzymałość materiałów służy analizie 

konstrukcji i jest wykorzystywana do obliczeń związanych z ustalaniem gabarytów elementów 

konstrukcyjnych. Obliczenia te mają umożliwić ekonomiczne dobranie kształtów, wymiarów     

i materiału każdej części ustroju konstrukcyjnego, tak aby taki ustrój mógł bezpiecznie spełniać 

swoją funkcję. Jeżeli uwzględniony zostanie również przewidywany czas użytkowania 

bezpiecznego wykorzystywania danej maszyny, wówczas będzie to zagadnienie 

niezawodności. W celu bezpiecznej pracy konstrukcji konieczne jest sprawdzenie trzech 

warunków: wytrzymałości, sztywności, stateczności. 

Warunek wytrzymałości dotyczy wymagania, aby oddziaływania w analizowanym elemencie 

nie powodowały osiągniecia wytrzymałości materiału, z którego jest wykonany. Złożone 

działanie sił na konstrukcję przyczynia się do złożonych stanów naprężenia, a wartościami 

reprezentatywnymi mogą być wówczas takie, które zostały wyznaczone na podstawie znanych 

hipotez wytrzymałościowych (np. hipoteza największej energii odkształcenia postaciowego – 
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hipoteza Hubera, Misesa, Hencky’ego, hipoteza największego naprężenia stycznego – hipoteza 

Tresca i Guesta). 

Warunek sztywności sprowadza się do sprawdzenia wielkości przemieszczeń lub odkształceń 

analizowanego elementu. Zbyt duża ich wartość może utrudnić lub uniemożliwić prawidłową 

eksploatację.  

Warunek stateczności dotyczy ochrony ustroju konstrukcyjnego przed gwałtowną deformacją 

kształtu danego elementu konstrukcyjnego. 

Aby bliżej wyjaśnić zakres zagadnień działu mechaniki jakim jest wytrzymałość materiałów 

należy określić założenia dotyczące stanów odkształcenia i naprężenia elementów 

konstrukcyjnych3. Istotnym jest również aby rzeczywisty ustój konstrukcyjny wyidealizować 

na potrzeby obliczeniowe w zakresie schematu statycznego, warunków podparcia, połączeń 

poszczególnych elementów, obciążeń działających na konstrukcję oraz modelu materiału.                

W zależności od kierunków sił działających na konstrukcję lub kierunków naprężeń rozróżnia 

się proste lub złożone przypadki wytrzymałościowe. W złożonych stanach naprężeń do oceny 

wytężenia materiału wykorzystuje się hipotezy wytrzymałościowe4. Stawia się bowiem 

hipotezę, że można utworzyć funkcję określającą wytężenie, a jej argumentami są składowe 

stanu ośrodka ciągłego w danym punkcie (np. składowe stanu naprężenia) i parametry 

charakteryzujące materiał. 

Wytrzymałość materiałów dotyczy również takich zagadnień jak metody energetyczne, 

stateczność (służąca do sprawdzenia warunku stateczności), elementy dynamiki układów 

sprężystych (drgań, obciążeń udarowych), zagadnienia nośności granicznej w odniesieniu do 

układów prętowych5, zmęczenie materiału 2, będące zjawiskiem pękania materiału pod 

wpływem cyklicznie zmiennych naprężeń. Bardzo istotną grupą zagadnień wytrzymałości 

materiałów są metody numeryczne do wyznaczania przemieszczeń, naprężeń, odkształceń                

i obciążeń krytycznych, z których najpopularniejszą z nich jest Metoda Elementów 

Skończonych6. Istotą tej metody jest podział złożonego układu na skończoną liczbę elementów, 

analiza pojedynczego elementu, a następnie ponowne złożenie wszystkich elementów w celu 

badania odpowiedzi całego ustroju konstrukcyjnego. Na Metodzie Elementów Skończonych 

                                                           
3 Bibiak-Żochowski M. (red.): Wytrzymałość materiałów i konstrukcji. Tom I. Oficyna Politechniki Warszawskiej, 
Warszawa 2013. 
4 Dyląg Z., Jakubowicz A., Orłoś Z.: Wytrzymałość materiałów. Tom 1. Wydawnictwo Naukowo – Techniczne, 
Warszawa 1999. 
5 Wojewódzki W.: Nośność graniczna konstrukcji prętowych. Oficyna Wydawnicza Politechniki Warszawskiej, 
Warszawa 2005. 
6 Kleiber M.: Wprowadzenie do Metody Elementów Skończonych. PWN, Warszawa – Poznań 1986. 
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opartych jest większość dostępnych komercyjnych programów komputerowych służących 

analizie konstrukcji.  

W niniejszym rozdziale został podany skrót informacji dotyczących sprawdzenia 

elementarnych warunków wytrzymałościowych, przy czym sprawdzenie to sprowadzono 

wyłącznie do prętów. Pominięto zakres Statyki jako osobnego działu Mechaniki Ogólnej,  który 

Czytelnik może znaleźć literaturze4. Pełna lista zagadnień wytrzymałości materiałów, wraz              

z szczegółowymi wyjaśnieniami, znajduje się między innymi w pracach poświęconych 

literaturze przedmiotu2 7 8 9.   

 

3.2. Schematy statyczne i modele materiałowe 

3.2.1. Idealizacja konstrukcji 

 

W celu przeprowadzenia obliczeń statyczno-wytrzymałościowych rzeczywisty ustrój 

konstrukcyjny należy odwzorować przy pomocy modelu obliczeniowego zwanego schematem 

statycznym. Taki schemat zawiera odzwierciedlenie geometrii danej konstrukcji oraz 

warunków podparcia, a także wzajemnych połączeń pomiędzy poszczególnymi elementami. 

Aby we właściwy sposób zdefiniować schemat statyczny należy badany model  zakwalifikować 

do właściwej grupy. Podstawowe grupy modeli przedstawiają się następująco: pręty, układy 

prętowe, tarcze, ustroje powierzchniowe (płyty, powłoki), bryły.  

Pręt to taki element konstrukcji, którego jeden wymiar (długość) jest wielokrotnie większy od 

dwóch pozostałych wymiarów (szerokości i grubości) oraz posiada oś prostą lub zakrzywioną 

np. belka, wał korbowy, cięgno, łuk, sprężyna. Pręty mogą występować jako pojedyncze 

elementy lub w zespołach np. kratownice, ramy, ruszty. 

Tarcza jest to element konstrukcji, którego jeden wymiar (grubość) jest wielokrotnie mniejszy 

od dwóch pozostałych (długości i szerokości), a obciążanie występuje w płaszczyźnie 

środkowej elementu. 

Płyta jest to element konstrukcji, którego jeden wymiar (grubość) jest wielokrotnie mniejszy 

od dwóch pozostałych (długości i szerokości), a obciążanie jest prostopadłe do płaszczyzny 

środkowej elementu. 

                                                           
7 Bibiak-Żochowski M. (red.): Wytrzymałość materiałów i konstrukcji. Tom I. Oficyna Politechniki Warszawskiej, 
Warszawa 2013. 
8 Bibiak-Żochowski M. (red.): Wytrzymałość materiałów i konstrukcji. Tom II. Oficyna Politechniki 
Warszawskiej, Warszawa 2013. 
9 Dyląg Z., Jakubowicz A., Orłoś Z.: Wytrzymałość materiałów. Tom 2. Wydawnictwo Naukowo-Techniczne, 
Warszawa 2012. 
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Powłoka jest to element konstrukcji, którego jeden wymiar (grubość) jest wielokrotnie 

mniejszy od dwóch pozostałych (długości i szerokości), a obciążanie jest dowolnie skierowane 

do powierzchni środkowej elementu. Powierzchnia środkowa jest zakrzywiona 

(jednokrzywiznowa lub dwukrzywiznowa). 

Bryła jest to element konstrukcji, którego wszystkie trzy wymiary są tego samego rzędu. 

 

Idealizacja modelu polega również na przyjęciu odpowiednich schematów podparcia                        

i połączeń, które są związane z warunkami ograniczającymi ruch układu mechanicznego 

wzdłuż poszczególnych kierunków, a więc więzami. Występowanie więzów jest równoznaczne 

z działaniem sił biernych, które nazywane są reakcjami.  

Najczęstszymi sposobami podparcia są: przegub walcowy, przegub kulisty, podpora 

przegubowa przesuwna, podpora przegubowa nieprzesuwana, zawieszenie na cięgnach 

wiotkich, oparcie o chropowatą powierzchnię, utwierdzenie całkowite, częściowe utwierdzenie 

(podatne), podparcie sprężyste. 

 

3.2.2. Idealizacja obciążeń 

Jeżeli został określony model konstrukcji istotne jest również określenie oddziaływań,                    

a następnie ich właściwa implementacja.  Oddziaływania to siły zewnętrzne, ciężar konstrukcji, 

siły przekazywane przez współpracujące elementy, zmiany temperatury, tarcie, parcie cieczy, 

opory powietrza, oddziaływania podpór.  

Pojęcie siły jest dość szerokie bowiem ze względu na charakter działania i pochodzenie 

rozróżnia się na stępujące rodzaje sił: 

 masowe lub objętościowe, które są proporcjonalne do masy rozłożonej w objętości             

i działają na wszystkie punkty rozpatrywanego elementu; 

 powierzchniowe, powstające przy bezpośrednim zetknięciu się jednego elementu                       

z drugim; 

 zewnętrzne, pochodzące od punktów lub elementów nie należących do rozpatrywanego 

układu mechanicznego; 

 wewnętrzne, pochodzące od punktów lub elementów należących do rozpatrywanego 

układu mechanicznego; 

 czynne lub inaczej obciążenia siły zewnętrzne, które mogą wywoływać ruch; 

 bierne lub inaczej reakcje powstałe pod wpływem sił czynnych. 

 



 

140 
 

3.2.3. Idealizacja materiału 

Puntem wyjścia do idealizacji danego materiału jest badanie laboratoryjne wynikające ze 

statycznej próby rozciągania pręta. Badanie takie odbywa się przy pomocy maszyny 

wytrzymałościowej (Rys. 1), która może być zintegrowana z odpowiednią wizualizacją 

wykresu naprężenie – odkształcenie lub siła – przemieszczenie. W maszynie umieszony jest 

pręt wykonany z analizowanego materiału (np. stal, aluminium, miedź, mosiądz, tytan). 

 

Rys. 1. Maszyna wytrzymałościowa do statycznej próby rozciągania pręta - stanowisko 

laboratoryjne Akademii Nauk Stosowanych w Koninie (prod. G.U.N.T. Gerätebau GmbH) 

 

W geometrycznie zdefiniowanej próbce wytwarzany jest jednoosiowy stan naprężenia. Ten stan 

naprężenia jest wytwarzany przez zewnętrzne obciążenie próbki w kierunku podłużnym za 

pomocą siły ściskającej. Powoduje to, że w przekroju testowym próbki panuje równomierny 

rozkład naprężeń normalnych. Aby określić wytrzymałość materiału, obciążenie próbki jest 

powoli i równomiernie zwiększane, aż do zerwania próbki tj. granicy wytrzymałości (Rys. 2). 
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Rys. 2. Przewężenie rozciąganej próbki stalowej przed zerwaniem - stanowisko laboratoryjne 

Akademii Nauk Stosowanych w Koninie 

 

To badanie dostarcza wielu informacji dotyczącej charakterystycznych wartości (punktów) na 

wykresie  naprężenie – odkształcenie (Rys. 3), do których należą miedzy innymi wartości 

naprężeń wykorzystywanych przy formułowaniu warunków wytrzymałościowych danej 

konstrukcji.   

 

Rys. 3. Wykres naprężenie – odkształcenie otrzymany z badania statycznej próby 

rozciągania pręta stalowego wraz z charakterystycznymi naprężeniami 
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Materiał traktuje się zazwyczaj jako ciągły (kontinuum) i jednorodny. Oznacza to, że                        

w dowolnym miejscu właściwości fizyczne są takie same (izotropowość materiału). Do 

podstawowych parametrów wytrzymałościowych materiału należą:  

 granica proporcjonalności proporcjonalności 𝑓ு;  

 granica sprężystości 𝑓௦; 

 granica plastyczności  𝑓௬; 

 granica wytrzymałości 𝑓௥; 

 moduł sprężystości podłużnej (moduł Younga) 𝐸 – wielkość określająca sprężystość 

materiału przy rozciąganiu i ściskaniu; wartość modułu Younga jest charakterystyczną 

dla danego materiału i wyraża zależność względnego odkształcenia liniowego  

𝜀 materiału od naprężenia 𝜎 jakie w nim występuje – w zakresie odkształceń 

sprężystych 

𝐸 =
𝜎

𝜀
 ; 

 

  (3.1) 

 współczynnik Poissona 𝜈 – jest to stosunek względnego odkształcenia prostopadłego 

do kierunku rozciągania (lub ściskania) do względnego odkształcenia w kierunku 

działania siły obciążającej; 

 współczynnik sprężystości poprzecznej materiału 𝐺 – inaczej moduł Kirchhoffa  lub 

moduł odkształcalności postaciowej – współczynnik uzależniający odkształcenie 

postaciowe materiału od naprężenia, jakie w nim występuje; jest to wielkość 

określająca sprężystość materiału i wyraża się wzorem  

 

𝐺 =
𝜏

𝛾
 , 

 

  (3.2) 

gdzie: 𝜏 – naprężenie ścinające, 𝛾 – odkształcenie postaciowe; współczynnik 

sprężystości poprzecznej materiału dla materiałów izotropowych bezpośrednio zależy 

od modułu Younga i współczynnika Poissona: 

𝐺 =
𝐸

2(1 + 𝜈)
 .   (3.2) 
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W zależności od analizowanego materiału wykres naprężenie – odkształcenie różni się 

znacząco (Rys. 4). W każdym jednak przypadku początkowe wartości naprężenia są wprost 

proporcjonalne do odkształceń. Próbka stalowa ma tendencje do przewężenia przed 

osiągnięciem granicy wytrzymałości i zerwaniem natomiast dla próbki wykonanej z mosiądzu 

zerwanie próbki odbywa się gwałtownie jednak przy znacząco większym naprężeniu.  

 

 

Rys. 4. Wykres naprężenie – odkształcenie otrzymany z badania statycznej próby rozciągania 

pręta dla różnych materiałów 

 

Znajomość zależności pomiędzy naprężeniem a odkształceniem w warunkach laboratoryjnych 

daje podstawy do stworzenia modelu materiału opisanego w sposób matematyczny. Istnieje 

wiele modeli materiału wykorzystywanych w obliczeniach konstrukcyjnych, należy jednak 

pamiętać o odpowiednim doborze modelu do faktycznego materiału. Model materiału jest 

uproszczeniem pozwalającym uwzględnić parametry wytrzymałościowe w algorytmach 

obliczeniowych zarówno otrzymywanych w sposób ścisły jak i numeryczny.  
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 Materiały sprężyste charakteryzują się właściwością, iż po usunięciu obciążenia 

element powraca do pierwotnego kształtu, a modelem takiego materiału może materiał liniowo 

– sprężysty (Rys. 5). Materiał ten poddawany zarówno naprężeniom ściskającym jak                                

i rozciągającym, a graniczna wartość naprężeń jest równa granicy sprężystości  𝑓௦. Istnieje 

szereg materiałów, które wymagają zastosowania nieliniowej zależności naprężenie – 

odkształcenie i najprostszym z nich jest model materiału nieliniowo – sprężystego (Rys. 6).  

                                             
                                                         

Rys. 5. Model materiału liniowo - sprężystego  Rys. 6. Model materiału nieliniowo - 
sprężystego 

 
Materiał plastyczny doznaje trwałych odkształceń, które nazywa się odkształceniami 

plastycznymi. Szczególnym przypadkiem modelu materiału plastycznego jest model idealnie 

plastyczny. W modelu tym materiał ulega uplastycznieniu przy ustalonym naprężeniu 

zastępczym. Najczęściej tym naprężeniem jest granica plastyczności, którą przyjmuje się równą 

granicy sprężystości. Istnieją dwa rodzaje modelu idealnie plastycznego: model sprężysto 

idealnie plastyczny (Rys. 7) i model sztywno idealnie plastyczny. W tym modelu całkowite 

odkształcenie składa się odkształcenia sprężystego 𝜀௦ oraz odkształcenia plastycznego 𝜀௣௟. 

Jeżeli odkształcenie sprężyste 𝜀௦  wynosi zero to materiał jest modelowany modelem sztywno 

idealnie plastycznym. Istnieją materiały (na przykład stal niskowęglowa), dla których po 

przekroczeniu granicy plastyczności naprężenia normalne wzrastają - materiał ulega 

wzmocnieniu. Materiały takie modeluje się za pomocą modeli: sztywno-plastycznego ze 

wzmocnieniem (rys. 8) oraz sprężysto-plastycznego ze wzmocnieniem.  
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Rys. 7. Model materiału sprężysto idealnie 

plastycznego  
Rys. 8. Model materiału sztywno-plastycznego 

ze wzmocnieniem 
 
Wzmocnienie może być liniowe lub nieliniowe. Model materiału sztywno-plastycznego ze 

wzmocnieniem nieliniowym przedstawiono na rysunku 9. Dla modeli z liniowym 

wzmocnieniem tangens kąta nachylenia prostej wzmocnienia 𝛽 nazywa się modułem 

wzmocnienia. 

 

 

Rys. 9. Model materiału sprężysto-plastycznego ze wzmocnieniem (wzmocnienie nieliniowe) 

 

3.3. Siły wewnętrzne 

 Ustroje konstrukcyjne podawane są oddziaływaniom, do których należą miedzy 

innymi siły zewnętrze w postaci sił powierzchniowych, przyłożonych do powierzchni elementu 

lub występujące na małych obszarach powierzchni, tzw. siły skupione. Ponadto na konstrukcje 

działają siły objętościowe wynikające z jej masy 𝜌𝒈∆𝑉. Poza siłami zewnętrznymi występują 

siły wewnętrzne, które są wynikiem wzajemnego wewnętrznego oddziaływania na siebie 
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poszczególnych cząstek materiału, należących do danego rozpatrywanego ciała 

odkształcalnego. 

 W celu wyznaczenia składowych wektora głównego sił wewnętrznych i wektora 

momentu rozważane jest ciało o dowolnym kształcie, podparte w sposób zapewniający jego 

równowagę (Rys. 10). Ciało to znajduje się pod działaniem sił zewnętrznych (𝑷𝟏, 𝑷𝟐,…, 𝒒) 

oraz sił biernych czyli reakcji podporowych 𝑹𝟏, 𝑹𝟐,… 

 Aby wyznaczyć siły wewnętrzne w dowolnym płaskim przekroju dokonano 

podziału ciała na dwie części A i B. W celu utrzymania w równowadze części A należy 

przyłożyć do niej układ sił wewnętrznych tj. wektor główny sił 𝑷𝒘 oraz moment 𝑴𝒘𝑪 

wyznaczony względem dowolnie obranego bieguna redukcji C leżącego w płaszczyźnie 

rozpatrywanego przekroju. Jeżeli część A ma pozostać w równowadze, to siły 𝑷𝟏, 𝑷𝟐,…, 𝑹𝟏, 

𝑹𝟐…, 𝑷𝒘 oraz para sił o momencie 𝑴𝒘𝑪  muszą spełniać warunki równowagi. Te same warunki 

równowagi musi spełniać część B, gdzie siły wewnętrzne zostały zredukowane do wektora 

głównego sił 𝑷𝒘 oraz momentu 𝑴𝒘𝑪. 

 Najczęściej stosowanym modelem części konstrukcyjnych jest pręt. Do 

wyznaczenia sił wewnętrznych w pręcie rozpatruje się przekrój normalny, a środek redukcji 

przyjmuje się środek ciężkości przekroju (Rys. 11). Wektor główny sił 𝑷𝒘 wewnętrznych 

można rozłożyć na składową 𝑵 o kierunku prostopadłym do przekroju i składową 𝑻 w kierunku 

stycznym do przekroju. Moment główny 𝑴𝒘 można rozłożyć na kierunek normalny 𝑴𝒔                       

i kierunek styczny 𝑴𝒈 . Uzyskuje się układ uogólnionych sił przekrojowych tj. 𝑵 siłę podłużną 

(normalną), 𝑻 siłę poprzeczną (tnącą), 𝑴𝒔 moment skręcający, 𝑴𝒘moment zginający. 
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Rys. 10. Wektor główny sił 𝑷𝒘 oraz wektora moment 𝑴𝒘𝟎 

 

 

Rys. 11. Składowe wektora głównego sił 𝑷𝒘 oraz wektora momentu 𝑴𝒘𝟎 

 
 Jeśli w pręcie wystąpi tylko jedna składowa sił wewnętrznych, to jest prosty 

przypadek wytrzymałości pręta, do których należą: 



 

148 
 

 rozciąganie i ściskanie – występuje jedynie siła osiowa 𝑵 (jeżeli jest zwrócona do  

wewnątrz rozpatrywanego przekroju wówczas element jest ściskany, jeżeli jest 

zwrócona na  zewnątrz rozpatrywanego przekroju wówczas element jest rozciągany); 

 ścinanie - występuje jedynie siła poprzeczna 𝑻 ; 

 zginanie - występuje jedynie moment zginający  𝑴𝒈 ; 

 skręcanie - występuje jedynie moment skręcający  𝑴𝒔 . 

 

3.4. Naprężenia, odkształcenia, przemieszczenia 

 

 Naprężenie 𝒑 w danym punkcie przekroju określa się jako granicę ilorazu 

różnicowego  

𝒑 = lim ∙
Δ𝑷𝒘

Δ𝐴
 , 

 

  (3.3) 

gdzie Δ𝑷𝒘 – wektor główny sił, do którego zostały zredukowane siły wewnętrzne;                             

Δ𝐴 – wydzielona powierzchnia elementu. Wektor naprężenia 𝒑 można rozłożyć na składowe: 

 składową prostopadłą do powierzchni – naprężenie normalne 𝝈; 

 składową styczną do powierzchni – naprężenie styczne 𝝉.   

W zapisie wektorowym naprężenie jest równe 

𝒑 = 𝝈 + 𝝉 , 

 

  (3.4) 

natomiast wartość bezwzględna naprężenia jest równa 

𝑝 = √𝜎 + 𝜏 , 

 

  (3.5) 

gdzie 𝜎 i 𝜏 to wartości algebraiczne naprężenia normalnego i stycznego. 

Przemieszczenia 𝒒 dowolnego punktu ciała rozumie się jako wektor, którego początkiem jest 

ten punkt przed odkształceniem ciała, a końcem punkt znajdujący się w nowym położeniu po 

odkształceniu.  

Liniowe odkształcenie względne  określa się jako granicę ilorazu Δ𝑙/𝑙 , gdy 𝑙 dąży do zera 
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𝜀 = lim
௟→଴

Δ𝑙

l
 ,   (3.6) 

 

gdzie Δ𝑙 = 𝑙ᇱ − 𝑙, natomiast 𝑙ᇱ jest długością po odkształceniu.   

 

3.5. Założenia wytrzymałości materiałów 

 

Ważnym aspektem omawianego tematu jest przyjęcie dla rozpatrywanego materiału 

związków między naprężeniami i odkształceniami. Są to równania konstytutywne. Przykładem 

takich związków, dla materiałów liniowo-sprężystych, jest prawo Hooke’a.  

W celu określenia podstawowych związków pomiędzy stanem naprężenia i stanem 

odkształcenia, w przypadku materiału o liniowych właściwościach sprężystych, można 

posłużyć się przykładem rozciąganego pręta prostego o stałym przekroju.  

Rozpatrywane zagadnienie można scharakteryzować za pomocą warunków równowagi (jeżeli 

na nieważki pręt prosty o stałym przekroju działa układ sił lub jedna siła 𝑷, która w każdym 

punkcie przekroju wywołuje siłę rozciągającą 𝑵 = 𝑷), warunków geometrycznych (określa się 

wydłużenie względne, wydłużenie całego pręta) i związków fizycznych (prawo Hooke’a).  

Podczas rozpatrywania zagadnień statyki przyjmuje się zwykle, że: 

 Siły przyłożone do konstrukcji wzrastają od zera do swoich końcowych wartości  w sposób 

ciągły i powolny. 

 Działania poszczególnych obciążeń na dany układ sprężysty są od siebie niezależne                            

i w związku z tym wywołane przez nie siły wewnętrzne i odkształcenia można do siebie 

dodawać (zasada superpozycji). 

 W warunkach małych odkształceń i przemieszczeń wartości ich są proporcjonalne do 

obciążeń (układy liniowo-sprężyste). 

 Obowiązuje zasada zesztywnienia.  

 Odkształcenia konstrukcji są proporcjonalne do obciążeń i znikają po ich usunięciu. 

 Poprzeczne przekroje prętów płaskie przed odkształceniem pozostają płaskie po 

odkształceniu (hipoteza Bernoulliego).  

 Sposób przyłożenia odciążenia ma wpływ na rozkład naprężeń tylko w niewielkim 

obszarze.  
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3.6. Badania doświadczalne parametrów wytrzymałościowych materiałów 

 

Materiałem reprezentatywny, w oparciu o który omówiono badania doświadczalne jest 

stal. W badaniach statystycznych stawia się hipotezę dotyczącą kształtu funkcji rozkładu,                        

a następnie dokonuje się estymacji jego parametrów. W celu weryfikacji poczynionych założeń 

wykorzystuje się test zgodności założonej hipotetycznie funkcji rozkładu statystycznego               

z danymi statystycznymi. Do opisu losowego charakteru cech materiałowych stosuje się 

rozkład logarytmiczno-normalny, Gumbela lub, w przypadku małych populacji, rozkład 

Gaussa. Nominalna granica plastyczności 𝑓௬ oznacza wartość minimalną (w sensie 

probabilistycznym) w odpowiednim przedziale grubości t  badanego elementu. Badania 

rozkładu granicy plastyczności i wytrzymałości polskiej stali zostały opublikowane między 

innymi w pracy 10 i wykorzystane w pracy11; zgodnie z rysunkiem 12 przedstawione rozkłady 

te są niesymetryczne. 

 

 

Rys. 12. Rozkłady granicy plastyczności i wytrzymałości doraźnej 9 
 
 

Dla niesymetrycznego rozkładu Gumbela gęstość prawdopodobieństwa ma postać  

  ,
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epyfk
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
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



 











 
  (3.7) 

                                                           
10 Mendera Z.: Zagadnienia stanów granicznych konstrukcji stalowych. Zeszyty Naukowe Politechniki 
Krakowskiej, Kraków 1969;7(33). 
11 Biegus A.: Probabilistyczna Analiza Konstrukcji Stalowych. PWN, Warszawa 1996. 
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gdzie parametrami rozkładu są: 𝑝 - wartość modalna granicy plastyczności stali oraz                   

𝑘 − współczynnik dyspersji granicy plastyczności stali. 

Wartość średnia i odchylenie standardowe granicy plastyczności wyrażone są jako   

,
k

,
p

y
fE

5770




  (3.8) 

 

.
k

,
f y

2821
  (3.9) 

 

Na rysunku 13 został przedstawiony rozkład Gumbela dla granicy plastyczności stali, gdzie 

określono przedział górnej 𝑓௬௚ i dolnej 𝑓௬ௗ granicy plastyczności, dla 2,5% ryzyka wystąpienia 

materiału słabszego, gdzie 95% wartości 𝑓௬ 𝜖൫𝑓௬௚, 𝑓௬ௗ൯ oraz  

,
k

,
pygf

31
  (3.10) 

.
7,3

k
p

yd
f   

(3.11) 

 
Rys. 13. Rozkład Gumbela dla granicy plastyczności stali9 

 

Badania parametrów wytrzymałościowych metali przeprowadza się powszechnie za 

pomocą statycznej próby rozciągania. Istotnym składnikiem decydującym o właściwościach 

wytrzymałościowych i technologicznych stali jest zawartość węgla. Na rysunku 14 

przedstawiono poglądowo wpływ zawartości węgla na właściwości wytrzymałościowe stali 
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niestopowej, jak granica plastyczności 𝑓௬, wytrzymałość na rozciąganie 𝑓௨, twardość 𝐻𝐵, 

wydłużenie całkowite próbki 𝐴ହ oraz przewężenie 𝑍. Węgiel w stalach niestopowych zwiększa 

wytrzymałość stali na rozciąganie i jej twardość, natomiast pogarsza właściwości plastyczne. 

Losowy charakter parametrów wytrzymałościowych, takich jak granica plastyczności i moduł 

sprężystości jest między innymi wynikiem imperfekcji strukturalnych materiału, czyli 

niejednorodnego rozkładu właściwości mechanicznych w obszarze przekroju poprzecznego 

elementu oraz na długości wyrobu hutniczego. Właściwości materiału zależą od składu 

chemicznego oraz mikrostruktury w stanie pierwotnym i przerobionym. 

Parametry wytrzymałościowe elementów walcowanych są związane z grubością 

ścianek tych elementów. Im grubszy wyrób hutniczy, tym większa jest niejednorodność 

struktury w kierunku grubości, gdyż ze wzrostem grubości maleje stopień zgniotu ziarn                         

w środku wyrobu. Mniejsze zróżnicowanie granicy plastyczności stali występuje w wyrobach 

walcowniczych o cieńszych ściankach. Podobnie jak granica plastyczności, czy granica 

wytrzymałości, również moduł sprężystości podłużnej cechuje się rozrzutem losowym 

zależnym od grubości wyrobu.  

W większości badania wytrzymałościowe stali wykonywane są na próbkach, które nie 

są obarczone wstępnymi imperfekcjami technologicznymi, wynikającymi z obróbki 

mechanicznej, czy też spawania. W przypadku obróbki mechanicznej mamy do czynienia             

z przecinaniem i ukosowaniem krawędzi elementów. W przypadku przecinania mechanicznego 

następuje zdeformowanie przecinanego brzegu oraz zmiany strukturalne w części przecinanej; 

inną formą przecinania jest cięcie tlenem. Wpływ cięcia tlenem na materiał przecinany ujawnia 

się poprzez nagrzewanie brzegów, co powoduje zmiany strukturalne i w konsekwencji 

podhartowanie materiału. 
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Rys. 14. Ilustracja wpływu zawartości węgla na właściwości mechaniczne stali węglowych12  
 

Zmiana ta może wywoływać rysy lub pęknięcia na brzegach i dalej rozprzestrzeniać się                          

w materiale, dlatego cięcie tlenem musi być uzależnione do gatunku stali, a tym samym od 

zawartości węgla, aby ograniczyć to zjawisko. Zróżnicowanie właściwości mechanicznych ma 

miejsce również w przypadku kształtowania połączeń spawanych. W wyniku spawania 

powstają zmiany strukturalne wokół spoiny powodujące zmiany strukturalne złącza, a także 

naprężenia oraz deformacje spawalnicze. Termiczny proces spawania obejmujący okresy 

nagrzewania i stygnięcia stanowi nieustabilizowany proces termiczny, gdzie pomiędzy 

stopiwem i materiałem rodzimym powstaje w procesie spawania strefa wpływu ciepła. Jest ona 

zróżnicowana pod względem struktury na skutek cyklu cieplnego spawania. Wraz ze zmianami 

struktury występują zmiany granicy plastyczności, wytrzymałości, twardości i modułu 

sprężystości. W wyniku spawania powstają dodatkowe naprężenia spawalnicze, które są tylko 

częściowo zmniejszane na skutek obróbki cieplnej; jednak z powodu dużych wymiarów oraz 

znacznego ciężaru elementów czynność ta bywa pomijana. Wadliwość złączy spawanych 

można podzielić na szereg grup, z których należy wymienić: pęknięcia, pustki (przestrzeń                    

                                                           
12 Gosowski. B., Kubica E.: Badania Laboratoryjne z Konstrukcji Metalowych. Oficyna Wydawnicza Politechniki 
Wrocławskiej 2001. 
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w spoinie wypełniona gazem), wtrącenia stałe (obce ciała), przyklejenia i braki przetopu, 

niezgodności spawalnicze kształtu.  

 

3.7. Warunek wytrzymałości  

W zależności od występujących sił wewnętrznych w przekroju poprzecznym pręta, 

wyznacza się poszczególne wartości naprężenia. Mogą być to następujące przypadki napężenia: 

a) naprężenia ściskające lub rozciągające – wywołane siła osiowa (normalna) 𝑵; 

b) zginające i ścinające – w przekroju występuje mement zginający 𝑴𝒈 i siła tnąca 𝑻; 

c) skręcające – w przekroju występuje wyłącznie mement zginający 𝑴𝒔. 

 

3.7.1. Ściskanie lub rozciąganie  

Naprężenia przy ściskaniu lub rozciąganiu wyznacza się wg wzoru 

σ௜ =
𝑁௜

𝐴௜
 , 

 

  (3.12) 

gdzie  

gdzie 𝑁௜ – siła normalna (ściskająca lub rozciągająca); 𝐴 – pole przekroju pręta. Warunek 

wytrzymałości polega na sprawdzeniu ekstremalnych wartości naprężeń w danym przekroju i 

porównaniu z wartościami dopuszczalnymi σௗ௢௣ z przyjętym model materiału   

 

𝜎 ≤ σௗ௢௣. 

 

  (3.13) 

 

3.7.2. Zginanie i ścinanie 

Zginanie i ścinanie zostanie przedstawione na przykładzie belki prostej obciążonej 

równomiernie obciążeniem 𝑞 (Rys. 15). Belka ma przekrój prostokątny o wymiarach 𝑏 i ℎ. 
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Oprócz schematu statycznego belki przedstawiono wykresy sił wewnętrznych tj. sił 

porzecznych 𝑇  oraz momentu zginającego 𝑀.  

Element poddany działaniu momentu zginającego ulega jednoczesnemu skróceniu                             

i wydłużeniu w poszczególnych warstwach przekroju. Wykres momentu zginającego został 

narysowany po stronie rozciąganej, to w warstwie górnej tj. powyżej osi 𝑦 następuje ściskanie, 

a poniżej tej osi rozciąganie, natomiast naprężenia na osi 𝑦 maja wartość równo zero. Oś 𝑦 

możemy zatem nazwać osią obojętną.  

 

 

 

Rys. 15. Schemat statyczny belki, rozkład sił wewnętrznych oraz przekrój                  
poprzeczny 𝛼 − 𝛼 

 

W celu skorzystania z wzorów na naprężenia przy zginaniu lub ścinaniu należy określić 

niezbędne charakterystyki geometryczne przekroju. Podstawowe charakterystyki 

geometryczne wykorzystywane wzorach wytrzymałościowych przy  zginaniu i ścinaniu są 

następujące2: 
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- momenty statyczne figury płaskiej jako momenty powierzchniowe pierwszego rzędu 

względem odpowiednich osi układu współrzędnych tj. 𝑆௬ i 𝑆௭; 

- momenty bezwładności figury płaskiej jako momenty powierzchniowe drugiego rzędu 

względem odpowiednich osi układu współrzędnych tj. 𝐽௬ i  𝐽௭; 

W przypadku przekroju prostokątnego momenty bezwładności przekroju względem osi układu 

współrzędnych można zapisać następująco 

𝐽௬ =
𝑏 ∙ ℎଷ

12
 ,   (3.14) 

𝐽௭ =
ℎ ∙ 𝑏ଷ

12
 . 

 

  (3.15) 

Dla przypadku zginania, w którym występuje jedna składowa momentu zginającego (np. 𝑀௬) 

naprężenia normalne określa się jako  

σ௫ =
𝑀௬

𝐽௬
∙ 𝑧 , 

 

  (3.16) 

gdzie 𝑀௬ – moment zginający; 𝐽௬ – moment bezwładności przekroju względem osi 𝑦;                       

𝑧 – odległość rozpatrywanego punktu przekroju do osi obojętnej.   

 

Naprężenia styczne od siły poprzecznej w kierunku osi 𝑦 i 𝑧 określa się odpowiednio 

τ௫௬ =
𝑇௬ ∙ 𝑆௭

ഥ

𝐽௭ ∙ 𝑏(𝑦)
 , τ௫௭ =

𝑇௭ ∙ 𝑆௬
തതത

𝐽௬ ∙ 𝑏(𝑧)
 , 

  

  (3.17) 

gdzie 𝑇௬ 𝑖 𝑇௭ – siły poprzeczne w kierunku osi 𝑦  i 𝑧; 𝑆௬
തതത  i  𝑆௭

ഥ   – bezwzględna wartość 

momentów statycznych względem osi 𝑦  i 𝑧; 𝑏(𝑦) 𝑖 𝑏(𝑧)  – szerokość przekroju                                    

w rozpatrywanym punkcie. 

Dla przypadku zginania ukośnego, w którym występują dwie składowe momentu zginającego 

(𝑀௬ i 𝑀௭) naprężenia normalne określa się jako  
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σ௫ =
𝑀௬

𝐽௬
∙ 𝑧 −

𝑀௭

𝐽௭
∙ 𝑦 , 

 

  (3.18) 

gdzie 𝑀௬ – moment zginający; 𝐽௬ – moment bezwładności przekroju względem osi 𝑦;                        

z – odległość rozpatrywanego punktu przekroju do osi obojętnej.   

Warunek wytrzymałości polega na sprawdzeniu ekstremalnych wartości naprężeń                              

i porównanie z naprężeniami dopuszczalnymi  

σ௫ ≤ σௗ௢௣ ,   (3.19) 

𝜏 ≤ τௗ௢௣ . 

 

  (3.20) 

3.7.3. Skręcanie 

Zagadnienia skręcania należy rozpatrywać w zależności od przekroju. Rozróżnia się 

czyste skręcanie prętów o przekrojach kolistych i czyste skręcanie prętów o przekrojach 

niekolistych. Warunek wytrzymałości jest następujący 

𝜏௢ ≤ τௗ௢௣ . 

 

  (3.21) 

gdzie 𝜏௢ – naprężenia styczne przy skręcaniu. 

 

Przykład nr 3.1 

 

Dany jest nieważki pręt, obciążony siłami działającymi wzdłuż jego osi zgodnie z rysunkiem 

16. Sprawdzić warunek wytrzymałości oraz całkowite wydłużenie pręta, mając dane naprężenie 

dopuszczalne 𝜎ௗ௢௣ =
ସ௉

஺
 i długość pręta 𝑙. Przekrój poprzeczny pręta jest zmienny skokowo i 

wynosi 𝐴஺஼ = 2𝐴,  𝐴஼ா = 𝐴, moduł sprężystości materiału 𝐸. 
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Rys. 16. Schemat statyczny pręta (a); Wykresy naprężeń od poszczególnych sił osiowych (b); Wykres 

naprężeń dla sumarycznych (c) 
 

Zakłada się, że ekstremalne naprężenia normalne nie przekroczą naprężeń równych granicy 

proporcjonalności. Wówczas całkowite wydłużenie określone jest wzorem 

∆𝑙 = ෎
𝑁௜ ∙ 𝑙௜

𝐸௜ ∙ 𝐴௜

௡

௜ୀଵ

   . 

Naprężenia normalne w przekrojach prostopadłych do osi pręta określone są wzorem  
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σ௜ =
𝑁௜

𝐴௜
  , 

 

gdzie 𝑁௜ – siła podłużna na danym odcinku, 𝑙௜ oraz 𝐴௜ – długość i pole powierzchni przekroju 

poprzecznego tego odcinka, 𝐸௜ - moduł sprężystości podłużnej. 

Ponieważ element jest wykonany z materiału jednorodnego dla każdego odcinka pręta              

𝐸௜ = 𝐸 . 

Wykorzystuje się wykres sił podłużnych od wszystkich obciążeń, a całkowite wydłużenie 

wynosi 

 

∆𝑙 =
𝑁ఈ

஺஻ ∙ 𝑙஺஻

𝐸 ∙ 𝐴஺஻
+

𝑁ఈ
஻஼ ∙ 𝑙஻஼

𝐸 ∙ 𝐴஻஼
+

𝑁ఈ
஼஽ ∙ 𝑙஼஽

𝐸 ∙ 𝐴஼஽
+

𝑁ఈ
஽ா ∙ 𝑙஽ா

𝐸 ∙ 𝐴஽ா
  , 

 

 

∆𝑙 =
4𝑃 ∙

1
2

𝑙

𝐸 ∙ 2𝐴
+

−𝑃 ∙
1
2

𝑙

𝐸 ∙ 2𝐴
+

−𝑃 ∙
3
4

𝑙

𝐸 ∙ 𝐴
+

𝑃 ∙
1
4

𝑙

𝐸 ∙ 𝐴
  , 

 

 

∆𝑙 =
1

4
∙

𝑃 ∙ 𝑙

𝐸 ∙ 𝐴
 . 

 

Ekstremalne (minimalne) naprężenia normalne wywołane siłą ściskającą wystąpią na odcinku 

𝐶𝐷 i wynoszą  

 

σ௠௜௡ = σ஼஽ =
𝑁஼஽

𝐴஼஽
=

−𝑃

𝐴
  , 

 

natomiast ekstremalne naprężenia wywołane siłą rozciągającą wystąpią na odcinkach 𝐴𝐵 i 𝐷𝐸 

σ஺஻ =
𝑁஺஻

𝐴஺஻
=

4𝑃

2𝐴
=

2𝑃

𝐴
 , σ஽ா =

𝑁஽ா

𝐴஽ா
=

𝑃

𝐴
 , 

 

gdzie maksymalna ich wartość występuje na odcinku 𝐴𝐵 tj. σ௠௔௫ = σ஺஻. Warunek 

wytrzymałości ma postać  
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σ௠௔௫ ≤ 𝜎ௗ௢௣ , 

zatem warunek ten jest spełniony ponieważ  

 

2𝑃

𝐴
<

4𝑃

𝐴
 . 

Przy naprężeniach osiowych (ściskających lub rozciągających) ich wartości są stałe w całym 

przekroju poprzecznym, a ich kierunek jest równoległy do osi sił podłużnych  𝑁௜ . Jeżeli na pręt 

działają wyłącznie siły podłużne jest to jednoosiowy stan naprężenia. Elementarny wycinek 

pręta ograniczony krawędziami prostopadłymi i równoległymi do jego osi x podlega wyłącznie 

napreżeniom mającym kierunek tej osi. 

 
Rys. 17. Naprężenia w elementarnego wycinka pręta  

 

Koniec przykładu. 

 

 

Przykład nr 3.2 

 

Dana jest belka obciążona obciążeniem skupionym działającym w płaszczyźnie xz zgodnie             

z rysunkiem 18. Belka posiada przegub w punkcie C. Przekrój belki jest prostokątny o 

wymiarach b= 50 mm i h= 120 mm zgodnie z rysunkiem 19. Wyznaczyć wartość naprężenia 

stycznego i naprężenia normalnego przy zginaniu w poszczególnych punktach przekroju, a 

także sprawdzić warunek wytrzymałości przy zginaniu. Przyjąć następujące dane: długość pręta 

𝑙 = 1,5 𝑚, obciążenie 𝑃 = 9 𝑘𝑁, σௗ௢௣ = 100
ே

௠௠మ
.  
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Rys. 18. Schemat statyczny belki z przegubem w punkcie C 

 

 
Rys. 19. Przekrój poprzeczny belki 

 

Reakcje podpór 

W celu rozwiązania zadania należy w pierwszej kolejności wyznaczyć wartości reakcji 

podporowych z równań równowagi jako 

1) ෍ 𝑃௜௫

௡

௜ୀଵ

= 0, 𝐻஺ = 0, 

2) ෍ 𝑃௜௭

௡

௜ୀଵ

= 0, 𝑅஺ + 𝑅஻ − 𝑃 = 0, 

3) ෍ 𝑀௜஺

௡

௜ୀଵ

= 0, −𝑅஻ ∙ 2𝑙 + 𝑃 ∙
4

3
𝑙 + 𝑀஺ = 0. 

Z uwagi na występowanie przegubu w punkcie C, możliwe jest zapisanie czwartego warunku 

ponieważ moment w przegubie jest równy zero, stąd  



 

162 
 

4)𝑀஼ = 0, −𝑅஻ ∙ 𝑙 + 𝑃 ∙
1

3
𝑙 = 0. 

Czerty składowe podpór wynoszą  

𝑅஻ =
1

3
𝑃, 𝑀஺ = −

2

3
𝑃𝑙, 𝑅஺ =

2

3
𝑃,  

Po podstawieniu danych liczbowych otrzymuje się  

𝑅஻ = 3 𝑘𝑁, 𝑀஺ = −9 𝑘𝑁𝑚, 𝑅஺ = 6 𝑘𝑁.  

 

Siły przekrojowe 

Siły wewnętrzne tj. siły tnące jak i momenty zginające zostały przedstawione na poniższych 

wykresach. 

 
Rys. 20. Wykresy sił wewnętrznych belki – odpowiednio siły tnące 𝑇; momenty zginające 𝑀 

  

Ekstremalna wartości siły tnącej wystąpi na odcinku AD i wynosi 
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𝑇௭,௠௔௫ =
2

3
𝑃 = 6 𝑘𝑁. 

Ekstremalna wartości momentu zginającego wystąpi w punkcie A, natomiast wartość wynosi  

𝑀௬,௠௔௫ =
2

3
𝑃𝑙 = 9 𝑘𝑁𝑚. 

 

 
Rys. 21. Wykresy naprężeń normalnych 𝜎௫ i stycznych 𝜏௫௭

 

 

Moment bezwładności przekroju wyznacza się jako 

 

𝐽௬ =
𝑏 ∙ ℎଷ

12
=

50𝑚𝑚 ∙ (120𝑚𝑚)ଷ

12
= 7200000 𝑚𝑚ସ. 

W celu wyznaczenia naprężenia stycznego należy między innymi określić wartość 

bezwzględnych momentów statycznych względem osi 𝑦  

𝑆௬
ଵതതത = 𝑆௬

ହതതത = 0, 

 

𝑆௬
ଶതതത = 𝑆௬

ସതതത = 50𝑚𝑚 ∙ 30 𝑚𝑚 ∙ 45𝑚𝑚 = 67500 𝑚𝑚ଷ, 

 

𝑆௬
ଷതതത = 50𝑚𝑚 ∙ 60 𝑚𝑚 ∙ 30𝑚𝑚 = 90000 𝑚𝑚ଷ. 
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Szerokość przekroju jest stała i wynosi 𝑏(𝑧) = 50 𝑚𝑚. 

Wartości naprężenia stycznego w poszczególnych punktach przekroju wyznaczono ze wzoru 

(17), a ekstremalna wartość naprężenia stycznego wystąpi w punkcie 3 tj. 

 

τ௫௭
ଵ =

𝑇௭,௠௔௫ ∙ 𝑆௬
ଵതതത

𝐽௬ ∙ 𝑏(𝑧)
=

6000 𝑁 ∙ 0

7200000 𝑚𝑚ସ ∙ 50 𝑚𝑚
= 0, 

 

τ௫௭
ଶ =

𝑇௭,௠௔௫ ∙ 𝑆௬
ଶതതത

𝐽௬ ∙ 𝑏(𝑧)
=

6000 𝑁 ∙ 67500 𝑚𝑚ଷ

7200000 𝑚𝑚ସ ∙ 50 𝑚𝑚
= 1,1

𝑁

𝑚𝑚ଶ
, 

 

τ௫௭
ଷ =

𝑇௭,௠௔௫ ∙ 𝑆௬
ଷതതത

𝐽௬ ∙ 𝑏(𝑧)
=

6000 𝑁 ∙ 90000 𝑚𝑚ଷ

7200000 𝑚𝑚ସ ∙ 50 𝑚𝑚
= 1,5

𝑁

𝑚𝑚ଶ
, 

 

τ௫௭
ସ = τ௫௭

ଶ . 

 

τ௫௭
ହ = τ௫௭

ଵ . 

 

Wartości naprężenia normalnego w poszczególnych punktach wynoszą   

σ௫
ଵ =

𝑀௬,௠௔௫

𝐽௬
∙ 𝑧ଵ =

9000000 𝑁𝑚𝑚

7200000 𝑚𝑚ସ
∙ (−60𝑚𝑚) = −75 

𝑁

𝑚𝑚ଶ
 , 

σ௫
ଶ =

𝑀௬,௠௔௫

𝐽௬
∙ 𝑧ଶ =

9000000 𝑁𝑚𝑚

7200000 𝑚𝑚ସ
∙ (−30𝑚𝑚) = −37,5 

𝑁

𝑚𝑚ଶ
 , 

σ௫
ଷ =

𝑀௬,௠௔௫

𝐽௬
∙ 𝑧ଷ =

9000000 𝑁𝑚𝑚

7200000 𝑚𝑚ସ
∙ 0 = 0, 

σ௫
ସ =

𝑀௬,௠௔௫

𝐽௬
∙ 𝑧ସ =

9000000 𝑁𝑚𝑚

7200000 𝑚𝑚ସ
∙ 30𝑚𝑚 = 37,5 

𝑁

𝑚𝑚ଶ
 , 

σ௫
ହ =

𝑀௬,௠௔௫

𝐽௬
∙ 𝑧ହ =

9000000 𝑁𝑚𝑚

7200000 𝑚𝑚ସ
∙ 60𝑚𝑚 = 75 

𝑁

𝑚𝑚ଶ
 . 
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Ekstremalne naprężenia normalne wystąpią w punktach najbardziej oddalonych od osi 

obojętnej, czyli dla współrzędnej 𝑧 = |60 𝑚𝑚|, natomiast na osi obojętnej tj. w punkcie                

3 wartość naprężenia równa jest zero. 

Warunek wytrzymałości na zginanie ma postać σ௫ ≤ σௗ௢௣ i został spełniony ponieważ  

 

75 
𝑁

𝑚𝑚ଶ
< 100

𝑁

𝑚𝑚ଶ
 . 

 

Koniec przykładu. 

 

3.8.  Warunek sztywności 

 

Weryfikacja warunku sztywności ma na celu sprawdzenie wielkości przemieszczeń lub 

odkształceń i porównanie z wartościami granicznymi. Obliczenia przeprowadza się metodą 

analityczną (rozwiązania ścisłe) lub metodami numerycznymi (rozwiązania przybliżone).            

W przypadku przemieszczeń konstrukcji prętowych i rozwiązania analitycznego obliczenia 

sprowadza się do rozwiązania równania  

𝐸𝐽
𝑑ଶ𝑧

𝑑𝑥
= ∓𝑀௚ . 

 

  (3.22) 

Znak minus lub plus zależy od ustalenia znaku momentu zginającego 𝑀௚ oraz od orientacji osi 

układu współrzędnych. Jeżeli wymiary pręta na wzdłuż jego długości będą niezmienne, to 

sztywność zginania będzie stała 𝐸𝐽 = 𝑐𝑜𝑛𝑠𝑡 i znalezienie ekstremalnych przemieszczeń pręta 

uzyska się dzięki dwukrotnemu scałkowaniu równia (3.22). W wyniku  całkowania otrzymuje 

się 

𝑧 =
1

𝐸𝐽
൤න ൬න൫−𝑀௚൯ 𝑑𝑥 +൰ + 𝐶𝑥 + 𝐷൨ , 

 

  (3.23) 

gdzie  𝐶 𝑖 𝐷  - stałe całkowania, które wyznacza się uwzględniając warunki brzegowe.  

Warunek sztywności przyjmuje postać 
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𝑧௠௔௫ < 𝑧ௗ௢௣ , 

 

  (3.24) 

gdzie dopuszczalna wartość przemieszczeń 𝑧ௗ௢௣ jest ustalana w oparciu o warunki prawidłowej 

eksploatacji rozpatrywanej konstrukcji oraz elementów z nią związanych. 

 

Przykład nr 3.3 

 

Sprawdzić warunek sztywność belek jednoprzęsłowych swobodnie podpartych dla dwóch 

schematów odciążenia (Rys. 22 i Rys. 23), gdzie przemieszczenie dopuszczalne wynosi 𝑢ௗ௢௣ =

10 𝑚𝑚 . Dane są: długość 𝑙 = 1400 𝑚𝑚 , moduł sprężystości podłużnej         𝐸 =

210000 
ே

௠௠మ
, moment bezwładności przekroju 𝐽௬ = 1800000 𝑚𝑚ସ, siła skupiona         𝑃 =

60000 𝑁, obciążenie równomiernie rozłożone 𝑞 = 100 𝑁/𝑚𝑚 . 

 

 

Schemat A 

 
Rys. 22. Schemat statyczny belki obciążonej obciążeniem równomiernie rozłożonym 

 

 

Funkcje przemieszczeń wyznacza się z całkowania równania różniczkowego osi ugiętej np. 

metodą Clebscha2. Po uwzględnieniu warunków brzegowych uzyskuje się równania  

przemieszczeń belki w funkcji współrzędnej 𝑥. 

 

Dla 0 ≤ 𝑥 ≤ 𝑎 
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𝑧(𝑥) =
𝑃 ∙ 𝑏 ∙ 𝑙 ∙ 𝑥

6 ∙ 𝐸 ∙ 𝐽௬
ቆ1 −

𝑥ଶ

𝑙ଶ
−

𝑏ଶ

𝑙ଶ
ቇ , 

 

𝑧
௫ୀ

ଵ
ଶ

=
𝑃 ∙ 𝑏 ∙ 𝑙ଶ

12 ∙ 𝐸 ∙ 𝐽௬
ቆ

3

4
−

𝑏ଶ

𝑙ଶ
ቇ  , 

 

𝑎 > 𝑏 . 

Dla 𝑎 ≤ 𝑥 ≤ 𝑙 

 

𝑧(𝑥) =
𝑃 ∙ 𝑏 ∙ 𝑙 ∙ 𝑥

6 ∙ 𝐸 ∙ 𝐽௬
ቆ1 −

𝑥ଶ

𝑙ଶ
−

𝑏ଶ

𝑙ଶ
+

(𝑥 − 𝑎)ଷ

𝑙𝑏𝑥
ቇ , 

 

𝑧
௫ୀ

ଵ
ଶ

=
𝑃 ∙ 𝑏 ∙ 𝑙ଶ

12 ∙ 𝐸 ∙ 𝐽௬
ቆ

3

4
−

𝑏ଶ

𝑙ଶ
+

1

4
∙

(𝑏 − 𝑎)ଷ

𝑏𝑙ଶ
ቇ  , 

 

𝑎 < 𝑏 . 

 
Maksymalna wartość ugięcia wystąpi dla 𝑥 = 𝑎 = 𝑏 =

௟

ଶ
  

 

𝑧௠௔௫ =
𝑃 ∙ 𝑙ଷ

48 ∙ 𝐸 ∙ 𝐽௬
=

60000 𝑁 ∙ (1400 𝑚𝑚)ଷ

48 ∙ 210000 
𝑁

𝑚𝑚ଶ ∙ 1800000 𝑚𝑚ସ
 , 

 

𝑧௠௔௫ = 9 𝑚𝑚 . 

 

Warunek sztywności jest spełniony ponieważ  

𝑧௠௔௫ < 𝑧ௗ௢௣ , 

 

9 𝑚𝑚 < 10 𝑚𝑚. 

Schemat rozwiązania  B 
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Rys. 23. Schemat statyczny belki obciążonej siłą skupioną 

 
 

𝑧(𝑥) =
𝑞 ∙ 𝑙ଷ ∙ 𝑥

12 ∙ 𝐸 ∙ 𝐽௬
ቆ

1

2
−

𝑥ଶ

𝑙ଶ
+

1

2
∙

𝑥ଷ

𝑙ଷ
ቇ  , 

 

 

𝑧௠௔௫ = 𝑧
௫ୀ

ଵ
ଶ

=
5

384

𝑞 ∙ 𝑙ସ

𝐸 ∙ 𝐽௬
  , 

 

 

𝑧௠௔௫ =
5

384
∙

100
𝑁

𝑚𝑚
∙ (1400 𝑚𝑚)ସ

210000 
𝑁

𝑚𝑚ଶ ∙ 1800000 𝑚𝑚ସ
 = 13 𝑚𝑚 

 

Warunek sztywności nie jest spełniony ponieważ  

 

𝑧௠௔௫ > 𝑧ௗ௢௣ , 

 13 𝑚𝑚 > 10 𝑚𝑚. 

Koniec przykładu. 
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3.9. Warunek stateczności  

3.9.1. Wstęp do stateczności  

 

Za prekursora zagadnień stateczności w obszarze sprężystym uważa się Leonarda 

Eulera, który określił naprężenia krytyczne jako hiperboliczną funkcję smukłości; jego główne 

prace zostały opublikowane już w latach 1744-178013.  

W odniesieniu do złożonych ustrojów konstrukcyjnych współcześnie dominują numeryczne 

metody modelowania zjawiska wyboczenia. Wśród kilku najpopularniejszych metod 

obliczeniowych, znajdujących wykorzystanie w tzw. „solverach” programów komputerowych, 

należy wymienić przede wszystkim Metodę Elementów Skończonych (MES) i Metodę Różnic 

Skończonych przedstawioną w pracach14 15. 

Większość autorów oprogramowania komputerowego przy rozwiązywaniu zagadnień                    

z zakresu mechaniki skłania się do implementacji MES. Wraz z jej rozwojem stworzona 

pojawiła się oddzielna grupa zagadnień własnych rozwiązywanych przy pomocy tej metody             

w odniesieniu do zjawiska wyboczenia. Otrzymywane wektory i wartości własne prowadzące 

do określania obciążeń oraz sił krytycznych ustroju konstrukcyjnego znajdują potwierdzenie        

w powszechnych rozwiązaniach analitycznych, zamieszczonych między innymi w pracach S.P. 

Timoshenki, J.M. Gere16 i S.P. Timoshenki oraz S. Woinowskiego-Kriegera17. 

Zjawisko wyboczenia jest jedną z form utraty stateczności konstrukcji. Taki stan może 

nastąpić w przypadku, kiedy siła osiowa 𝑃 osiągnie pewną wartość krytyczną 𝑃௞௥. 

Niestateczność definiuje się na ogół jako proces, w którym niewielka zmiana przyczyny (a więc 

zmiana siły) powoduje dużą zmianę skutku (a więc ugięcia). Punkty krytyczne, czyli punkty na 

ścieżce równowagi odpowiadające stanom krytycznym konstrukcji zostały przedstawione na 

rysunku 24. Pierwotnymi punktami krytycznymi są dwa punkty, czyli punkt graniczny (G)               

i punkt bifurkacji (B). W punkcie granicznym może nastąpić przeskok konstrukcji do nowej 

konfiguracji równowagi, gdzie występują duże przyrosty przemieszczeń 𝑟(𝛼). W punkcie 

bifurkacji może wystąpić nowa konfiguracja stanu równowagi, inna niż w fazie początkowej. 

Tak więc utrata stateczności występuje bądź w punkcie bifurkacji, bądź w punkcie granicznym. 

W sensie ścisłym punkty bifurkacyjne dotyczą modeli idealnych. W układach rzeczywistych, 

                                                           
13 Euler L.: Sur La Force Des Colonnes. Men. De l'Acad., 13. Berlin 1757. 
14 Kleiber M.: Wprowadzenie do Metody Elementów Skończonych. PWN, Warszawa –Poznań 1986 
15 Pietrzak J., Rakowski G., Wrześniowski G.: Macierzowa Analiza Konstrukcji. PWN, Warszawa 1986. 
16 Timoshenko S.P., Gere J.M.: Teoria Stateczności Sprężystej. Arkady, Warszawa 1963. 
17 Timoshenko S.P., Woinowsky-Krieger S.: Teoria Płyt i Powłok. Arkady, Warszawa 1962. 
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na skutek zmiennych własności materiałowych, geometrii oraz obciążenia zewnętrznego, 

punkty bifurkacji równowagi zastępuje się przez punkty maksimum obciążenia9. 

Jeżeli smukłość elementu jest większa od wartości granicznej, a więc naprężenia w elemencie 

nie przekraczają granicy proporcjonalności, wówczas wartość krytyczną otrzymuje się                       

w obszarze sprężystym. Poniżej smukłości granicznej, naprężenia mają charakter niesprężysty.  

Analizą pozwalającą oszacować obciążenie krytyczne wyboczenia sprężystego w stadium 

przedbifurkacyjnym jest analiza wartości własnych układu. 

Dla prętów krępych, których długość jest niewielka w stosunku do wymiarów przekroju 

– siła krytyczna wywołuje naprężenia bliskie granicy plastyczności, więc sąsiednia postać 

giętna musi być rozpatrywana w zakresie niesprężystym, a więc wyboczenie jest niesprężyste. 

 

 
Rys. 24. Ścieżka równowagi konstrukcji  

 

3.9.2. Badania doświadczalne słupów ściskanych osiowo 

 

Istotną rolę w sprawdzeniu poprawności przeprowadzonych analiz numerycznych mają 

badania eksperymentalne na rzeczywistych modelach, które można podzielić zasadniczo na 

dwie grupy. Pierwsza grupa dotyczy analiz dla modeli, których smukłość jest większa od 

smukłości granicznej, wówczas eksperymenty te dotyczą wyboczenia w zakresie sprężystym 

materiału. Druga grupa to badania elementów w zakresie sprężysto-plastycznym lub 

plastycznym. Smukłość graniczna ma postać 
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λ௚௥ = 𝜋 ∙ ඨ
𝐸

𝑓ு
 , 

(3.25) 

gdzie 𝐸 - moduł sprężystości podłużnej, 𝑓ு - granica proporcjonalności. 

Doświadczalne wyznaczenie siły krytycznej wyboczenia giętnego w zakresie sprężystym [50] 

przeprowadza się kilkoma metodami, spośród których należy wymienić przede wszystkim 

metodę Southwella. Dla klasycznego pręta obustronnie przegubowego równanie linii ugięcia 

można zapisać w postaci  

𝑢(𝑧) =
𝑎 

𝑃௬௖௥

𝑃
− 1

∙ 𝑠𝑖𝑛
𝜋

𝑙
𝑧 , 

 

(3.26) 

gdzie 𝑎 to wartość wygięcia początkowego, 𝑧 - współrzędna opisująca położenie punktu na 

długości elementu, natomiast  𝑙 to jego długość. Na postawie równania otrzymuje się ugięcie w 

połowie długości pręta  2/lu  w postaci 

.a
PycrP 
  (3.27) 

Równanie (3.27) jest liniowe względem współrzędnych: P/  i  , dlatego można wyznaczyć 

prostą (rys. 25) o współczynniku kierunkowym   ycrPtg  . Podczas badań określa się 

dyskretną postać zależności  iPifi /  , a następnie aproksymuje otrzymane wyniki metodą 

regresji liniowej  

,
P

   (3.28) 

gdzie parametry   i można obliczyć przy pomocy metody najmniejszych kwadratów.  

 

 Rys. 25. Wykres zależności  Pf /  18  

                                                           
18 Gosowski. B., Kubica E.: Badania Laboratoryjne z Konstrukcji Metalowych. Oficyna Wydawnicza Politechniki 
Wrocławskiej 2001. 
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Aproksymacja ta umożliwia wyznaczenie wartości obciążenia krytycznego oraz krzywizny 

początkowej pręta z zależności  

,ycrP   .a  (3.29) 

Wyniki analiz numerycznych w większości są zgodne z wynikami znanych rozwiązań 

analitycznych i znajdują potwierdzenie w badań eksperymentalnych wyboczenia sprężystego.  

Inny charakter mają analizy w zakresie smukłości λ < 𝜆௚௥. Złożoność problemu uwidoczniła 

się już w kilku teoriach dotyczących wyboczenia niesprężystego, do których należy zaliczyć 

teorię naprężeń krytycznych Tetmajera-Jasińskiego, teorię Engessera-Karmana, Johnsona-

Ostenfelda i Engessera-Shanleya19. W zakresie krępych przekrojów istotną rolę odgrywają 

badania eksperymentalne dotyczące elementów w odpowiednich zakresach smukłości, 

wykonanych z konkretnych gatunków i odmian stali, a także posiadające określone losowe 

imperfekcje wstępne, jak np. naprężenia własne związane z wpływem zgrzewania                            

w przekrojach giętych na zimno. Na losowość zjawiska wyboczenia niesprężystego składa się 

zwykle szereg czynników, wśród których przede wszystkim należy wymienić smukłość 

elementu oraz przekrój poprzeczny, co w konsekwencji prowadzi do otrzymania określonej 

postaci wyboczenia. Powyższa złożoność zjawiska została omówiona między innymi w 

pracy20, gdzie analizowane były krępe słupy stalowe o przekrojach rurowych czworobocznych. 

Badania18 dotyczyły próby ściskania osiowych kształtowników stalowych giętych na zimno,              

a przyjętym schematem statycznym kształtowników był pręt obustronnie utwierdzony. Próbki 

o najmniejszej smukłości uległy wyboczeniu miejscowemu w pobliżu utwierdzenia, natomiast 

próbki o większych smukłościach uległy wyboczeniu giętnemu, któremu towarzyszy 

wyboczenie lokalne w połowie wysokości elementu oraz w pobliżu utwierdzenia (Rys. 26-27). 

 

                                                           
19 Schanley F.R.: Inelastic column theory. Journal of Aeronautical Science 1947;14: 261-267. 
20 Glinicka A.: Doświadczalna analiza wyboczenia niesprężystego kształtowników o przekrojach rurowych 
czworobocznych. Instytut Badawczy Dróg i Mostów, Kwartalnik Drogi i Mosty 2005;2:5-37. 
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Rys. 26. Wyboczenie lokalne kształtowników      

w pobliżu utwierdzenia18 

 

Rys. 27. Wyboczenie lokalne kształtowników    
w połowie rozpiętości18 

Zagadnienia stateczności badanych kształtowników nie można sprowadzić do jednej 

płaszczyzny, gdyż w badaniach stwierdzono przestrzenny stan przemieszczenia. W przypadku 

kształtowników o przekroju prostokątnym wszystkie próbki niezależnie od smukłości zostały 

zniszczone na skutek wyboczenia giętnego, natomiast przegub plastyczny wytworzył się                         

w połowie wysokości elementu. 

Na podstawie przeanalizowanych badań doświadczalnych18 dotyczących wyboczenia 

niesprężystego można stwierdzić, iż wyboczenie ma charakter losowy, może mieć formę 

wyboczenia lokalnego, globalnego wyboczenia giętnego z towarzyszącym mu wyboczeniem 

lokalnym lub wyboczenia giętnego. Zmiennymi losowymi są tu: smukłość prętowa, klasa                          

i odmiana stali oraz kształt przekroju poprzecznego. Parametry te wpływają na wartość siły 

krytycznej, postacie wyboczenia oraz wywołane skrócenia i przemieszczenia. W przypadku 

analizowanych rur obserwuje się najczęściej przeguby plastyczne tworzące się w połowie ich 

wysokości; wyjątek stanowią rury o bardzo małych smukłościach, gdzie przeguby mogą 

wystąpić w pobliżu utwierdzeń.  

 

3.9.3. Podstawowe zagadnienia teoretyczne stateczności sprężystej pręta 

 

Dany jest pręt o długości 𝑙 obustronnie przegubowy, którego schemat statyczny został 

przedstawiony na rysunku 28. Przekrój pręta jest prostokątny o wymiarach 𝑏 i ℎ. Pręt wykonany 

jest z materiału liniowo-sprężystego o module sprężystości podłużnej 𝐸. 
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Rys. 28. Schemat statyczny pręta ściskanego 

 

Siłę krytyczną powodująca wyboczenie ustroju konstrukcyjnego wyznacza się ze wzoru Eulera 

 

P௞௥ =
𝜋ଶ ∙ 𝐸 ∙ 𝐽௠௜௡

𝑙௪
ଶ

 ,  

 

  (3.30) 

gdzie 𝐽௠௜௡ – minimalny moment bezwładności przekroju względem osi 𝑦 oraz osi 𝑧, 

wyznaczany jako  

𝐽௠௜௡ = 𝑚𝑖𝑛൫𝐽௬, 𝐽௭൯, 

𝑙௪  – długość wyboczeniowa zależna od współczynnika długości wyboczeniowej μ. 

Współczynnik ten jest zależny od warunków podparcia (Rys. 29) i przyjmuje najczęściej 

następujące wartości: 

 w przypadku pręta obustronnie przegubowego μ = 1,0; 

 w przypadku pręta jednostronnie przegubowego i utwierdzonego na drugim końcu 

μ = 0,7; 

 w przypadku pręta obustronnie utwierdzonego μ = 0,5; 

 w przypadku pręta utwierdzonego na jednym końcu, a drugi koniec jest wolny 

(wspornik) μ = 2,0. 
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Rys. 29. Demonstracja przypadków wyboczenia Eulera na stanowisku laboratoryjnym 
Akademii Nauk Stosowanych w Koninie, prod. G.U.N.T. Gerätebau GmbH (od lewej: pręt 

obustronnie przegubowy; pręt jednostronnie przegubowy i utwierdzony na drugim końcu; pręt 
obustronnie utwierdzony; pręt utwierdzony na jednym końcu, a drugi koniec jest wolny) 

 

Długość wyboczeniowa określana jest wzorem 

 

𝑙௪ = μ ∙ 𝑙 . 

 
  (3.31) 

Istotnym parametrem geometrycznym pręta jest smukłość określana jako  

 

 

λ =
𝑙௪

𝑖௠௜௡
   , 

 

  (3.32) 

gdzie 𝑖௠௜௡ – minimalny promień bezwładności przekroju względem osi 𝑦 oraz osi 𝑧 

wyznaczany jako  

𝑖௠௜௡ = 𝑚𝑖𝑛൫𝑖௬, 𝑖௭൯, 

 

a wzory dla poszczególnych promieni bezwładności są następujące 
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𝑖௭ = ඨ
𝐽௭

𝐴
 ,  𝑖௬ = ඨ

𝐽௬

𝐴
. 

 

  (3.33) 

Wzór Eulera (3.30) ma zastosowanie dla prętów, których smukłość spełnia warunek  

 

λ > λ௚௥ , 

 

gdzie λ௚௥ – smukłość graniczna wg wzoru (3.25). 

 

Przykład nr 3.4 

 

Dany jest pręt stalowy o przekroju prostokątnym obciążony siła osiową  𝑃 = 320000 𝑁       

(Rys. 30). Wyznaczyć siłę krytyczną 𝑃௞௥, a następnie sprawdzić warunek stateczności 

przyjmując następujące dane: moduł sprężystości podłużnej 𝐸 = 210000 
ே

௠௠మ
, granica 

proporcjonalności 𝑓ு = 180 
ே

௠௠మ
, szerokość przekroju 𝑏 = 40 𝑚𝑚, wysokość przekroju       

ℎ = 90 𝑚𝑚, długość pręta 𝑙 = 1800 𝑚𝑚. Schemat podparcia w płaszczyźnie xz jest taki sam 

jak w płaszczyźnie xy. 

 

 
 

Rys. 30. Schemat statyczny pręta ściskanego 
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Ze wzglądu na schemat podparcia pręta współczynnik długości wyboczeniowej wynosi               

μ = 1,00, a długość wyboczeniowa jest równa 

 

𝑙௪ = μ ∙ 𝑙 = 1,0 ∙ 1800 𝑚𝑚 = 1800 m𝑚 . 

Pole przekroju wynosi 

𝐴 = b ∙ ℎ = 40𝑚𝑚 ∙ 90𝑚𝑚 = 3600 𝑚𝑚ଶ .  

Momenty bezwładności przekroju odpowiednio względem osi 𝑦 oraz osi 𝑧 wynoszą 

odpowiednio 

𝐽௬ =
𝑏 ∙ ℎଷ

12
=

40𝑚𝑚 ∙ (90𝑚𝑚)ଷ

12
= 2430000 𝑚𝑚ସ , 

 

𝐽௭ =
ℎ ∙ 𝑏ଷ

12
=

90𝑚𝑚 ∙ (40𝑚𝑚)ଷ

12
= 480000 𝑚𝑚ସ . 

 

Ponieważ 𝐽௠௜௡ = 𝐽௭ czyli 𝐽௭ < 𝐽௬, to wyboczenie pręta nastąpi w płaszczyźnie xy. Minimalny 

promień bezwładności przekroju pręta wynosi  

𝑖௠௜௡ = 𝑖௭ = ඨ
𝐽௭

𝐴
= ඨ

480000 𝑚𝑚ସ

3600 𝑚𝑚ଶ
 , 

 

 

𝑖௭ = 11,55 mm . 

 

Smukłość pręta wynosi  

 

λ =
𝑙௪

𝑖௭
=

1800 𝑚𝑚

11,55 𝑚𝑚
  , 

 

λ = 155,84 . 

Smukłość graniczna wynosi  
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λ௚௥ = 𝜋 ∙ ඨ
𝐸

𝑓ு
= 3,14 ∙ ඩ

210000 
𝑁

𝑚𝑚ଶ

180 
𝑁

𝑚𝑚ଶ

 , 

 

λ௚௥ = 107,3 . 

 

Dla λ > 𝜆௚௥ wyboczenie jest sprężyste, a siłę krytyczną wyznacza się z wzoru Eulera  

 

P௞௥ =
𝜋ଶ ∙ 𝐸 ∙ 𝐽௠௜௡

𝑙௪
ଶ

=
𝜋ଶ ∙ 210000 

𝑁
𝑚𝑚ଶ ∙ 480000 𝑚𝑚ସ

(1800 m𝑚)ଶ
 , 

P௞௥ = 307054 𝑁. 

 

Warunek stateczności jest spełniony ponieważ P < P௞௥ . 

 

Koniec przykładu. 

 

Przykład nr 3.5 

Stalowy pręt o przekroju kołowym utwierdzony jest na obu końcach w dwóch 

nieodkształcalnych ściankach (Rys. 31). Zakładając, że pręt ulega równomiernemu podgrzaniu, 

wyznaczyć wartość przyrostu temperatury ∆𝑡௞, przy której pręt utraci stateczność. Dane są: 

moduł sprężystości podłużnej 𝐸 = 210000 
ே

௠௠మ
, granica proporcjonalności                   𝑓ு =

200 
ே

௠௠మ
, współczynnik rozszerzalności cieplnej 𝛼௧ = 0,000012 ℃ିଵ, długość pręta    𝑙 =

300 c𝑚, średnica przekroju pręta 𝑑 = 5 c𝑚. 

 
Rys. 31. Schemat statyczny pręta   
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Z uwagi na sposób podparcia pręta współczynnik długości wyboczeniowej wynosi μ = 0,5. 

Długość wyboczeniowa równa jest  

 

𝑙௪ = μ ∙ 𝑙 = 0,5 ∙ 300 𝑐𝑚 = 150 c𝑚 . 

 

Smukłość graniczna wynosi  

 

λ௚௥ = 𝜋 ∙ ඨ
𝐸

𝑓ு
= 3,14 ∙ ඩ

210000 
𝑁

𝑚𝑚ଶ

200 
𝑁

𝑚𝑚ଶ

 , 

 

λ௚௥ = 101,8 . 

 

Moment  bezwładności przekroju pręta wynosi 

𝐽௭ = 𝐽௬ = 𝐽 =
𝜋 ∙ 𝑑ସ

64
=

3,14 ∙ (5𝑐𝑚)ସ

64
 , 

 

𝐽 = 30,7 𝑐𝑚ସ . 

 

Pole przekroju pręta wynosi 

𝐴 =
𝜋 ∙ 𝑑ଶ

4
=

3,14 ∙ (5𝑐𝑚)ଶ

4
 , 

 

𝐴 = 19,6 𝑐𝑚ଶ . 

 

Promień bezwładności przekroju pręta wynosi 

 

𝑖௭ = 𝑖௬ = 𝑖 = ඨ
𝐽

𝐴
= ඨ

30,7 𝑐𝑚ସ

19,6 𝑐𝑚ଶ
 , 

 

𝑖 = 1,25 𝑐𝑚 . 

 

Smukłość pręta wynosi  
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λ =
𝑙௪

𝑖
=

150 𝑐𝑚

1,25 𝑐𝑚
  , 

 

λ = 120 . 

 

Dla λ > 𝜆௚௥ wyboczenie jest sprężyste. 

Podłużna siła wewnętrzna N powstała na skutek podgrzania pręta, obliczana jest                

z warunku, że pręt nie może zmienić swej długości, dlatego całkowity przyrost długości 

pręta musi być równy zero, a więc  

∆𝑙 = ∆𝑙∆௧ + ∆𝑙ே = 0 , 

 

𝛼௧ ∙ ∆𝑡 ∙ 𝑙  +
𝑁 ∙ 𝑙

𝐸 ∙ 𝐴
= 0  , 

 

stąd  

𝑁 = 𝐸 ∙ 𝐴 ∙ 𝛼௧ ∙ ∆𝑡 . 

 

Utrata stateczności pręta nastąpi jeżeli 𝑁 = 𝑃௞௥, natomiast ∆𝑡 = ∆𝑡௞. Musi zatem 

zostać spełniony warunek  

  

𝜋ଶ ∙ 𝐸 ∙ 𝐽

𝑙௪
ଶ

= 𝐸 ∙ 𝐴 ∙ 𝛼௧ ∙ ∆𝑡 . 

 

Po przekształceniu powyższego równania otrzymuje się przyrost temperatury 

powodujący wyboczenie pręta, który wynosi 

 

∆𝑡௞ =
𝜋ଶ ∙ 𝐽

𝑙௪
ଶ ∙ 𝐴 ∙ 𝛼௧

=
𝜋ଶ

𝜆ଶ ∙ 𝛼௧
 , 

 

∆𝑡௞ =
3,14ଶ

120ଶ ∙ 0,000012 ℃ିଵ
  , 

 

∆𝑡௞ = 57,1 ℃ . 

 Koniec przykładu. 



 

181 
 

 

 
  3.10. Bibliografia 

1. 

 

2. 

3. 

Bibiak-Żochowski M. (red.): Wytrzymałość materiałów i konstrukcji. Tom I. Oficyna 

Politechniki Warszawskiej, Warszawa 2013. 

Bibiak-Żochowski M. (red.): Wytrzymałość materiałów i konstrukcji. Tom II. Oficyna 

Politechniki Warszawskiej, Warszawa 2013. 

Biegus A.: Badania losowej krzywej równowagi granicznej ściskanych blach fałdowych. 

Rozprawy Inżynierskie 1988;36:15-27. 

4. Biegus A.: Probabilistyczna Analiza Konstrukcji Stalowych. PWN, Warszawa 1996. 

5. Dyląg Z., Jakubowicz A., Orłoś Z.: Wytrzymałość materiałów. Tom 1. Wydawnictwo 

Naukowo – Techniczne, Warszawa 1999. 

6. Dyląg Z., Jakubowicz A., Orłoś Z.: Wytrzymałość materiałów. Tom 2. Wydawnictwo 

Naukowo – Techniczne, Warszawa 2012. 

7. Engesser F.: Üeber die Knickfestigkeit Gerader Stabe. Z. Architektur und Ingenieurwesen 

1889. 

8. Euler L.: Sur La Force Des Colonnes. Men. De l'Acad., 13. Berlin 1757. 

9. Glinicka A.: Wytrzymałość materiałów 1. Oficyna Politechniki Warszawskiej. Warszawa 

2011. 

10. Glinicka A.: Doświadczalna analiza wyboczenia niesprężystego kształtowników                         

o przekrojach rurowych czworobocznych. Instytut Badawczy Dróg i Mostów, Kwartalnik 

Drogi i Mosty 2005;2:5-37. 

11. 

 

12. 

Gosowski. B., Kubica E.: Badania Laboratoryjne z Konstrukcji Metalowych. Oficyna 

Wydawnicza Politechniki Wrocławskiej 2001. 

Grabowski J., Iwanczewska A.: Zbiór zadań z wytrzymałości materiałów. Wydawnictwa 

Politechniki Warszawskiej, Warszawa 1984. 

13. Kleiber M.: Wprowadzenie do Metody Elementów Skończonych. PWN, Warszawa –

Poznań 1986.  

14. Misiak J.: Mechanika ogólna. Tom I. Statyka i kinematyka. Wydawcznictwo Naukowo-

Techniczne, Warszawa 1998. 

 15. Mendera Z.: Zagadnienia stanów granicznych konstrukcji stalowych. Zeszyty Naukowe 

Politechniki Krakowskiej, Kraków 1969;7(33). 

16. Pietrzak J., Rakowski G., Wrześniowski G.: Macierzowa Analiza Konstrukcji. PWN, 

Warszawa 1986. 



 

182 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

17. Schanley F.R.: Inelastic column theory. Journal of Aeronautical Science 1947;14: 261-

267. 

18. Timoshenko S.P., Gere J.M.: Teoria Stateczności Sprężystej. Arkady, Warszawa 1963. 

19. Timoshenko S.P., Woinowsky-Krieger S.: Teoria Płyt i Powłok. Arkady, Warszawa 1962. 

20. Wojewódzki W.: Nośność graniczna konstrukcji prętowych. Oficyna Wydawnicza 

Politechniki Warszawskiej, Warszawa 2005. 



 

183 
 

 

Monika Muszyńska 

4. METALOZNAWSTWO I OBRÓBKA CIEPLNA 

4.1. WSTĘP 

Metaloznawstwo oraz obróbka cieplna to niezwykle ważna dziedzina wiedzy technicznej, 

która odgrywa fundamentalną rolę w projektowaniu i wytwarzaniu nowoczesnych maszyn oraz 

konstrukcji inżynieryjnych. Ich znaczenie jest szczególnie istotne dla inżynierów 

specjalizujących się w mechanice i budowie maszyn, gdzie właściwy dobór i przetwarzanie 

materiałów mają bezpośredni wpływ na jakość, trwałość oraz bezpieczeństwo projektowanych 

urządzeń. Osiągnięcie tych celów jest możliwe tylko dzięki głębokiej znajomości właściwości 

metali, ich struktur, a także metod ich kontrolowanej modyfikacji poprzez obróbkę cieplną. 

Metale i ich stopy stanowią podstawę wielu konstrukcji i elementów maszyn, ponieważ 

charakteryzują się szerokim zakresem właściwości mechanicznych, takich jak wytrzymałość, 

twardość, elastyczność czy odporność na ścieranie. Współczesne wymagania techniczne, 

zwłaszcza w branżach takich jak motoryzacja, lotnictwo czy przemysł ciężki, stawiają przed 

konstruktorami coraz większe wyzwania. Aby spełnić te oczekiwania, konieczne jest dokładne 

zrozumienie mikrostruktury metali oraz wpływu, jaki na nią wywierają różne procesy obróbki 

cieplnej, takie jak hartowanie, odpuszczanie, wyżarzanie czy nawęglanie.  

Obróbka cieplna odgrywa kluczową rolę w kształtowaniu właściwości metali, ponieważ 

pozwala na kontrolowaną zmianę ich struktury wewnętrznej. Procesy takie jak hartowanie, 

prowadzące do zwiększenia twardości i wytrzymałości materiału, czy odpuszczanie, mające na 

celu poprawę jego plastyczności, są niezbędne w produkcji maszyn i konstrukcji narażonych 

na intensywne obciążenia mechaniczne. Umiejętność doboru właściwych parametrów obróbki 

cieplnej oraz zrozumienie mechanizmów, które zachodzą w metalach podczas tych procesów, 

są nieocenione w codziennej pracy inżyniera. Dzięki temu można precyzyjnie kontrolować 

parametry mechaniczne elementów, co przekłada się na ich niezawodność oraz 

długowieczność. 

Metaloznawstwo jako nauka o strukturze i właściwościach metali pozwala inżynierom na 

efektywne projektowanie nowych materiałów o wymaganych parametrach użytkowych. 

Zrozumienie, jak różne pierwiastki stopowe wpływają na właściwości mechaniczne, fizyczne  

i chemiczne metali, daje możliwość tworzenia materiałów o zróżnicowanych cechach, 

dostosowanych do specyficznych warunków pracy. Wiedza ta jest kluczowa dla 
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opracowywania innowacyjnych rozwiązań, które pozwalają na zwiększenie efektywności 

energetycznej, redukcję masy konstrukcji czy zwiększenie odporności na korozję. 

Dla inżyniera mechanika, zwłaszcza w obszarze budowy maszyn, znajomość metaloznawstwa 

i obróbki cieplnej jest nieodzowna. Każdy etap produkcji maszyn - od projektowania po 

wykonanie i konserwację  - wymaga zrozumienia zachowania materiałów w różnych 

warunkach eksploatacyjnych. Brak tej wiedzy może prowadzić do niewłaściwego doboru 

materiałów, co z kolei skutkuje awariami, przedwczesnym zużyciem elementów, a nawet 

zagrożeniem bezpieczeństwa. Dlatego każda decyzja inżynierska, czy to dotycząca wyboru 

odpowiedniego stopu, czy zastosowania konkretnej techniki obróbki, musi opierać się na 

solidnych podstawach teoretycznych i praktycznych z zakresu tych dziedzin. 

Obróbka cieplna, mimo że często niewidoczna na pierwszy rzut oka, ma kluczowy wpływ na 

jakość gotowego produktu. Przykłady takie jak hartowanie powierzchniowe wałów 

napędowych czy azotowanie przekładni zębatych, pokazują, jak precyzyjna obróbka cieplna 

może poprawić właściwości mechaniczne kluczowych komponentów maszyn. W branży 

motoryzacyjnej, lotniczej czy energetycznej, gdzie niezawodność i trwałość są absolutnie 

krytyczne, umiejętne wykorzystanie procesów obróbki cieplnej pozwala na znaczne 

zwiększenie wydajności i bezpieczeństwa pracy urządzeń (Dobrzański 2002). 

 

4.2. BUDOWA METALI 

 

Metale w stanie stałym mają strukturę krystaliczną, co oznacza, że atomy w ich wnętrzu 

są uporządkowane w regularny, powtarzalny sposób. Ten układ atomów tworzy tzw. sieć 

krystaliczną. W metalach najczęściej spotyka się trzy podstawowe rodzaje sieci krystalicznych: 

 Struktura regularna przestrzennie centrowana (RPC),  (BCC - Body-Centered Cubic), 

w tej strukturze atomy metalu są ułożone w sposób, gdzie jeden atom znajduje się  

w centrum sześcianu, a pozostałe atomy na jego wierzchołkach. Przykładami metali o 

tej strukturze są m.in. żelazo (w temperaturze poniżej 912°C), chrom i molibden. RPC 

charakteryzuje się relatywnie luźnym upakowaniem atomów, co wpływa na 

właściwości mechaniczne materiału, takie jak twardość i kruchość. 

 Struktura regularna ściennie centrowana (RSC), (FCC - Face-Centered Cubic), 

w strukturze RSC atomy są ułożone na wierzchołkach sześcianu oraz na środkach jego 

ścian. Ten rodzaj sieci krystalicznej występuje m.in. w aluminium, miedzi i żelazie 

(powyżej 912°C). RSC jest bardziej zwarte niż RPC, co skutkuje większą 
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plastycznością materiału. Metale o tej strukturze są zazwyczaj bardziej kowalne i 

ciągliwe. 

 Struktura heksagonalna zwartouporządkowana HZ, (HCP - Hexagonal Close-Packed) 

ta struktura charakteryzuje się gęstym upakowaniem atomów w heksagonalnym 

układzie. Przykładami metali o tej strukturze są m.in. tytan, magnez i cynk. Ze względu 

na specyficzne ułożenie atomów, metale o strukturze HZ mogą wykazywać niższą 

plastyczność w porównaniu do RSC, ale wciąż są odporne na odkształcenia 

(Przybyłowicz 2003). 

 

4.2.1 Wiązania metaliczne 

 

Unikalną cechą metali jest sposób, w jaki atomy są ze sobą połączone, czyli wiązanie 

metaliczne. W tym typie wiązania atomy metalu oddają swoje zewnętrzne elektrony, tworząc 

tzw. „chmurę elektronową” wokół rdzeni atomowych. Elektrony te, nazywane elektronami 

przewodnictwa, są swobodne i mogą poruszać się przez całą strukturę krystaliczną metalu. To 

zjawisko jest kluczowe dla wyjaśnienia wielu charakterystycznych właściwości metali, takich 

jak: 

 Przewodnictwo elektryczne -  swobodne elektrony w metalu umożliwiają łatwy 

przepływ prądu elektrycznego. Kiedy przykładamy różnicę potencjałów (napięcie), 

elektrony przemieszczają się w kierunku dodatniej elektrody, co prowadzi do przepływu 

prądu. 

 Przewodnictwo cieplne - dzięki ruchowi swobodnych elektronów, metale są również 

dobrymi przewodnikami ciepła. Ciepło w metalu przenoszone jest zarówno przez 

wibracje atomów (fonony), jak i przez swobodne elektrony, które przekazują energię 

cieplną. 

 Plastyczność i kowalność - swobodne elektrony w metalu pozwalają na to, by atomy 

przesuwały się względem siebie bez zrywania wiązań. Dzięki temu metale mogą być 

odkształcane plastycznie, co umożliwia ich formowanie poprzez kucie, walcowanie czy 

tłoczenie. 
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4.2.2. Defekty w strukturze krystalicznej 

 

Metale mają regularną strukturę krystaliczną, jednakże w praktyce nigdy nie jest ona 

idealna. W rzeczywistych materiałach występują różnego rodzaju defekty, które mają istotny 

wpływ na ich właściwości mechaniczne. Do najważniejszych występujących  defektów należą: 

 Defekty punktowe  - to lokalne zaburzenia w sieci krystalicznej, takie jak luki atomowe 

(brakujące atomy) lub atomy obce w sieci. Mogą one wpływać na wytrzymałość, 

plastyczność i inne właściwości materiału. 

 Defekty liniowe (dyslokacje) - dyslokacje to defekty w postaci linii, wzdłuż których 

nastąpiło zaburzenie układu atomów. Obecność dyslokacji ułatwia plastyczne 

odkształcanie się metalu, co czyni go bardziej kowalnym i ciągliwym. Kontrola 

dyslokacji jest kluczowym elementem w procesach wzmacniania metali, takich jak 

hartowanie czy kucie. 

 Defekty powierzchniowe - to zaburzenia na granicach ziaren, czyli miejscach, gdzie 

kończy się jeden kryształ, a zaczyna drugi o innym ułożeniu atomów. Im mniejsze 

ziarna, tym materiał ma większą wytrzymałość, co wynika z większej liczby granic 

ziaren, które hamują ruch dyslokacji (Przybyłowicz 2003). 

 

4.2.3. Właściwości mechaniczne i fizyczne metali 

 

Budowa metali bezpośrednio wpływa na ich właściwości mechaniczne i fizyczne, które 

decydują o ich zastosowaniach w przemyśle. Do najważniejszych właściwości należą: 

 Wytrzymałość na rozciąganie - zależy od struktury krystalicznej i obecności dyslokacji, 

metale mogą być wzmacniane poprzez odpowiednie procesy czy obróbkę, np. 

hartowanie czy walcowanie. 

 Twardość - zdolność materiału do opierania się zarysowaniom i odkształceniom, 

twardość metalu zależy od jego składu chemicznego i sposobu obróbki. 

 Plastyczność - zdolność metalu do trwałych odkształceń bez pękania, wiąże się  

z możliwością przesuwania się dyslokacji w sieci krystalicznej. 

 Przewodnictwo elektryczne i cieplne - jak już wcześniej wspomniano, metale są 

doskonałymi przewodnikami dzięki obecności swobodnych elektronów. 
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4.3. PRODUKCJA METALI 

 

Produkcja metali to wieloetapowy proces, który obejmuje wydobycie surowców 

mineralnych, ich przekształcanie oraz dalszą obróbkę w celu uzyskania czystego metalu  

o odpowiednich właściwościach. Różnorodność procesów stosowanych do wydobycia  

i przetwarzania metali zależy od specyfiki surowca, jak i od końcowego przeznaczenia 

produktu. Wraz z postępem technologicznym rozwijają się nowe, bardziej efektywne  

i ekologiczne metody produkcji. 

 

4.3.1.Wydobycie rud metali 

 

Produkcja metali rozpoczyna się od wydobycia odpowiednich surowców mineralnych, 

które zawierają metale w postaci związków chemicznych, najczęściej jako rudy. Proces 

wydobycia rud odbywa się zarówno metodami odkrywkowymi, jak i podziemnymi,  

w zależności od głębokości występowania złóż. Wydobycie odkrywkowe polega na usuwaniu 

warstw ziemi pokrywających złoże i jest stosowane w przypadku płytko położonych rud. 

Kopalnie głębinowe, stosowane do bardziej skomplikowanych złóż, wymagają 

zaawansowanych technologii wydobywczych i stosowania specjalistycznego sprzętu, takiego 

jak maszyny drążące tunele. 

Jednym z przykładów jest wydobycie rud żelaza, które jest surowcem do produkcji stali.  

W przypadku miedzi stosuje się zarówno metody odkrywkowe, jak i podziemne, a złoża tego 

metalu są eksploatowane na całym świecie, w tym w Chile, Australii i Polsce. 

 

4.3.2. Procesy wzbogacania rud 

 

Po wydobyciu rudy muszą być poddane procesom wzbogacania, które mają na celu 

usunięcie niepożądanych składników mineralnych oraz zwiększenie zawartości metalu  

w materiale. Metody wzbogacania rud różnią się w zależności od ich składu chemicznego  

i mineralogicznego. 

 Flotacja: jest to jedna z najczęściej stosowanych metod wzbogacania rud, szczególnie 

w przypadku rud miedzi. Proces ten polega na zmieszaniu zmielonej rudy z wodą  

i odpowiednimi odczynnikami, które umożliwiają oddzielenie metalu od skały płonnej. 

Pęcherzyki powietrza unoszą cząstki metalu na powierzchnię, skąd mogą być łatwo 

usunięte. 
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 Separacja magnetyczna: w przypadku rud żelaza, wykorzystuje się ich właściwości 

magnetyczne, aby oddzielić metal od reszty materiału. Separatory magnetyczne 

przyciągają cząstki żelaza, umożliwiając ich wzbogacenie. 

Procesy te są niezwykle ważne, ponieważ obniżają koszty dalszej obróbki rud i poprawiają 

efektywność redukcji metali w następnych etapach produkcji (Mazurkiewicz i in. 2003). 

 

4.3.3. Redukcja rud 

 

Kolejnym krokiem w produkcji metali jest redukcja, która polega na usunięciu tlenu  

z tlenków metali, co umożliwia uzyskanie czystego metalu. Istnieją różne metody redukcji,  

z których każda jest dostosowana do rodzaju rudy i specyfiki metalu. 

 Redukcja w piecach hutniczych - jest jedną z najstarszych i najczęściej stosowanych 

metod otrzymywania metali, szczególnie w przypadku produkcji żelaza i stali. Wielki 

piec to olbrzymie urządzenie, w którym rudy żelaza (np. hematyt lub magnetyt) są 

redukowane za pomocą koksu, co prowadzi do otrzymania surówki – żelaza  

z domieszką węgla. Surówka ta jest następnie przetwarzana w procesie stalowniczym 

na stal. 

Proces ten obejmuje następujące reakcje chemiczne: 

 redukcja tlenku węgla (CO), powstałego w wyniku spalania koksu, który reaguje  

z tlenkami żelaza 

 powstanie czystego żelaza oraz tlenków węgla (CO₂), które są odprowadzane jako gaz 

odpadowy. 

Tego rodzaju redukcja stosowana jest również w produkcji innych metali, takich jak cynk  

i ołów, jednak specyfika każdego z tych procesów może się różnić. 

 Elektroliza - to metoda stosowana głównie w przypadku metali, które trudno jest 

zredukować chemicznie, jak np. aluminium. Proces ten polega na przepuszczaniu prądu 

elektrycznego przez stopioną rudę lub roztwór wodny zawierający metal, co powoduje 

rozkład chemiczny związku i wytrącanie czystego metalu na elektrodach. Jednym  

z najlepszych przykładów jest elektroliza tlenku glinu (Al₂O₃), który jest surowcem do 

produkcji aluminium. Jest on  rozpuszczany w stopionej kriolicie, a następnie 

poddawany elektrolizie. Na katodzie osadza się aluminium, natomiast na anodzie 

wydziela się tlen. Proces ten  jest również stosowany do oczyszczania metali, takich jak 
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miedź, złoto czy srebro, gdzie pozwala na uzyskanie metali o bardzo wysokiej czystości, 

niezbędnych w przemyśle elektronicznym i jubilerskim (Mazurkiewicz i in. 2003). 

 

4.3.4. Rafinacja i oczyszczanie 

 

Otrzymane w wyniku redukcji metale często zawierają domieszki, które należy usunąć, 

aby uzyskać metal o wysokiej czystości. Proces rafinacji, zwany także oczyszczaniem, jest 

kluczowy, zwłaszcza w przypadku metali szlachetnych i metali o wysokich wymaganiach 

jakościowych. 

 Rafinacja miedzi - w przemyśle miedziowym powszechnie stosowaną metodą rafinacji 

jest elektroliza. Surowa miedź, uzyskana w procesach hutniczych, służy jako anoda,  

a czysta miedź osadza się na katodzie. W procesie tym następuje usunięcie 

zanieczyszczeń, takich jak ołów, cynk czy żelazo. Podobne metody stosuje się do 

oczyszczania innych metali, takich jak srebro czy złoto. 

 Destylacja w przypadku metali o niskiej temperaturze wrzenia, takich jak cynk czy rtęć, 

stosuje się destylację. Metale te są podgrzewane do temperatury, w której zaczynają 

parować, a następnie pary te są skraplane, co pozwala na uzyskanie czystego metalu. 

 

4.3.5. Formowanie i obróbka 

 

Po uzyskaniu metali w postaci czystej lub rafinowanej, konieczne jest ich dalsze 

przetwarzanie, aby nadać im pożądane właściwości mechaniczne oraz kształty. Procesy te 

obejmują: 

 Walcowanie: stosowane głównie w produkcji blach i drutów, polega na formowaniu 

metalu poprzez jego wielokrotne przepuszczanie między obracającymi się wałkami. 

 Kucie: polega na kształtowaniu metalu poprzez uderzenia młota lub nacisk pras 

mechanicznych. Kucie umożliwia produkcję wytrzymałych elementów 

konstrukcyjnych, takich jak osie, wały czy koła zębate. 

 Odlewanie: proces odlewania polega na wlewaniu stopionego metalu do form, gdzie 

zastyga, przyjmując kształt pożądanego produktu. Odlewanie jest często stosowane  

w produkcji silników, elementów konstrukcyjnych i części maszyn. 
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Odlewanie jest jednym z najstarszych i najpowszechniej stosowanych procesów 

produkcji metali, który polega na wlewaniu ciekłego metalu do formy, gdzie następnie zastyga, 

tworząc określony kształt. Proces ten umożliwia produkcję części metalowych  

o skomplikowanych kształtach, które trudno byłoby uzyskać za pomocą innych metod 

(Braszczyński 1989). Istnieje wiele różnych technik odlewania, a każda z nich jest dostosowana 

do specyficznych wymagań związanych z typem metalu, jego właściwościami oraz końcowym 

przeznaczeniem wyrobów. Poniżej opisano najpopularniejsze sposoby odlewania (Rys.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rys. 1. Techniki wytwarzania form – odlewów 

źródło: opracowanie własne na podstawie:  

Górny Z.: Odlewnicze stopy metali nieżelaznych (1992) 

 

 Odlewanie piaskowe (w formie) - jest jedną z najczęściej stosowanych metod, 

zwłaszcza w produkcji dużych i ciężkich elementów. Proces ten polega na wlewaniu 

ciekłego metalu do formy wykonanej z piasku kwarcowego związanego spoiwem, które 

utrzymuje jej kształt. Formy piaskowe są jednorazowe, co oznacza, że po zastygnięciu 

odlewu są niszczone, aby wydobyć gotowy produkt.  

Zalety odlewania piaskowego: 

 niskie koszty formy, co sprawia, że metoda ta jest opłacalna nawet przy produkcji 

pojedynczych elementów, 

 możliwość tworzenia odlewów o skomplikowanych kształtach i dużych 

wymiarach. 

Metody wytwarzania odlewów 

Odlewanie grawitacyjne Odlewanie ciśnieniowe 

w formach jednorazowych w formach trwałych 
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             Wady: 

 gorsza jakość powierzchni odlewów w porównaniu z innymi metodami, 

 niższa dokładność wymiarowa, co wymaga dodatkowej obróbki wykańczającej. 

 Odlewanie ciśnieniowe - polega na wtryskiwaniu ciekłego metalu pod wysokim 

ciśnieniem do metalowej formy (matrycy). Jest to jedna z najnowocześniejszych  

i najbardziej precyzyjnych metod odlewania, stosowana głównie do produkcji masowej 

elementów o wysokiej jakości powierzchni i dokładności wymiarowej. 

            Zalety odlewania ciśnieniowego: 

 bardzo wysoka dokładność wymiarowa i gładka powierzchnia odlewów, 

 szybkość produkcji, co czyni tę metodę opłacalną przy dużych seriach produkcyjnych, 

 możliwość automatyzacji procesu, co zwiększa wydajność. 

            Wady: 

 wysokie koszty narzędzi i form, co sprawia, że metoda ta jest opłacalna głównie przy 

masowej produkcji, 

 ograniczenia dotyczące wielkości odlewów, zazwyczaj stosowana do małych i średnich 

elementów. 

 Odlewanie kokilowe (grawitacyjne) - zwane również odlewaniem grawitacyjnym, 

polega na wlewaniu ciekłego metalu do trwałej formy (kokili) wykonanej z metalu. 

Metal zastygając w formie, przybiera jej kształt. Kokile mogą być używane 

wielokrotnie, co czyni tę metodę bardziej opłacalną niż odlewanie piaskowe przy 

średnich i dużych seriach produkcji. 

            Zalety odlewania kokilowego: 

 wyższa jakość powierzchni i dokładność wymiarowa niż w przypadku odlewania 

piaskowego, 

 możliwość wielokrotnego użycia kokili, co obniża koszty produkcji przy większych 

seriach. 

            Wady: 

 ograniczenia dotyczące kształtu i złożoności odlewów w porównaniu z odlewaniem 

piaskowym, 

 wyższe koszty formy początkowej niż w przypadku odlewania piaskowego. 

 Odlewanie ciągłe - to proces, w którym ciekły metal jest wylewany do formy,  
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a następnie schładza się i zastygając, jest ciągle wyciągany z formy w postaci długich 

prętów, rur lub innych kształtów. Metoda ta jest szeroko stosowana do produkcji 

stalowych i aluminiowych półfabrykatów, takich jak blachy, druty i profile. 

            Zalety odlewania ciągłego: 

 wysoka wydajność i możliwość produkcji dużych ilości materiału w sposób ciągły, 

 mniejsze zużycie energii i materiałów w porównaniu z tradycyjnymi metodami 

odlewania. 

            Wady: 

 ograniczenia w zakresie kształtów, które można uzyskać tą metodą, 

 wymaga zaawansowanego sprzętu i technologii, co zwiększa koszty początkowe 

inwestycji (Górny 1992). 

 

4.4. PODZIAŁ METALI 

 

Metale stanowią podstawową grupę materiałów wykorzystywanych w wielu dziedzinach 

przemysłu, inżynierii, budownictwa i technologii. Aby lepiej zrozumieć ich różnorodność oraz 

zastosowanie, dokonuje się podziału metali na różne kategorie w zależności od ich właściwości 

chemicznych, fizycznych, a także składu. Podstawowy podział obejmuje metale żelazne  

i nieżelazne, a dodatkowo uwzględnia także metale szlachetne, metale ziem rzadkich oraz stopy 

metali. 

 

4.4.1. Metale żelazne 

 

Metale żelazne, zwane również metalami ferromagnetycznymi, to grupa metali,  

w których głównym składnikiem chemicznym jest żelazo (Fe). Metale te charakteryzują się 

dobrą wytrzymałością mechaniczną, wysoką odpornością na ściskanie, a także zdolnością do 

przewodzenia ciepła i elektryczności. Żelazo i jego stopy są szeroko stosowane  

w budownictwie, motoryzacji, produkcji maszyn oraz narzędzi. 

 Stal - jest najważniejszym i najpowszechniej używanym metalem żelaznym. Stanowi 

stop żelaza z węglem (w ilości do ok. 2%), często z dodatkiem innych pierwiastków, 

takich jak mangan, chrom, nikiel czy molibden, które poprawiają jej właściwości. Stal 

występuje  

w różnych rodzajach, które mają zastosowanie w zależności od potrzeb: 
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 Stal węglowa: najczęściej stosowana, zawiera od 0,02% do 2,11% węgla. 

Znajduje zastosowanie w produkcji konstrukcji stalowych, maszyn i narzędzi. 

 Stal nierdzewna: dzięki zawartości chromu (co najmniej 10,5%) ma wysoką 

odporność na korozję i jest szeroko stosowana w przemyśle spożywczym, 

chemicznym oraz w budownictwie. 

 Stal narzędziowa: Charakteryzuje się wysoką twardością i odpornością na 

zużycie, co czyni ją idealną do produkcji narzędzi. 

 Żeliwo - to stop żelaza z węglem (powyżej 2,11%), często z domieszką krzemu  

i manganu. Jest to materiał kruchy, ale jednocześnie charakteryzuje się wysoką 

odpornością na ściskanie i odpornością na zużycie. Żeliwo ma zastosowanie  

w produkcji rur, elementów maszyn oraz urządzeń grzewczych. 

 Stopy żelaza – żelazo może być mieszane z innymi metalami w celu tworzenia stopów 

o określonych właściwościach. Przykłady takich stopów to stal narzędziowa, stale 

sprężynowe czy stale konstrukcyjne, które są używane w wielu gałęziach przemysłu,  

w tym w motoryzacji i lotnictwie. 

 

4.4.2. Metale nieżelazne 

 

Metale nieżelazne to grupa metali, które nie zawierają żelaza lub zawierają je  

w niewielkich ilościach. Charakteryzują się różnorodnymi właściwościami, takimi jak 

odporność na korozję, lekkość, wysoka przewodność elektryczna oraz łatwość formowania.  

W tej grupie wyróżniamy kilka podkategorii, takich jak metale lekkie, metale ciężkie, a także 

metale szlachetne. 

 Metale lekkie - charakteryzują się niską gęstością i są szczególnie cenione w przemyśle 

lotniczym, motoryzacyjnym oraz w produkcji sprzętu sportowego. Najważniejsze 

metale z tej grupy przedstawiono poniżej: 

 Aluminium (Al): posiada wysoką odporność na korozję, jest lekkie i ma dobrą 

przewodność cieplną oraz elektryczną. Stosowane jest w konstrukcjach samolotów, 

samochodów, puszkach do napojów oraz oknach i drzwiach. 

 Tytan (Ti): lekki, wytrzymały, odporny na korozję i wysokie temperatury ma 

zastosowanie w przemyśle lotniczym, wojskowym oraz medycznym, zwłaszcza  

w implantach i protezach. 
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 Magnez (Mg): jeden z najlżejszych metali strukturalnych, stosowany w produkcji 

lekkich konstrukcji, a także w stopach z aluminium, co zwiększa ich wytrzymałość. 

 Metale ciężkie - charakteryzują się większą gęstością niż metale lekkie i znajdują 

zastosowanie w przemyśle ciężkim oraz elektrotechnice. Najważniejsze z nich to: 

 Miedź (Cu): posiada doskonałą przewodność elektryczną i cieplną, co sprawia, że 

jest niezastąpiona w przewodach elektrycznych, elektronice, a także w przemyśle 

grzewczym, posiada także odporność na korozję. 

 Ołów (Pb):  dzięki  swojej dużej gęstości i odporności na korozję, znajduje 

zastosowanie w akumulatorach samochodowych, osłonach przed 

promieniowaniem i w budownictwie. 

 Cynk (Zn): używany głównie do pokrywania stali w procesie cynkowania, co 

zapobiega jej korozji. Cynk jest również składnikiem stopów, takich jak mosiądz 

(stop cynku z miedzią). 

 Metale szlachetne -  to grupa metali charakteryzujących się dużą odpornością na korozję 

i utlenianie, a także wysoką wartością ekonomiczną. Stosowane są głównie  

w jubilerstwie, elektronice oraz przemyśle chemicznym. Do najważniejszych metali 

szlachetnych należą: 

 Złoto (Au): posiada doskonałe właściwości przewodzące, jest odporne na utlenianie 

i korozję, co czyni je idealnym materiałem do produkcji biżuterii oraz elektroniki. 

 Srebro (Ag): najlepszy przewodnik elektryczności wśród metali, stosowane  

w elektronice, medycynie oraz jubilerstwie. 

 Platyna (Pt): stosowana w katalizatorach samochodowych, przemyśle chemicznym 

oraz jubilerstwie, platyna jest niezwykle odporna na wysokie temperatury i korozję. 

 

4.4.3. Metale ziem rzadkich 

 

Metale ziem rzadkich to grupa 17 pierwiastków chemicznych, które mają specyficzne 

właściwości magnetyczne, optyczne oraz katalityczne. Choć ich nazwa sugeruje, że są one 

rzadkie, w rzeczywistości występują one w przyrodzie, ale są rozproszone i trudne do 

wydobycia w czystej formie. Metale ziem rzadkich mają kluczowe znaczenie w nowoczesnych 

technologiach, takich jak: 

 Neodym (Nd): używany do produkcji silnych magnesów stosowanych w silnikach 

elektrycznych, turbinach wiatrowych i głośnikach. 
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 Lantan (La): stosowany w akumulatorach, katalizatorach i optyce. 

 Europ (Eu): używany w produkcji fosforów w ekranach telewizyjnych oraz oświetleniu 

fluorescencyjnym czy energii jądrowej jako absorber neutronów. 

 

4.4.4. Stopy metali 

 

Stopy metali to materiały, które składają się z co najmniej dwóch pierwiastków, gdzie 

przynajmniej jednym jest metal. Stopy są tworzone w celu uzyskania określonych właściwości, 

takich jak wytrzymałość, twardość, odporność na korozję czy zdolność do przewodzenia ciepła 

i prądu. Najważniejsze przykłady stopów to m.in.: 

 Stal: opisana wcześniej, będąca stopem żelaza i węgla. 

 Mosiądz: stop miedzi i cynku, szeroko stosowany w armaturze, instrumentach 

muzycznych oraz w dekoracjach. 

 Brąz: stop miedzi z cyną, używany w produkcji elementów mechanicznych, jak łożyska, 

oraz w sztuce. 

 

4.5. WYKRES ŻELAZO - WĘGIEL  

 

Wykres żelazo-węgiel (znany również jako diagram fazowy żelazo-węgiel), 

przedstawiony na Rys. 2,  to podstawowe narzędzie używane w metalurgii do zrozumienia 

przemian fazowych w stopach żelaza z węglem.  
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Rys. 2. Wykres fazowy żelazo – węgiel 

źródło: opracowanie własne na podstawie: Dobrzański L.A.,  

Podstawy nauki o materiałach i metaloznawstwo, 2002 

 

Umożliwia on przewidywanie, jakie struktury krystaliczne (fazy) będą występować w stali  

i żeliwie w zależności od temperatury oraz zawartości węgla. Wiedza ta jest kluczowa  

w projektowaniu procesów obróbki cieplnej, takich jak hartowanie, odpuszczanie czy 

wyżarzanie, ponieważ różne struktury krystaliczne mają wpływ na właściwości mechaniczne 

stopów.Wykres żelazo-węgiel obejmuje kilka istotnych obszarów i punktów, które mają 

kluczowe znaczenie dla zrozumienia przemian fazowych: 

 Ferryt to faza o strukturze regularnej przestrzennie centrowanej (RPC), która jest 

stabilna w temperaturach poniżej 912°C. Ferryt zawiera bardzo małe ilości węgla (do 

0,02%) i jest stosunkowo miękki oraz plastyczny. Występuje w stali niskowęglowej oraz 

w stalach o bardzo niskiej zawartości węgla. 

 Austenit - to faza, która występuje w stali w wyższych temperaturach (powyżej 727°C) 

i ma strukturę regularną ściennie centrowaną (RSC). Austenit może rozpuszczać więcej 
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węgla niż ferryt (do 2,11%), co sprawia, że ma większą wytrzymałość i plastyczność. 

W procesie obróbki cieplnej stali austenit może przekształcać się w inne fazy, takie jak 

martenzyt lub perlit, co jest zależne od szybkości chłodzenia. 

 Perlit - to mieszanina ferrytu i cementytu, która tworzy się w wyniku powolnego 

chłodzenia austenitu. Ma strukturę lamelarną (warstwową) i występuje w stali  

o zawartości węgla około 0,8%. Perlit łączy w sobie cechy obu faz: plastyczność ferrytu 

oraz twardość cementytu. Jest to jedna z najważniejszych struktur w stalach o średniej 

zawartości węgla. 

 Cementyt (Fe₃C) - czyli węglik żelaza III, to twarda i krucha faza, która występuje  

w stopach żelaza z węglem. Ma bardzo dużą zawartość węgla (6,67%) i odgrywa 

kluczową rolę w kształtowaniu właściwości mechanicznych stali. Cementyt tworzy się 

w wyniku przesycenia austenitu węglem oraz podczas chłodzenia stali i żeliwa. 

 Martenzyt - to faza, która powstaje w wyniku bardzo szybkiego chłodzenia 

(hartowania) austenitu. Ma strukturę tetragonalną, która jest bardzo twarda i krucha. 

Stal hartowana, w której występuje martenzyt, charakteryzuje się dużą wytrzymałością, 

jednak jest  ona bardzo krucha, dlatego często poddaje się ją dodatkowej obróbce 

cieplnej (np. odpuszczaniu) w celu poprawy plastyczności. 

Liniowe punkty wykresu: eutektyka i eutektoid 

 Punkt eutektyczny znajduje się na wykresie w temperaturze 1147°C przy zawartości 

węgla 4,3%. To tutaj zachodzi przemiana ciecz   →   austenit + cementyt (w przypadku 

żeliwa). 

 Punkt eutektoidalny znajduje się przy temperaturze 727°C i zawartości węgla 0,8%,  

w tym punkcie austenit przekształca się w mieszaninę ferrytu i perlitu. 

Zastosowanie wykresu żelazo-węgiel: jest to niezbędne narzędzie dla inżynierów i metalurgów, 

ponieważ umożliwia przewidywanie przemian fazowych i odpowiednie dostosowanie 

procesów obróbki cieplnej, aby uzyskać pożądane właściwości mechaniczne stali. W zależności 

od zawartości węgla oraz temperatury obróbki cieplnej, można modyfikować strukturę stopu, 

co pozwala na tworzenie materiałów o różnych parametrach wytrzymałościowych, twardości, 

elastyczności i odporności na ścieranie. 
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4.6. PODZIAŁ STALI 

 

Podział stali może być dokonany według różnych kryteriów, takich jak: zawartość węgla, 

skład chemiczny, struktura, sposób obróbki cieplnej oraz zastosowanie. 

 

4.6.1. Podział ze względu na zawartość węgla 

 Stale niskowęglowe (miękkie): zawierają do 0,25% węgla. Charakteryzują się dobrą 

plastycznością i są łatwe w obróbce plastycznej na zimno. Znajdują zastosowanie m.in. 

w przemyśle motoryzacyjnym oraz budowlanym, w produkcji blach, rur i prętów. 

 Stale średniowęglowe: ich zawartość węgla wynosi od 0,25% do 0,60%. Posiadają 

lepszą wytrzymałość niż stale niskowęglowe, ale ich plastyczność jest mniejsza. 

Znajdują zastosowanie w produkcji narzędzi oraz części maszyn o wyższej 

wytrzymałości, takich jak wały, korbowody czy sprężyny. 

 Stale wysokowęglowe (twarde): zawierają powyżej 0,60% węgla. Są bardzo twarde  

i odporne na zużycie, ale trudne w obróbce plastycznej. Wykorzystywane są m.in. do 

produkcji narzędzi tnących, łożysk oraz sprężyn. 

 

4.6.2. Podział według składu chemicznego 

 Stale niestopowe (węglowe): zawierają głównie żelazo i węgiel, bez istotnych dodatków 

stopowych. Ich właściwości zależą przede wszystkim od zawartości węgla. Znajdują 

zastosowanie w budownictwie, motoryzacji oraz jako materiały konstrukcyjne. 

 Stale stopowe: oprócz węgla, zawierają również inne pierwiastki stopowe, takie jak 

chrom, nikiel, molibden, wanad, które nadają im specyficzne właściwości. Mogą być 

odporne na korozję, wysokie temperatury lub zmęczenie materiału. Przykłady stali 

stopowych to: 

 Stale nierdzewne: zawierają co najmniej 11% chromu, co nadaje im odporność 

na korozję. Stosowane są w produkcji naczyń, sprzętu medycznego, rur oraz 

konstrukcji narażonych na działanie czynników atmosferycznych. 

 Stale narzędziowe: wzbogacane o takie pierwiastki jak wolfram, chrom czy 

wanad, są używane do produkcji narzędzi o wysokiej odporności na zużycie. 
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4.6.3. Podział według struktury 

 Stale ferrytyczne: charakteryzują się obecnością ferrytu w strukturze, co daje im dobrą 

odporność na korozję i plastyczność, jednak ich wytrzymałość jest relatywnie niska. 

Stosowane są głównie w przemyśle chemicznym i naftowym. 

 Stale martenzytyczne: otrzymywane w wyniku obróbki cieplnej, mają strukturę 

martenzytu, która zapewnia im dużą twardość. Wykorzystywane są w produkcji 

narzędzi i elementów maszyn wymagających dużej wytrzymałości. 

 Stale austenityczne: zawierają nikiel i chrom, co powoduje, że są odporne na korozję, 

mają dużą wytrzymałość i dobrą plastyczność. Często wykorzystywane w przemyśle 

spożywczym, farmaceutycznym oraz przy produkcji wyrobów precyzyjnych. 

 

4.6.4.  Stale szybkotnące 

Stal szybkotnąca (oznaczana skrótem HSS - High Speed Steel) jest szczególną odmianą 

stali narzędziowej, która charakteryzuje się zdolnością do zachowania swoich właściwości, 

nawet w bardzo wysokich temperaturach. Dzieje się tak dzięki obecności pierwiastków 

stopowych, takich jak wolfram, molibden, wanad oraz kobalt, które poprawiają jej odporność 

na wysokie temperatury i ścieranie. 

Charakterystyka: 

 Właściwości: wyjątkowo odporna na ścieranie, zachowuje twardość nawet  

w temperaturze powyżej 600°C. Ma bardzo wysoką wytrzymałość i trwałość. 

 Zastosowanie: stale szybkotnące są powszechnie używane do produkcji narzędzi 

skrawających, takich jak frezy, wiertła, piły i narzędzia tokarskie, które muszą pracować 

z dużymi prędkościami obróbki i przy dużym obciążeniu termicznym. 

 

4.6.5. Stale żarowytrzymałe 

 

Stale żarowytrzymałe to specjalne stale stopowe, które wykazują dużą odporność na 

działanie wysokich temperatur i obciążeń mechanicznych. Głównymi pierwiastkami 

stopowymi odpowiedzialnymi za te właściwości są chrom, nikiel, molibden i wolfram. Te stale 

są przystosowane do pracy w temperaturach powyżej 500°C, nie tracąc swoich właściwości 

wytrzymałościowych. 

Charakterystyka: 
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 Właściwości: wysoka odporność na pełzanie, korozję i utlenianie w wysokich 

temperaturach. Zachowują dobrą wytrzymałość mechaniczną przy długotrwałej 

ekspozycji na ciepło. 

 Zastosowanie: stale żarowytrzymałe są stosowane w przemyśle energetycznym, 

lotniczym oraz motoryzacyjnym. Wykorzystywane są do produkcji elementów turbin, 

pieców przemysłowych, wymienników ciepła oraz kotłów, które muszą wytrzymać 

działanie ekstremalnych temperatur i dużych obciążeń. 

 

4.6.6. Podział według zastosowania stali: 

 

 Stale konstrukcyjne: używane do budowy konstrukcji maszyn, budynków i innych 

dużych obiektów inżynieryjnych. Ich cechą charakterystyczną jest dobra wytrzymałość 

na obciążenia oraz plastyczność. 

 Stale narzędziowe: przeznaczone do produkcji narzędzi tnących, form, matryc, które 

muszą być odporne na zużycie i wysokie temperatury. Mają wysoką twardość i są 

stosowane w przemyśle metalurgicznym i motoryzacyjnym. 

 Stale odporne na korozję: dzięki dodatkom stopowym, takim jak chrom, są odporne na 

działanie środowisk agresywnych, np. kwasów czy soli. Wykorzystywane są  

w przemyśle chemicznym, morskim oraz farmaceutycznym. 

 

4.7. ŻELIWO 

 

Żeliwo to stop żelaza z węglem, którego zawartość węgla wynosi zazwyczaj powyżej 

2,14%. W przeciwieństwie do stali, gdzie węgiel jest rozpuszczony w roztworze żelaznym,  

w żeliwie występuje on w postaci wolnej (grafit) lub związanej (cementyt). Charakteryzuje się 

ono dużą twardością i kruchością, ale również doskonałą lejnością, co czyni je jednym  

z najczęściej stosowanych materiałów odlewniczych. Dzięki swoim specyficznym 

właściwościom, żeliwo znajduje zastosowanie w wielu dziedzinach przemysłu, takich jak 

budowa maszyn, motoryzacja czy przemysł ciężki. 

Podział żeliwa opiera się na jego strukturze, sposobie krystalizacji oraz na formie, w jakiej 

występuje węgiel w stopie. Wyróżniamy głównie żeliwo szare, białe, sferoidalne i ciągliwe,  

z których każde posiada specyficzne cechy i zastosowania. 
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4.7.1. Podział żeliwa 

 

Żeliwo szare  to najpowszechniej używany rodzaj żeliwa, w którym węgiel występuje  

w postaci grafitu. Cechą charakterystyczną tego materiału jest jego szary kolor na powierzchni 

przełomu, co wynika z obecności grafitu. Ze względu na łatwość w odlewaniu i dobrą 

obrabialność, jest szeroko stosowane w przemyśle. 

Charakterystyka: 

 Struktura: węgiel w postaci płatków grafitu w osnowie metalicznej (ferryt lub perlit). 

 Właściwości: dobrze tłumi drgania, jest odporny na ścieranie i łatwo się obrabia, jego 

wadą jest kruchość i niska wytrzymałość na rozciąganie. 

 Zastosowanie: żeliwo szare stosuje się do produkcji odlewów maszynowych, części 

silników, bloków silnikowych, obudów skrzyni biegów, a także elementów rur 

kanalizacyjnych. 

Żeliwo białe  większość węgla w nim zawarta jest związana w postaci cementytu (Fe₃C), 

co sprawia, że materiał ten nie ma widocznych płatków grafitu, a przełom odlewu ma biały 

połysk. Żeliwo białe jest bardzo twarde i kruche, przez co jest trudne w obróbce, ale 

charakteryzuje się wysoką odpornością na zużycie. 

Charakterystyka: 

 Struktura: węgiel występuje głównie w postaci węglika żelaza (cementytu), bez 

widocznego grafitu. 

 Właściwości: jest twarde, bardzo kruche i trudne do obrabiania mechanicznego. Jest 

odporne na ścieranie, jednakże słabo tłumi drgania. 

 Zastosowanie: wykorzystywane do produkcji elementów narażonych na wysokie 

ścieranie, takich jak części młynów, walce hutnicze, bębny hamulcowe oraz narzędzia 

tnące. 

Żeliwo sferoidalne (żeliwo z grafitem kulkowym) jest modyfikowaną wersją żeliwa 

szarego, w której grafit przybiera postać kulek, a nie płatków. Taka struktura poprawia 

właściwości mechaniczne tego żeliwa, zwłaszcza jego wytrzymałość i odporność na pękanie. 

W celu uzyskania kulistej formy grafitu, do stopu dodaje się niewielkie ilości magnezu lub ceru 

(Rączka i Sakwa 1986):. 

Charakterystyka: 

 Struktura: węgiel w postaci sferoidalnych cząstek grafitu równomiernie 

rozmieszczonych w osnowie ferrytowo-perlitowej. 
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 Właściwości: jest bardziej wytrzymałe i elastyczne niż żeliwo szare, charakteryzuje się 

większą odpornością na pękanie i lepszą wytrzymałością na rozciąganie. Posiada także 

lepsze właściwości plastyczne. 

 Zastosowanie: wykorzystywane do produkcji wałów korbowych, zaworów, rur 

ciśnieniowych, elementów zawieszeń samochodowych oraz części maszyn pracujących 

pod dużymi obciążeniami. 

Żeliwo ciągliwe powstaje poprzez odpowiednią obróbkę cieplną żeliwa białego. Proces 

ten powoduje wytrącanie węgla w postaci drobnych cząstek grafitu, co sprawia, że żeliwo staje 

się bardziej plastyczne i ciągliwe, a jednocześnie zachowuje część twardości żeliwa białego. 

Charakterystyka: 

 Struktura: grafit występuje w formie drobnych, kulistych wtrąceń, co poprawia jego 

plastyczność i wytrzymałość mechaniczną. 

 Właściwości: wysoka plastyczność, dobra odporność na rozciąganie i udarność. Żeliwo 

ciągliwe jest bardziej wytrzymałe na rozciąganie niż żeliwo szare. 

 Zastosowanie: stosowane w produkcji elementów wymagających wysokiej 

plastyczności i wytrzymałości, takich jak łączniki rurowe, osie, ramy pojazdów oraz 

części maszyn precyzyjnych. 

 

4.7.2. Właściwości i zastosowanie żeliwa 

 

Żeliwo charakteryzuje się następującymi właściwościami: 

 Twardość i odporność na ścieranie: dzięki zawartości cementytu (w żeliwie białym) 

lub grafitu (w żeliwie szarym), żeliwo jest wytrzymałe na ścieranie, co czyni je 

idealnym do zastosowań narażonych na intensywną eksploatację. 

 Kruchość: większość żeliw, szczególnie białe i szare, charakteryzuje się niską 

plastycznością i dużą kruchością. 

 Dobra lejność: żeliwo łatwo formuje się w skomplikowane kształty podczas odlewania, 

co czyni je idealnym materiałem do produkcji odlewów. 

 Tłumienie drgań: żeliwo, zwłaszcza szare, ma doskonałą zdolność tłumienia drgań, co 

czyni je użytecznym w produkcji maszyn pracujących w warunkach dużych obciążeń 

dynamicznych. 

Żeliwo, dzięki swojej różnorodności, znalazło zastosowanie w wielu dziedzinach przemysłu: 
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 Budownictwo: żeliwo stosowane jest w produkcji elementów konstrukcyjnych, takich 

jak rury kanalizacyjne, pokrywy studzienek, kraty, a także w armaturze wodociągowej. 

 Motoryzacja: żeliwo sferoidalne oraz ciągliwe wykorzystywane jest do produkcji 

części samochodowych, takich jak zawieszenia, wały korbowe, obudowy silników  

i inne elementy narażone na duże obciążenia. 

 Przemysł maszynowy: żeliwo szare znajduje zastosowanie w produkcji podstaw  

i korpusów maszyn, gdzie istotne jest tłumienie drgań. Żeliwo białe z kolei jest 

wykorzystywane w częściach maszyn narażonych na duże ścieranie, takich jak młyny  

i walce. 

 Energetyka: żeliwo, szczególnie sferoidalne, używane jest do produkcji rur 

ciśnieniowych, kotłów i innych elementów instalacji, gdzie wymagane są dobre 

właściwości mechaniczne przy pracy w wysokich temperaturach i ciśnieniach. 

 

4.8. OBRÓBKA CIEPLNA I CIEPLNO-CHEMICZNA METALI  

 

Obróbka cieplna i cieplno-chemiczna to jedne z kluczowych procesów stosowanych  

w inżynierii materiałowej, które umożliwiają zmianę właściwości fizycznych, mechanicznych 

i chemicznych metali. Główne cele tych procesów obejmują zwiększenie twardości, odporności 

na zużycie, poprawę wytrzymałości oraz odporności na korozję. Dzięki zastosowaniu obróbki 

cieplnej możliwe jest dostosowanie właściwości materiału do specyficznych wymagań 

eksploatacyjnych. Procesy cieplno-chemiczne dodatkowo wzbogacają obróbkę cieplną poprzez 

modyfikację składu chemicznego warstwy powierzchniowej, co prowadzi do uzyskania 

bardziej pożądanych właściwości na powierzchni materiału. 

Obróbka cieplna polega na precyzyjnym sterowaniu temperaturą, czasem trwania 

poszczególnych faz oraz szybkością chłodzenia. Procesy te opierają się na termodynamicznych 

przemianach w materiale, co pozwala na kontrolowane zmiany struktury krystalicznej  

i mikrostruktury stopu. Z kolei obróbka cieplno-chemiczna, oprócz zmian temperaturowych, 

wprowadza do materiału aktywne chemicznie pierwiastki, takie jak węgiel, azot czy bor, co 

prowadzi do modyfikacji właściwości warstwy wierzchniej (WW). 
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 4.8.1. Procesy obróbki cieplnej: 

 

Wyżarzanie to jeden z najstarszych i najczęściej stosowanych procesów obróbki 

cieplnej. Polega on na nagrzaniu metalu do odpowiedniej temperatury, utrzymywaniu tej 

temperatury przez określony czas, a następnie powolnym chłodzeniu. Celem wyżarzania jest 

redukcja naprężeń wewnętrznych, poprawa plastyczności oraz zmiana struktury krystalicznej. 

W zależności od zastosowanego procesu, wyróżnia się różne rodzaje wyżarzania: 

 Wyżarzanie pełne - polega na nagrzaniu materiału do temperatury wyższej niż 

temperatura rekrystalizacji i jego powolnym chłodzeniu, dzięki temu procesowi 

uzyskuje się materiał o niskim poziomie naprężeń i jednorodnej mikrostrukturze. 

 Wyżarzanie normalizujące  - odbywa się przez nagrzanie metalu do temperatury nieco 

powyżej temperatury przemiany fazowej i chłodzeniu w powietrzu, proces ten prowadzi 

do uzyskania drobnoziarnistej struktury i poprawy właściwości mechanicznych, takich 

jak wytrzymałość i twardość. 

 Wyżarzanie rekrystalizujące - stosowane w celu usunięcia efektów zgniotu po 

obróbce plastycznej na zimno, polega na nagrzaniu materiału do temperatury 

rekrystalizacji, co powoduje wzrost nowych ziaren. 

Hartowanie jest procesem, który ma na celu zwiększenie twardości i wytrzymałości 

metali. Polega na szybkim schładzaniu metalu z wysokiej temperatury po uprzednim nagrzaniu 

go do odpowiedniego zakresu temperatury (zwykle powyżej temperatury przemiany fazowej). 

Proces ten prowadzi do przemiany austenitu w martenzyt, co znacząco zwiększa twardość 

materiału, hartowanie stosuje się głównie dla stali, jednak proces ten można stosować również 

dla innych stopów metali. Ważnym elementem hartowania jest wybór odpowiedniego medium 

chłodzącego, zastosowanie wody, oleju lub powietrza wpływa na szybkość chłodzenia, a tym 

samym na ostateczne właściwości materiału. Istnieje również proces zwany hartowaniem 

powierzchniowym, w którym szybkie schłodzenie dotyczy jedynie warstwy wierzchniej 

materiału, podczas gdy wnętrze pozostaje mniej zmienione. 

Odpuszczanie to proces stosowany po hartowaniu w celu zredukowania naprężeń  

i poprawy udarności materiału. Polega on na nagrzaniu metalu do temperatury niższej niż 

temperatura hartowania, utrzymywaniu go w tej temperaturze przez określony czas, a następnie 

powolnym chłodzeniu, w zależności od temperatury odpuszczania można uzyskać różne 

kombinacje twardości i plastyczności. Odpuszczanie niskie prowadzi do zachowania wysokiej 

twardości, natomiast odpuszczanie wysokie poprawia plastyczność kosztem pewnej utraty 

twardości. 
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Starzenie - proces starzenia odnosi się głównie do stopów aluminium, miedzi oraz stali 

nierdzewnych i ma na celu poprawę ich właściwości mechanicznych, takich jak twardość  

i wytrzymałość. Starzenie może być naturalne (przebiegające w temperaturze otoczenia) lub 

sztuczne (przyspieszane w wyższych temperaturach). W wyniku starzenia dochodzi do 

wydzielania się faz wtórnych, co prowadzi do utwardzenia materiału. 

 

4.8.2. Obróbka cieplno-chemiczna 

 

Obróbka cieplno-chemiczna jest procesem bardziej zaawansowanym niż tradycyjna 

obróbka cieplna, oprócz poddawania metalu zmianom temperaturowym, modyfikowane są 

także jego właściwości chemiczne. Do materiału wprowadzane są różne pierwiastki chemiczne, 

takie jak węgiel, azot, bor czy chrom, co prowadzi do zmiany składu chemicznego warstwy 

powierzchniowej metalu. 

Nasycanie węglem - nawęglanie - to proces cieplno-chemiczny, w którym powierzchnia 

metalu jest nasycana węglem, polega on na umieszczeniu metalowych elementów w atmosferze 

bogatej w węgiel (np. gaz, proszek lub ciecz) w podwyższonej temperaturze. Dzięki temu 

procesowi powierzchnia materiału staje się znacznie twardsza, podczas gdy jego wnętrze 

zachowuje pierwotną plastyczność. Nawęglanie jest szczególnie popularne w przypadku stali 

niskowęglowych, które po obróbce uzyskują doskonałe właściwości wytrzymałościowe  

i twardość na powierzchni. 

Nasycanie azotem - azotowanie  jest procesem, w którym powierzchnia metalu nasycana 

jest azotem. Odbywa się w atmosferze amoniaku lub w środowisku gazowym zawierającym 

azot w podwyższonej temperaturze, proces ten prowadzi do powstania bardzo twardej warstwy 

powierzchniowej, która jest odporna na zużycie i korozję. Azotowanie stosowane jest głównie 

do stali stopowych, narzędziowych oraz części maszyn, które wymagają wysokiej odporności 

na ścieranie. 

Cynkowanie, chromowanie i borowanie – to inne formy obróbki cieplno-chemicznej, 

które mają na celu zwiększenie odporności metalu na korozję oraz zużycie. Cynkowanie polega 

na nasyceniu powierzchni metalu cynkiem, co zabezpiecza go przed korozją atmosferyczną. 

Chromowanie polega na wprowadzeniu chromu do powierzchni, co nadaje jej wysoką 

odporność na ścieranie i korozję. Borowanie natomiast zwiększa twardość i odporność na 

zużycie poprzez wprowadzenie boru do powierzchni materiału. 
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4.8.3. Zastosowanie obróbki cieplnej i cieplno-chemicznej 

 

Procesy obróbki cieplnej i cieplno-chemicznej znajdują szerokie zastosowanie  

w przemyśle, w szczególności w produkcji narzędzi, elementów maszyn, części 

samochodowych i lotniczych. Dzięki nim możliwe jest dostosowanie właściwości materiałów 

do specyficznych wymagań, takich jak wysoka twardość, odporność na zużycie, wytrzymałość 

na zmęczenie czy odporność na korozję. Procesy te mają także kluczowe znaczenie  

w przemyśle energetycznym, gdzie trwałość i wytrzymałość materiałów są priorytetowe. 

Obróbka cieplno-chemiczna źle przeprowadzona może powodować różnego rodzaju wady  

i zmiany powierzchni materiału (Rys. 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rys. 3. Wady obróbki cieplno-chemicznej 
źródło: opracowanie własne na podstawie: Dobrzański L.A.,  

Podstawy nauki o materiałach i metaloznawstwo, 2000 

 

4.9. BADANIA METALOGRAFICZNE  

Badania mikroskopowe polegają na analizie powierzchni próbek, zarówno tych 

naturalnych, jak i odpowiednio przygotowanych przekrojów (zgładów), przy użyciu 

powiększeń od 40 do 1500x. Dzięki temu można: 
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 ocenić mikrostrukturę materiału, biorąc pod uwagę rodzaj, rozmieszczenie i wielkość 

poszczególnych składników, 

 określić strukturę i grubość różnych warstw, takich jak hartowane, dyfuzyjne czy 

galwaniczne, 

 zidentyfikować wady, np. wtrącenia niemetaliczne, mikropęknięcia czy korozję 

międzykrystaliczną, 

 przybliżenie zawartości węgla w stalach niestopowych poprzez analizę udziału różnych 

faz (Przybyłowicz 2011). 

Do tych obserwacji używa się mikroskopów metalograficznych, które pracują na zasadzie 

odbicia światła od nieprzezroczystych powierzchni próbek -zgładów, (Rys.4), co odróżnia je od 

mikroskopów biologicznych, które wymagają przezroczystości próbek dla światła widzialnego. 

Rys. 4. Zgład metalograficzny przygotowany do badania 

źródło: opracowanie własne – fotografia z kolekcji autorki 

 

Przygotowanie zgładów metalograficznych obejmuje kilka etapów: 

 Przygotowanie próbek: proces zaczyna się od wycięcia fragmentu reprezentatywnego 

dla badanego materiału, a następnie szlifowania, polerowania i trawienia. 

 Wycinanie próbek: wybór odpowiedniego miejsca do pobrania próbki wymaga 

doświadczenia. Kluczowe jest, aby proces ten nie zmienił struktury materiału, np. przez 

zastosowanie narzędzi wysokoobrotowych bez chłodzenia. Należy unikać wpływu 

ciepła podczas cięcia, np. przy użyciu palnika. 
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 Szlifowanie: odbywa się na specjalnych szlifierkach, przy użyciu papieru ściernego  

o różnych gradacjach (od 120 do 600), zmieniając kierunek szlifowania o 90° po każdej 

zmianie papieru. Małe próbki lub te o delikatnych krawędziach umieszcza się  

w uchwytach lub inkluduje w żywicach. Dla cienkich warstw stosuje się czasem zgłady 

skośne, co pozwala uzyskać dokładniejsze dane. 

 Polerowanie: w celu uzyskania lustrzanej powierzchni zgładu, stosuje się polerowanie 

mechaniczne, chemiczne lub elektrolityczne. Polerowanie mechaniczne, najczęściej 

stosowane, usuwa rysy i powierzchniową warstwę zgniotu, jednak czasem wymaga 

ponownego trawienia. Polerowanie elektrolityczne działa poprzez anodowe 

rozpuszczanie próbki, co pozwala uzyskać gładką powierzchnię, ale jest najlepiej 

dopasowane do stopów jednofazowych. 

 Trawienie: polega na aplikacji odpowiednich substancji chemicznych, które reagują  

z powierzchnią próbki, odsłaniając mikrostrukturę. W zależności od badanego materiału 

i celu analizy, dobierane są różne odczynniki oraz parametry trawienia, takie jak czas, 

temperatura i stężenie. Jeśli efekt trawienia nie jest zadowalający, można powtórzyć 

proces, modyfikując jego warunki. 

Każdy etap ma na celu jak najlepsze przygotowanie próbki do analizy mikroskopowej, co 

pozwala na uzyskanie precyzyjnych wyników dotyczących struktury materiału (Kubiński 

2019):  . 

4.9.1. Mikroskop metalograficzny, zasada działania 

Mikroskop metalograficzny (Rys. 5) to precyzyjne urządzenie optyczne, które jest 

wykorzystywane do obserwacji nieprzezroczystych materiałów, takich jak metale, stopy, 

ceramika czy materiały kompozytowe. Jego główną cechą jest zdolność do analizowania 

powierzchni próbek, które nie przepuszczają światła, co odróżnia go od mikroskopów 

biologicznych, które wymagają przezroczystości próbek. 
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Rys. 5.  Mikroskop metalograficzny Delta Optical MET-1000 TRF,  

źródło: opracowanie własne, fotografia z kolekcji autorki 

 

Elementy budowy mikroskopu metalograficznego: 

 Źródło światła: mikroskopy metalograficzne wykorzystują światło odbite od 

powierzchni próbki, dlatego niezbędne jest zastosowanie intensywnego  

i równomiernego źródła światła. Zwykle stosuje się oświetlenie halogenowe lub LED, 

które zapewnia odpowiednią jasność i stabilność strumienia świetlnego, oświetlenie 

może być regulowane, aby dostosować intensywność do potrzeb obserwacji. 

 Układ optyczny: mikroskopy metalograficzne wyposażone są w zestaw soczewek 

tworzących układ optyczny, który składa się z: 

 Obiektywów - są to soczewki znajdujące się najbliżej próbki, odpowiadające 

za uzyskanie obrazu. W mikroskopach metalograficznych stosuje się 

obiektywy o różnym powiększeniu, np. 5x, 10x, 20x, 50x, a nawet 100x, 

obiektywy te są umieszczone w obrotowej głowicy, co pozwala na ich szybkie 

przełączanie. 

 Okularów - stanowią one soczewki, przez które użytkownik obserwuje 

powiększony obraz próbki. Mikroskopy metalograficzne mogą być 

wyposażone w okulary o powiększeniu od 10x do 20x, łącznie z obiektywem 

tworzą końcowe powiększenie obserwowanego obrazu. 

 Tuby optycznej - to część mikroskopu, w której obraz jest formowany  

i przekazywany od obiektywu do okularu. 
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 Stolik mikroskopowy - próbka jest umieszczana na stoliku mikroskopowym, który 

może być ręcznie lub automatycznie regulowany w poziomie i pionie. Precyzyjne 

ustawienie próbki umożliwia obserwację wybranego fragmentu powierzchni w różnych 

powiększeniach. Stolik mikroskopu metalograficznego może być wyposażony  

w systemy do mocowania próbek, aby zapobiec ich przesuwaniu podczas obserwacji. 

 Mikrometr - pozwala na dokładne ustawienie odległości pomiędzy obiektywem  

a próbką, co jest kluczowe do uzyskania ostrego obrazu. Mikrometry umożliwiają 

regulację zarówno w osi pionowej (zgrubna i precyzyjna ostrość), jak i w osi poziomej 

(ruch próbki w kierunku x-y). 

 Kondensor - jest to element odpowiadający za skupienie światła na próbce, co pozwala 

na równomierne oświetlenie powierzchni materiału. Dzięki temu uzyskuje się wyraźny 

i kontrastowy obraz badanej struktury. 

Dodatkowe elementy: 

 Kamera cyfrowa  - nowoczesne mikroskopy metalograficzne mogą być wyposażone  

w kamery, które umożliwiają rejestrację obrazów w wysokiej rozdzielczości. Taki 

system pozwala na dokumentowanie wyników badań oraz ich dalszą analizę  

w programach komputerowych. 

 System komputerowy - niektóre mikroskopy metalograficzne mogą być połączone  

z oprogramowaniem do analizy obrazu, co ułatwia obliczenia dotyczące wielkości 

ziaren, porowatości czy rozkładu faz w materiale. 

Zasada działania mikroskopu metalograficznego : mikroskopy metalograficzne działają 

na zasadzie obserwacji światła odbitego od powierzchni próbki. W przeciwieństwie do 

mikroskopów biologicznych, które analizują światło przechodzące przez przezroczyste obiekty, 

mikroskopy metalograficzne wymagają zastosowania systemu oświetlenia, który oświetla 

próbkę od góry. Światło pada na powierzchnię próbki, odbija się od niej i wraca do obiektywu 

mikroskopu, gdzie jest przetwarzane na obraz. 

Obiektyw zbiera światło odbite od próbki i tworzy powiększony obraz mikrostruktury 

materiału. Następnie obraz ten jest przekazywany przez system soczewek i tubę optyczną do 

okularów, gdzie jest powiększany po raz kolejny. Użytkownik może oglądać obraz 

bezpośrednio przez okulary lub rejestrować go za pomocą kamery cyfrowej. Dlaczego stosuje 

się mikroskopy metalograficzne do badania struktury materiałów? Oto kilka kluczowych 

powodów, dla których są stosowane w analizie strukturalnej: 
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 Analiza mikrostruktury: mikroskopy metalograficzne umożliwiają szczegółową ocenę 

mikrostruktury materiałów. Dzięki dużym powiększeniom (do 1500x) można 

zidentyfikować różne fazy i składniki, które tworzą materiał, co ma kluczowe znaczenie 

w inżynierii materiałowej. Struktura metalu, układ ziaren, obecność wtrąceń i inne 

detale mogą znacząco wpływać na właściwości mechaniczne i wytrzymałościowe 

materiału. 

 Ocena jakości materiału: metalograficzne badania są kluczowe w ocenie jakości  

i jednorodności materiałów,  dzięki mikroskopom można wykryć defekty takie jak 

mikropęknięcia, wtrącenia niemetaliczne czy porowatość, które mogą obniżać 

wytrzymałość materiału i jego odporność na korozję. Mikroskopy te są również 

używane do badania struktury materiałów po różnych procesach obróbki, takich jak 

hartowanie czy galwanizacja. 

 Badanie procesów przemysłowych - mikroskopy metalograficzne są niezbędne  

w przemyśle metalurgicznym do analizy wpływu różnych procesów technologicznych 

na strukturę materiałów. Obróbka cieplna, spawanie, hartowanie czy formowanie mają 

bezpośredni wpływ na mikrostrukturę metalu, a mikroskopowe badania pozwalają na 

ocenę, czy procesy te zostały przeprowadzone prawidłowo. 

 Zastosowanie w analizie awarii – w przypadku awarii konstrukcji metalowych 

mikroskopy metalograficzne są używane do analizy przyczyn uszkodzeń. Badanie 

mikrostruktury uszkodzonego materiału pozwala na zidentyfikowanie, czy awaria była 

spowodowana przez zmęczenie materiału, korozję, mikropęknięcia, czy inne czynniki. 

 Przybliżona ocena składu chemicznego - na podstawie obserwacji struktury metali, 

zwłaszcza stali, możliwa jest przybliżona ocena zawartości pierwiastków, takich jak 

węgiel. W zależności od obecności i rozmieszczenia poszczególnych faz, 

mikroskopowa analiza pozwala na oszacowanie zawartości węgla w stopie, co ma 

znaczenie w kontrolowaniu właściwości mechanicznych stali. 

 

4.10. BADANIA METALOGRAFICZNE – PRZYKŁADY ZADAŃ  

Badania mikrostruktury materiałów, w tym metali i stopów, pozwalają na dokładną ocenę 

ich budowy wewnętrznej. Proces analizy obejmuje szereg kroków, od przygotowania 

mikroskopu metalograficznego po rejestrowanie wyników obserwacji. Poniższa instrukcja 

zawiera zarys procesu badania mikrostrukturalnego. 
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Przygotowanie mikroskopu metalograficznego: 

 Uruchomienie mikroskopu: na początku należy włączyć mikroskop i upewnić się, że 

źródło światła jest poprawnie ustawione. W mikroskopach metalograficznych 

najczęściej stosuje się światło odbite od powierzchni próbki, dlatego oświetlenie musi 

być dostosowane do jej specyfiki. 

 Wybór obiektywu: mikroskopy metalograficzne oferują szeroki zakres powiększeń, od 

niskich (50x, 100x) po wyższe (200x, 500x, a nawet 1000x). Zaleca się rozpoczęcie od 

mniejszych powiększeń w celu zlokalizowania interesującego obszaru, a następnie 

przejście na wyższe, aby zobaczyć więcej szczegółów. 

Regulacja ostrości i uzyskiwanie obrazu: 

 Umieszczenie próbki: próbkę, czyli zgład metalograficzny, należy precyzyjnie ułożyć 

na stoliku mikroskopu, mechanizmy regulacyjne stolika umożliwiają precyzyjne 

ustawienie pozycji próbki. 

 Ostrość obrazu: pierwszym krokiem jest ustawienie zgrubnej ostrości za pomocą 

większego pokrętła, a następnie bardziej precyzyjne dostrojenie obrazu przy użyciu 

pokrętła mikro. W przypadku większych powiększeń wymagana jest szczególna 

ostrożność przy regulacji. 

 Dostosowanie oświetlenia: kluczowe jest także ustawienie odpowiedniej intensywności 

światła, zbyt silne światło może prowadzić do prześwietlenia, natomiast zbyt słabe 

uniemożliwi dostrzeżenie szczegółów struktury. 

Wybór powiększenia: 

 Powiększenie początkowe (50x-100x): na początku badania zaleca się niższe 

powiększenie, aby uzyskać ogólny obraz struktury materiału. 

 Większe powiększenia (200x, 500x): po wstępnej analizie można przejść na wyższe 

powiększenia, aby zobaczyć bardziej szczegółowe aspekty, takie jak ziarna, wtrącenia 

czy mikropęknięcia, powiększenia powyżej 500x umożliwiają analizę najdrobniejszych 

elementów struktury. 

Analiza mikrostruktury: 

 Identyfikacja faz i składników: mikroskop pozwala na obserwację różnych faz  

i składników struktury, ziarna mogą różnić się kolorami i rozmiarami, co pozwala 

wnioskować o ich składzie chemicznym i orientacji krystalograficznej. 
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 Granice ziaren: widoczne granice ziaren to linie oddzielające poszczególne obszary, 

granice te mogą być bardziej wyraźne dzięki trawieniu, które uwypukla różnice między 

nimi. 

 Obserwacja wad: warto zwrócić uwagę na defekty takie jak pęknięcia, wtrącenia czy 

porowatość, ciemniejsze obszary mogą wskazywać na obecność zanieczyszczeń lub 

mikropęknięć. 

 Opis struktury: na podstawie uzyskanych obserwacji należy opisać strukturę materiału, 

można określić, czy ziarna są równomiernie rozmieszczone, czy widoczne są wady oraz 

czy mikrostruktura jest jednofazowa lub wielofazowa. 

Przykłady opisu mikrostruktury: 

 Struktura jednofazowa: obserwowane są jednolite ziarna ferrytu, które różnią się 

orientacją krystalograficzną, ale nie zawierają wyraźnych defektów. 

 Struktura wielofazowa: w badanym materiale widać zróżnicowane fazy, w tym ferryt  

i perlit, a także obecność wtrąceń niemetalicznych. 

 Wady: mikrostruktura ujawnia liczne wady, takie jak pęknięcia i wtrącenia, które mogą 

świadczyć o nieprawidłowościach produkcyjnych. 

Dokumentacja wyników: 

 Notatki: wszelkie obserwacje dotyczące struktury, rozmiaru ziaren, obecności defektów 

należy dokładnie zapisać, warto także zwrócić uwagę na wpływ obróbki termicznej na 

strukturę materiału. 

 Fotografie: zaleca się wykonanie zdjęć badanej struktury, aby później móc 

przeprowadzić dodatkową analizę lub porównać wyniki z innymi próbkami. 

Podsumowanie badania: 

Na podstawie zebranych informacji dokonuje się ostatecznej oceny materiału, uwzględniając 

jakość próbki, obecność defektów oraz zgodność z normami, dokładna interpretacja wyników 

badań metalograficznych dostarcza cennych informacji o właściwościach materiału, co jest 

kluczowe w dalszej analizie jego zastosowań przemysłowych. 
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158,25 µm 

 

Rys. 6. Żeliwo szare – obraz mikroskopowy  

źródło: opracowanie własne, fotografia z kolekcji autorki  

 

Mikrostruktura żeliwa szarego charakteryzuje się obecnością grafitu w postaci płatków 

oraz osnowy metalicznej, która może składać się z ferrytu, perlitu lub ich mieszaniny. Wygląd 

mikrostruktury żeliwa szarego jest ściśle związany z jego składem chemicznym, warunkami 

odlewania oraz obróbki cieplnej. Główne składniki mikrostruktury żeliwa szarego to: 

 Płatki grafitu: grafit w żeliwie szarym występuje w formie płatków, co jest jego 

najbardziej charakterystyczną cechą. Płatki te są rozproszone w osnowie metalicznej  

i wpływają na właściwości mechaniczne żeliwa, takie jak kruchość oraz niska 

wytrzymałość na rozciąganie. Płatki grafitu pełnią funkcję naturalnych dyslokacji, które 

mogą osłabiać materiał, gdyż są to miejsca koncentracji naprężeń, jednak ich obecność 

nadaje żeliwu dobre właściwości tłumiące drgania oraz dobrą skrawalność. 

 Kształt i wielkość płatków: zależą od warunków chłodzenia i składu chemicznego. 

Wolne chłodzenie sprzyja powstawaniu większych płatków grafitu, podczas gdy 

szybsze chłodzenie prowadzi do ich drobniejszej struktury. 

 Rozmieszczenie płatków: wpływa na właściwości mechaniczne żeliwa, 

nierównomierne rozmieszczenie płatków może prowadzić do defektów strukturalnych, 

takich jak lokalne osłabienie materiału. 

158,25 µm - grafit płatkowy 

71,66 µm 

63,10 µm 
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Osnowa metaliczna: osnowa w żeliwie szarym może składać się z ferrytu, perlitu lub ich 

kombinacji, w zależności od zawartości węgla, krzemu i innych dodatków stopowych oraz od 

szybkości chłodzenia po odlaniu. 

 Ferryt: to miękka faza żelazo-węglowa, o strukturze regularnej kubicznej przestrzennie 

centrowanej (RPC), jest plastyczny i ma niską wytrzymałość mechaniczną, obecność 

dużej ilości ferrytu w osnowie sprawia, że żeliwo staje się bardziej plastyczne, lecz 

mniej wytrzymałe. 

 Perlit: jest to mieszanina ferrytu i cementytu, która tworzy lamelarną strukturę  

o wysokiej twardości i wytrzymałości, perlit zwiększa twardość żeliwa, poprawiając 

jego odporność na zużycie, ale jednocześnie zmniejsza plastyczność materiału. 

Fazy węglikowe (cementyt): w przypadku żeliwa szarego z wyższą zawartością węgla lub 

szybko chłodzonego mogą pojawiać się węgliki (cementyt - Fe₃C). Cementyt jest twardą  

i kruchą fazą, która zwiększa twardość materiału, ale zmniejsza jego skrawalność i podatność 

na obróbkę. 

Grafityzacja: proces grafityzacji, który zachodzi podczas krystalizacji, polega na wydzielaniu 

się węgla w postaci grafitu, zamiast tworzenia twardego cementytu (Fe₃C), żeliwo szare różni 

się od żeliwa białego właśnie procesem grafityzacji - w żeliwie białym grafit nie występuje,  

a węgiel pozostaje w postaci cementytu, co nadaje mu znacznie większą twardość i kruchość. 

Wpływ składu chemicznego: 

 Krzem (Si): dodatek krzemu sprzyja grafityzacji, co prowadzi do tworzenia płatków 

grafitu kosztem cementytu, wyższa zawartość krzemu zwiększa ilość ferrytu w osnowie 

i poprawia plastyczność materiału. 

 Węgiel (C): zawartość węgla wpływa na ilość grafitu oraz perlitu w osnowie, wyższa 

zawartość węgla sprzyja tworzeniu większej ilości grafitu. 

 Dodatki stopowe: dodatki takie jak mangan (Mn), fosfor (P) czy chrom (Cr) mogą 

wpływać na twardość i wytrzymałość żeliwa, zmieniając ilość i rozkład faz  

w mikrostrukturze. 
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Rys. 7. Stal 100Cr6 – po azotowaniu gazowym -zdjęcie mikroskopowe 
źródło: opracowanie własne, fotografia z kolekcji autorki 

 

Po azotowaniu struktura powierzchniowa stali zmienia się znacząco w porównaniu z jej stanem 

przed procesem. Możemy wyróżnić następujące strefy: 

Warstwa związków azotowych (tzw. biała warstwa): jest to cienka, ale twarda warstwa 

powstała bezpośrednio na powierzchni stali. Składa się głównie z: 

 Azotków żelaza (Fe₄N - faza ε i Fe₂-3N - faza γ'): azotki te tworzą twardą, odporną na 

zużycie i korozję warstwę. Biała warstwa ma dużą twardość (ok. 1000-1200 HV), co 

zapewnia doskonałą odporność na ścieranie. 

 Azotków chromu: ponieważ stal 100Cr6 zawiera chrom, azot reaguje także  

z chromem, tworząc azotki chromu (CrN), te związki dodatkowo zwiększają twardość 

i odporność na korozję. 

Strefa dyfuzyjna: znajduje się pod warstwą związków azotowych i jest to warstwa, w której 

azot wnika do struktury stali, ale nie tworzy wyraźnych związków chemicznych, w tej strefie 

dochodzi do: 

 Dyfuzji azotu: azot przenika w głąb struktury stali, tworząc lokalne przesycenie 

atomów azotu w osnowie martenzytycznej. 

13,46µm – 
warstwa 

azotowania 

26,39µm - węglik 
chromu  
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 Wzrostu twardości: wprowadzenie azotu prowadzi do umocnienia osnowy poprzez 

tzw. mechanizm wzmocnienia roztworowego, azot będąc małym atomem, powoduje 

napięcia w sieci krystalicznej, co podnosi twardość. 

 Powstawania węgliko-azotków: zamiast typowych węglików chromu (Cr₃C₂), mogą 

powstawać węgliko-azotki (Cr₃(CxN)), które są bardziej stabilne w wyższych 

temperaturach i charakteryzują się większą twardością. 

Osnowa wewnętrzna: poza strefą dyfuzyjną struktura stali pozostaje w dużej mierze 

niezmieniona, w osnowie tej wciąż dominuje martenzyt oraz węgliki chromu, jednakże strefa 

ta nie jest tak twarda jak warstwy powierzchniowe. 

Zmiany właściwości po azotowaniu: azotowanie gazowe wprowadza szereg zmian  

w mikrostrukturze, które prowadzą do poprawy właściwości mechanicznych stali 100Cr6 m.in.: 

 Zwiększona twardość powierzchni: warstwa azotkowa i strefa dyfuzyjna znacznie 

podnoszą twardość powierzchni, co zwiększa odporność na ścieranie. 

 Odporność na korozję: obecność azotków żelaza i chromu na powierzchni poprawia 

odporność na korozję, szczególnie w środowiskach agresywnych. 

 Zwiększona trwałość zmęczeniowa: dzięki warstwie azotkowej i umocnieniu 

powierzchni materiału, stal staje się bardziej odporna na cykliczne obciążenia, co 

przekłada się na wyższą trwałość zmęczeniową. 

 Zachowanie właściwości rdzenia: azotowanie zmienia głównie właściwości 

powierzchniowe stali, pozostawiając rdzeń stosunkowo miękki i bardziej plastyczny, co 

pozwala materiałowi na pochłanianie obciążeń dynamicznych. 
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Robert Cieślak  

 

5. GRAFIKA INŻYNIERSKA W MECHANICE I BUDOWIE MASZYN 

 

5.1.  Zagadnienia teoretyczne z przykładami 

 

Rysunek jest jedną z form wypowiadania się i wzajemnego porozumiewania się ludzi, a 

zarazem najbardziej uniwersalnym środkiem wyrażania i przekazywania myśli, gdyż nie 

wymaga znajomości języka. 

Specjalnym rodzajem rysunku    jest rysunek   techniczny, służący do   porozumiewania 

się ludzi zatrudnionych w produkcji: konstruktorów oraz bezpośrednich wykonawców. Dzięki 

międzynarodowemu ujednoliceniu formy oraz stosowaniu uproszczeń rysunek techniczny jest 

czytelny dla każdego pracownika technicznego, bez konieczności znajomości języka.   

Umożliwia   to wymianę osiągnąć technicznych między krajami oraz korzystanie z wszelkich 

źródeł informacji technicznej. 

Rysunek techniczny musi być łatwo i jednoznacznie rozumiany, jest on wykonywany 

zgodnie z ustalonymi zasadami i przepisami, wynikającymi z państwowych i 

międzynarodowych norm oraz zaleceń. W poszczególnych krajach normalizacją zajmują się 

Komitety Normalizacyjne. W Polsce prace normalizacyjne prowadzi Polski Komitet 

Normalizacji, który zgodnie z międzynarodowymi zaleceniami opracowuje Polskie Normy 

(PN). 

 Urządzenia elektryczne i elektroniczne są wykonywane w Polsce na podstawie 

dokumentacji technicznych zgodnych z polskimi normami rysunku technicznego 

maszynowego i rysunku technicznego elektrycznego. Rysunek techniczny maszynowy za 

pomocą rzutowania i wymiarowania przedstawia budowę urządzenia oraz kształt i wymiary 

składowych czyści mechanicznych, zwanych częściami maszyn (w skrócie częściami). 

Rysunek techniczny elektryczny za pomocą znormalizowanych symboli graficznych 

przedstawia urządzenie lub jego elementy składowe, linie zaś symbolizują połączenia 

elektryczne między nimi21. 

Rosnące wciąż wraz z rozwojem i postępem technicznym w przemyśle maszynowym - 

wymagania dotyczące dokumentacji technicznej powodują konieczność stosowania różnych 

                                                           
21 Paprocki K. Rysunek techniczny. Wydawnictwa Szkolne i Pedagogiczne 1996.  s.6 
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rodzajów i odmian rysunków technicznych maszynowych,  o  cechach  odpowiadających 

celowi, do jakiego są przeznaczone. 

Podział rysunków technicznych maszynowych można przeprowadzać według wielu mniej 

lub bardziej ważnych kryteriów. Mnogość tych kryteriów spowodowała, że wszystkie 

dotychczasowe próby opracowania pełnej klasyfikacji rysunków maszynowych miały raczej 

charakter teoretyczny i nie doprowadziły do poprawnego rozwiązania tego zagadnienia. 

Dla praktyki przemysłowej istotne znaczenie ma nie tyle klasyfikacja rysunków, ile 

uporządkowanie nazw najczęściej spotykanych rodzajów rysunków, w celu uniknięcia 

ewentualnych nieporozumień. Dlatego w normach ustalono i zdefiniowano terminy stosowane 

w dokumentacji technicznej wyrobów, dotyczące rysunków technicznych we wszystkich 

dziedzinach zastosowania22. 

5.2.  Formaty rysunkowe i linie rysunkowe 

 

Formatem zasadniczym arkusza jest format A4 o wymiarach 210x297 mm. Formaty A3, 

A2, A1 i A0 powstają przez zwielokrotnienie formatu A4, przy czym format A3 - 2A4, format 

A2 - 2A3 itd. (tab. 1). Formaty od A4 do A0 noszą nazwę formatów podstawowych23. 

 
Tab. 1. Wymiary i kształt arkuszy rysunkowych 

Format Wymiar arkusza (mm) 
A0 841 x 1189 
A1 594 x 841 
A2 420 x 594 
A3 297 x 420 
A4 210 x 297 

 
Linia, według normy, to obiekt geometryczny, którego długość jest większa niż połowa 

grubości. Obiekt graficzny, którego długość jest mniejsza lub równa połowie grubości, nazywa 

się kropką. 

Zapis na rysunku powstaje w wyniku użycia linii różnego rodzaju i grubości. Dobra 

znajomość tego zagadnienia to klucz do poprawnego wykonania i odczytania rysunku 

technicznego. 

Jakie sprawy i problemy reguluje norma Linie rysunkowe? 

 Określa rodzaje, nazwy i budowę linii. 

                                                           
22 Dobrzański T. Rysunek techniczny maszynowy, Wydawnictwo PWN, 2005,. s. 9 
23 Dobrzański T. Rysunek techniczny maszynowy, Wydawnictwo PWN, 2005,. s. 11 
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 Ustala obowiązujące grubości linii oraz zasady ich wyboru do danego opracowania 

rysunkowego. 

 Opisuje budowę linii nieciągłych oraz zasady ich rysowania. 

 Określa jednoznacznie zastosowanie linii. 

W rysunku technicznym stosuje się następujące rodzaje linii (tabl. 2). Każda z nich ma 

opisany przez normę odpowiadający jej numer, graficzną budowę oraz nazwę24. 

 
Tab. 2. Rodzaje linii rysunkowych oraz ich zastosowanie 

Lp. Rodzaj linii Linia - 
budowa 

Odmiana 
grubości 

Podstawowe zastosowanie 

1. Ciągła 

 cienka 

 linie wymiarowe 
 pomocnicze linie wymiarowe 
 linie odniesienia 
 linie kreskowania przekrojów 

 gruba 

 widoczne zarysy widoków i przekrojów 
 ślady płaszczyzn przekrojów 
 zarysy kładów przesuniętych 
 obramowanie rysunku 

 bardzo gruba  połączenia klejone i lutowane 

2.  Falista  cienka 
 urwania i przerwania rzutów 
 linia oddzielająca widok od przekroju 

3. Zygzakowa  cienka  urwania i przerwania rzutów 
4. Kreskowa  cienka  niewidoczne zarysy przedmiotu 

5. Punktowa 

 cienka  się symetrii 
 koła i linie podziałowe 

 gruba 
 powierzchnie podlegające obróbce 

cieplnej 
 powleczenia 

6. Dwupunktowa  cienka 
 linie gięcia na rozwinięciach 
 skrajne położenia ruchomych części 

7. Wielopunktowa  cienka  ma zastosowanie na rysunku 
budowlanym i w kartografii 

 

5.3. Rzutowanie prostokątne, przekroje i wymiarowanie                

 

Rzuty aksonometryczne odzwierciedlają przedmiot w sposób poglądowy, wyraźny i 

czytelny, również dla człowieka nie znającego zasad rysunku technicznego. Sporządzenie 

rysunku w rzutach aksonometrycznych, szczególnie rysunku przedmiotu o złożonych 

kształtach, jest bardzo pracochłonne, wymaga czasu i sporych umiejętności. Z tych m.in. 

powodów w technice mają zastosowanie rysunku wykonane według innych reguł. Metodą 

rzutowania najczęściej stosowaną w rysunku technicznym jest rzutowanie prostokątne25. 

                                                           
24 Lewandowski T., Rysunek techniczny dla mechaników, WSiP, 2018, s. 21 
25 Lewandowski T., Rysunek techniczny dla mechaników, WSiP, 2018, s. 62-63 
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Rzutowanie prostokątne metoda europejską E polega na wyznaczaniu rzutów 

prostokątnych przedmiotu na wzajemnie prostopadłych rzutniach, przy założeniu, ze 

przedmiot rzutowany znajduje się między obserwatorem i rzutnią. 

Jeżeli umieścimy przedmiot wewnątrz wyobrażalnego prostopadłościanu, którego 

wszystkie ściany są rzutniami, i wyznaczymy na tych rzutniach rzuty prostokątne 

przedmiotu wg metody E, to po rozwinięciu ścian prostopadłościanu w sposób pokazany 

na otrzymamy układ  rzutów  tego  przedmiotu  pokazany  na  rys. 1. 

Poszczególne rzuty mają następujące nazwy (rys. 1): 

rzut w kierunku A - rzut z przodu (rzut główny), 

rzut w kierunku B - rzut z góry, 

rzut w kierunku C - rzut od lewej strony, 

rzut w kierunku D - rzut od prawej strony, 

rzut w kierunku E - rzut z dołu, 

rzut w kierunku F - rzut z tyłu. 

Rzutowanie metodą europejski E obowiązuje w Polsce i w wielu innych krajach26. 

 

 
Rys. 1. Rzutowanie metodą europejski E 
 

                                                           
26 Dobrzański T. Rysunek techniczny maszynowy, Wydawnictwo PWN, 2005, s. 32 
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Rzutowanie prostokątne metodą amerykańską A – rzutowanie tą metodą różni się od 

metody E tym, że rzutnia znajduje się między obserwatorem a przedmiotem rysowanym, 

co powoduje, że w układzie rzutów wg metody A (rys. 2) niektóre rzuty są jak gdyby 

poprzestawiane w porównaniu z układem wg metody E (rzuty B z E i C zł D). Rzutowanie 

metodą A jest stosowane głównie w krajach anglosaskich. 

 

Przy rysowaniu przedmiotów w rzutach prostokątnych należy stosować następujące 

zasady: 

 Liczba rzutów powinna być ograniczona do minimum niezbędnego do jednoznacznego 

przedstawienia kształtów przedmiotu i zwymiarowania go. Wszystkie sześć rzutów, jak 

na rys. 1, rysuje się tylko wtedy, gdy przedmiot ma skomplikowaną budowę. W ogromnej 

większości przypadków wystarczają trzy rzuty (najczęściej A, B i C), dwa lub jeden (rzut 

główny, który nie może być pominięty na żadnym rysunku, niezależnie od liczby rzutów). 

Przy rzutowaniu metodą E przekroje umieszcza się albo na miejscach odpowiednich 

widoków, gdy te ostatnie nie są potrzebne, albo na dowolnych wolnych miejscach na 

arkuszu. Natomiast jeżeli jednego z widoków nie można umieścić na arkuszu zgodnie z 

metodą rzutowania E, to można go przesunąć równolegle na dowolne miejsce na arkuszu. 

Gdy któryś z rzutów (oprócz głównego) musi być z jakiegoś powodu obrócony o pewien 

kąt w stosunku do swego właściwego położenia, to nad takim rzutem należy umieścić 

znak . 

 Przedmiot rysowany powinien być tak ustawiony wewnątrz wyobrażalnego 

prostopadłościanu, aby większość jego charakterystycznych płaszczyzn i osi była 

równoległa lub prostopadła do rzutni, gdyż ułatwia to rysowanie i wymiarowanie. 

 Rzut główny, zarówno rysunku złożeniowego, jak i rysunku pojedynczej części 

maszynowej, powinien - jeśli to jest możliwe - przedstawiać przedmiot w położeniu, jakie 

ma on zajmować w rzeczywistości (tzw. położenie użytkowe), widziany od strony 

uwidaczniającej - najwięcej jego cech charakterystycznych. Od zasady tej dopuszcza się 

następujące odstępstwa: 

 długie przedmioty, których położenie użytkowe jest pionowe, można rysować w 

położeniu poziomym, przy czym dolną część przedmiotu umieszcza się z prawej 

strony rzutu, 

 przedmioty, których położenie użytkowe nie jest ani poziome, ani pionowe, oraz 

przedmioty, które przyjmują różne położenia podczas Użytkowania (np. 

korbowody), rysuje się w położeniu poziomym lub pionowym. 
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 Na rysunku wykonawczym przedmiot przedstawia się najczęściej w położeniu, jakie 

zajmuje podczas obróbki nadającej mu najwięcej kształtów charakterystycznych, a więc 

np. wrzeciono wiertarki - w położeniu poziomym (położenie podczas toczenia 

wrzeciona), natomiast na rysunkach operacyjnych i zabiegowych (w dokumentacji 

technologicznej) - w położeniu, jakie przedmiot ma zajmować podczas konkretnej 

operacji czy zabiegu. 

 Widoki rozwinięte przedmiotów rysuje się w celu pokazania budowy przedmiotów 

walcowych i stożkowych oraz przedmiotów wyginanych z blachy27. 

 

Przekroje – rzuty przedmiotu   w postaci widoków często nie dają   pełnego 

wyobrażenia o jego kształcie, zwłaszcza gdy ma on złożoną budowę, wewnętrzną. 

Niewidoczne krawędzie przedmiotu zaznaczano za pomocą linii kreskowej cienkiej, zmniejsza 

to jednak czytelność rysunku. W celu dokładnego pokazania wewnętrznego kształtu 

przedmiotu stosuje się przekroje. Zasady wykonywania przekrojów zgodnie z normą 

przedstawiono na rys. 228. 

 

 

Rys. 2. Zasady wykonywania przekroju 

 

                                                           
27 Dobrzański T. Rysunek techniczny maszynowy, Wydawnictwo PWN, 2005, s. 33 
28 Paprocki K. Rysunek techniczny. Wydawnictwa Szkolne i Pedagogiczne 1996.  s. 40 
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Przekrój powstaje przez przecięcie przedmiotu wyobrażalną płaszczyzną tnącą i odrzucenie 

części przedmiotu znajdującej się przed płaszczyzną tnącą. Następnie wykonuje się rzut 

przeciętego przedmiotu na płaszczyznę rysunku. 

 

Oznaczanie i kreskowanie przekrojów: 

a) usytuowanie przekroju względem rzutu głównego zależy od położenia płaszczyzny 

przekroju i jej oznaczenia przez odcinki linii grubej, strzałki i litery; 

b) jeśli przekrój jest jednoznaczny, to można go nie oznaczać; 

c) jeśli należy wykonać kilka przekrojów przedmiotu, to oznacza się je kolejnymi literami 

wielkimi (z wyjątkiem liter: I, O, R, Q, X); 

d) przekrój jest rzutem przeciętego przedmiotu, muszą więc być na nim zaznaczone 

wszystkie szczegóły przedmiotu, leżące poza płaszczyzną tnącą; 

e) płaszczyznę przekroju kreskuje się liniami ciągłymi cienkimi, nachylonymi pod kątem 

450 do głównych krawędzi przedmiotu. Linie kreskowania powinny przebiegać przez 

cały obszar płaszczyzny przekroju przy takim samym nachyleniu i odległości t, mimo 

przerw w polu przekroju. W rysunkach o średniej wielkości można przyjąć t = 2mm. 

Dla kilku przekrojów tego samego przedmiotu kreskowanie powinno być zgodne co do 

kierunku, nachylenia i odległości; 

f) pola przekroju załamane pod kątem 450 można kreskować pod kątem 300; 

g) wąskie pola przekroju mogą być zaczernione; 

h) na rysunkach złożeniowych kreskowanie powierzchni przedmiotu stykających się 

części powinno różnić się kierunkiem lub przynajmniej odległością29. 

 

Kłady 

Kład jest to zarys figury płaskiej leżącej w płaszczyźnie poprzecznego przekroju przedmiotu, 

obrócony wraz z tą płaszczyzną o 900 i położony na widoku przedmiotu (kład miejscowy - rys. 

3), lub poza jego zarysem (kład przesunięty - rys. 4). Kierunek obrotu płaszczyzny przekroju 

wraz z kładem powinien być zgodny z kierunkiem patrzenia na przedmiot od strony prawej lub 

od dołu, a więc płaszczyznę tę należy obracać w lewo lub do góry, w zależności od jej 

położenia. Kłady miejscowe wolno rysować tylko wtedy, gdy nie zaciemniają rysunku; rysuje 

się je liniami cienkimi, zaś kłady przesunięte - liniami grubymi, jak zwykłe rzuty. Jeżeli 

płaszczyzna przekroju przechodzi przez oś otworu walcowego lub stożkowego, to kład 

                                                           
29 Paprocki K. Rysunek techniczny. Wydawnictwa Szkolne i Pedagogiczne 1996.  s. 41 
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uzupełnia się widokiem krawędzi otworów leżących za płaszczyzną przekroju (aby uniknąć 

„rozpadnięcia się” kładu na dwie odrębne części). We wszystkich innych przypadkach, w 

których kład składałby się z dwóch lub więcej części oddzielnych; należy rysować nie kład, 

lecz przekrój30. 

 

 

 

Rys. 3. Kład miejscowy 

 

 

Rys. 4. Kład przesunięty 

                                                           
30 Dobrzański T. Rysunek techniczny maszynowy, Wydawnictwo PWN, 2005, s. 38 
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Wymiarowanie 

Rzuty przedmiotu odwzorowują jego budowę i kształt, nie stanowią jednak informacji 

wystarczającej do jego wykonania. Wykonawca, poza kształtem i budową, musi ponadto znać 

wymiary poszczególnych elementów geometrycznych narysowanego przedmiotu. 

Wymiarowanie, czyli podawanie wymiarów na widokach, przekrojach i kładach, podobnie jak 

zasady rzutowania, jest objęte normalizacją. Z tego powodu wymiarowanie nie może być 

dowolne, przypadkowe i wykonane według indywidualnych pomysłów autora rysunku. 

 

Wymiar rysunkowy składa się z kilku elementów graficznych (rys. 6): 

 linii wymiarowej, znaku ograniczenia linii wymiarowej, liczby wymiarowej,  

 pomocniczej linii wymiarowej, znaku wymiarowego (rys. 6 a),  

 oznaczenia początku linii wymiarowej oraz linii odniesienia (rys. 6 b). 

 

Wymienione elementy nie zawsze występują równocześnie, ale każdy z nich musi spełniać 

określone wymagania graficzne. 

 

 

Rys. 6 a, b. Elementy wymiaru rysunkowego 

 

Linie wymiarowe należy rysować: 

1. jako linie ciągłe cienkie zakończone znakami ograniczenia: 

 przy wymiarowaniu odcinka prostoliniowego - jako równoległe do tego odcinka (rys. 

7a), 

 przy wymiarowaniu kąta - jako łuk okręgu zatoczonego z wierzchołka 

wymiarowanego kąta (rys. 7b), 

 przy wymiarowaniu łuku - współśrodkowo z wymiarowanym lukiem (rys. 7c), 
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 przy wymiarowaniu odległości między łukami współśrodkowymi - promieniowo do 

wymiarowanych łuków (rys. 7c), 

 przy wymiarowaniu średnicy okręgu - jako odcinki łączące dwa punkty okręgu i 

przechodzące przez środek okręgu (rys. 2d). 

2. w odległości nie mniejszej niż 10 mm od linii zarysu przedmiotu i 7 mm od 

równoległej osi wymiarowej (rys. 2e). 

3. w przypadkach szczególnych - jako urwane w odległości 2÷10 mm poza środkiem 

okręgu lub osią symetrii (rys. 2f, g). 

 

Linie wymiarowe nie mogą: 

1. wzajemnie się przecinać, z wyjątkiem linii wymiarowych okręgów kół 

współśrodkowych, 

2. spełniać żadnych innych funkcji na rysunku poza określaniem wymiaru, 

3. Jeśli to możliwe, nie powinny się przecinać z pomocniczymi liniami wymiarowymi i 

liniami odniesienia, 

4. leżeć na przedłużeniu osi symetrii pomocniczych linii wymiarowych oraz linii zarysu 

przedmiotu, 

5. leżeć na jednej prostą (przy wymiarowaniu promieni łuków okręgów 

współśrodkowych)31. 

 

                                                           
31 Lewandowski T., Rysunek techniczny dla mechaników, WSiP, 2018, s. 122 



 

229 
 

 

Rys. 7 a, b, c, d, e f, g. Rysowanie linii wymiarowych 

 

Znaki ograniczenia linii wymiarowych - groty rysuje się krótkimi, cienkimi liniami 

tworzącymi ostrze. Grot może być otwarty, zamknięty lub zamknięty i zaczerniony, natomiast 

ostrze grota może mieć dowolny kąt rozwarcia, zawarty w przedziale 15 do 900 (rys. 8 a,b,c). 

Wielkość grota powinna być proporcjonalna do wielkości rysunku. 

W zasadzie ostrza grotów powinny dotykać od wewnątrz linii, między którymi wymiar ma 

być podany. W braku miejsca groty można umieszczać na zewnątrz tych linii, na 

przedłużeniach linii wymiarowej. 

Dopuszczalne jest zastępowanie grotów cienkimi (lub o grubości linii cyfr wymiarowych) 

kreskami o długości co najmniej 3,5 mm, nachylonymi pod kątem 450 do linii wymiarowych 

lub kropkami o średnicy ok. 1 mm (rys. 8 e,d). 32. 

 

                                                           
32 Dobrzański T. Rysunek techniczny maszynowy, Wydawnictwo PWN, 2005, s. 38 
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Rys. 8. Znaki ograniczenia linii wymiarowych 

 

Liczby wymiarowe na rysunkach technicznych maszynowych wymiary liniowe 

(długościowe) podaje się w milimetrach, przy czy oznaczenie „mm” pomija się, nawet gdy 

liczba wymiarowa podana jest z dokładnością do trzech znaków dziesiętnych za przecinkiem. 

Jeżeli konieczne jest podanie wymiaru w innych jednostkach, to za liczbą wymiarową należy 

umieścić oznaczenie jednostki miary, np. 10 cm. Przy konstruowaniu zaleca się przyjmować - 

o ile to możliwe - wartości liczbowe wymiarów (przynajmniej ważniejszych) z ciągów 

wymiarów normalnych. 

Pomocnicze linie wymiarowe (rys. 9) należy rysować: 

 jako linie ciągłe cienkie, przeciągnięte 2-4mm poza odpowiadające im linie wymiarowe 

(rys.9a), 

 prostopadle do odpowiadających wymiarów liniowych (rys. 9a), a w szczególnych 

przypadkach jako dwie ukośne linie równoległe (rys. 9b), 

 jako przedłużenia osi symetrii, gdy zachodzi taka potrzeba (rys. 9c), 

 prostopadłe do cięciwy łuku przy wymiarowaniu tej cięciwy (rys. 4d), 

 prostopadle do cięciwy łuku przy wymiarowaniu łuku opartego na kącie 

wierzchołkowym nie większym niż 90° (rys. 4e), 

 promieniowo - przy wymiarowaniu łuku opartego na kącie wierzchołkowym większym 

od 90°(rys. 4f). 

Należy unikać wzajemnego przecinania się pomocniczych linii wymiarowych oraz ich 

prowadzenia równolegle do linii kreskowania przekrojów33. 

                                                           
33 Dobrzański T. Rysunek techniczny maszynowy, Wydawnictwo PWN, 2005, s. 43 
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Rys. 9 a, b, c, d ,e, f. Rysowanie pomocniczych linii wymiarowych 

 

Zasady ogólne wymiarowania, nazywane niekiedy porządkowymi, są bardziej 

szczegółowym uściśleniem zasady jednoznaczności, niesprzeczności i zupełności w 

odniesieniu do układu wymiarów. Podają one ograniczenia, którym podlega układ wszystkich 

wymiarów zawartych na rysunku i z tego powodu muszą być bezwzględnie przestrzegane. 

Jednoznaczność, niesprzeczność i zupełność zapisu konstrukcji osiąga się, gdy: zapis 

zawiera tylko wymiary konieczne, pominięto wymiary oczywiste dla przyjętego układu 

wymiarów, nie powtórzono żadnego wymiaru i nie zamknięto łańcucha wymiarowego. 

Zasada wymiarów koniecznych stanowi, że na rysunku należy podać tylko te wymiary, 

które są niezbędne do opisania geometrycznych cech konstrukcyjnych przedmiotu w 

określonym stanie jego wykonania. Układ wymiarów musi być zatem podporządkowany 

rodzajowi rysunku i jego przeznaczeniu. Inne wymiary są potrzebne do wykonania surowego 

odlewu lub odkuwki, inne do wykonania części gotowej, a jeszcze inne do zmontowania całego 

zespołu lub wyrobu. 

Wyodrębnienie poszczególnych grup wymiarów odpowiadających kolejnym etapom 

tworzenia przedmiotu i przedstawienie ich na oddzielnych rysunkach poprawia czytelność 

zapisu, ale wymaga sporządzenia bardziej rozbudowanej dokumentacji rysunkowej. Z tego też 

względu taki sposób postępowania jest stosowany głównie podczas przygotowania produkcji 

seryjnej lub masowej, gdzie kosztem zwiększonych nakładów na opracowanie dokumentacji 

uzyskuje się poprawę organizacji procesów wytwarzania. 
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Każdy kolejny rysunek przedmiotu, dla którego wykonano odrębne rysunki odlewu lub 

odkuwki, rysunki zabiegowe, czynnościowe, montażowe itp., zawiera tylko wymiary potrzebne 

do jego dalszej obróbki, a więc wymiary powierzchni obrabianych i wymiary określające 

położenie tych powierzchni względem powierzchni ukształtowanych w poprzednim procesie 

technologicznym (rys. 10). Na rysunkach przedmiotów o nieskomplikowanej konstrukcji lub 

wytwarzanych jednostkowo podaje się równocześnie wszystkie wymiary powierzchni 

obrabianych i nieobrabianych. O tym, którą cechę konstrukcyjną opisują poszczególne układy 

wymiarów, wnioskuje się wówczas na podstawie znajomości technik wytwarzania. 

 

Rys. 10. Zasada pomijania wymiarów oczywistych 

 

Zasada pomijania wymiarów oczywistych (rys. 11) ściśle wynika z zasady wymiarów 

koniecznych. Skoro bowiem na rysunku powinny być podane wyłącznie wymiary konieczne, 

to nie należy podawać wymiarów oczywistych, takich jak kątów 00 (1800) między prostymi 

równoległymi i kąta 900 między prostymi prostopadłymi. Jednak wymiar kąta 900 można 

pominąć tylko wówczas, gdy ma on charakter wymiaru swobodnego, który na rysunku 

występuje bez odchyłek, lub gdy dokładność kąta prostego ustalono za pomocą tolerancji 

prostopadłości. W każdym innym przypadku tolerowania kąta prostego musi być podany na 

rysunku jego wymiar nominalny (900 ). Wymiarami oczywistymi mogą być również inne 
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wartości kątów, jak również wymiary liniowe, ale tylko takie, które nie muszą być tolerowane. 

W przeciwnym bowiem przypadku muszą być one zawsze opisane liczbowo. 

 

 

Rys. 11. Przykłady pomijania wymiarów oczywistych 

 

Zasada niepowtarzania wymiarów stanowi, że wymiar może być podany na rysunku 

tylko jeden raz, niezależnie od liczby rzutów czy liczby arkuszy, na których przedmiot jest 

przedstawiony. 

Podczas wymiarowania, szczególnie zaś gdy przedmiot jest przedstawiony na kilku 

arkuszach, można bardzo łatwo popełnić błąd opisując tę samą cechę konstrukcyjną dwoma 

różnymi wartościami liczbowymi. Doprowadzi to do wadliwego wykonania przedmiotu lub 

wadliwej jego oceny, jeżeli nie zostanie w porę zauważone. 

Inną przyczyną, dla której trzeba bezwzględnie przestrzegać zasady niepowtarzania 

wymiarów jest okoliczność wprowadzania zmian. Jeżeli brak pewności, że wymiary nie są 

powtórzone, zachodzi konieczność odszukania wszystkich powtórzeń, których liczba 

najczęściej nie jest znana. Przeoczenie jednego z zapisów powoduje, że zaistnieją różne 

informacje o tej samej cesze konstrukcyjnej. Konsekwencją tego będzie wadliwy przedmiot. 

Występowanie wymiaru tylko jeden raz gwarantuje, że dokonana zmiana będzie jednoznaczna 

i niesprzeczna. 

 

Zasada niezamykania łańcucha wymiarowego (rys. 12) stanowi, że wymiar należy 

pominąć, jeżeli można go obliczyć jako wypadkową pozostałych. W innym przypadku wystąpi 

pośrednie powtórzenie wymiarów. Sytuacja taka nazywa się potocznie „przewymiarowaniem”, 

które utrudnia, a niekiedy wręcz uniemożliwia wykonanie przedmiotu zgodnie z wymaganymi 

dokładnościami. 
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Rys. 12. Zasada niezamykania łańcucha wymiarowego 

 

Zakaz zamykania łańcucha wymiarowego dotyczy wszystkich wymiarów, niezależnie 

od miejsca (rzutu) ich umieszczenia, jeżeli odnoszą się one do tej samej cechy 

konstrukcyjnej lub cech związanych ze sobą. 

Z szeregu wymiarów tworzących zamknięte ogniwo pomija się zawsze najmniej ważny. 

Jednak gdy podanie wymiaru zamykającego jest uzasadnione, to należy umieścić go w 

nawiasach okrągłych i wówczas - jako wymiar pomocniczy - nie zamknie łańcucha34. 

 

Zasady wymiarowania wynikające z potrzeb konstrukcyjnych i technologicznych.  

Wymiarować można od baz konstrukcyjnych, obróbkowych lub pomiarowych. 

Wymiarowanie od baz konstrukcyjnych stosuje się, gdy zależy na podaniu na rysunku tych 

wymiarów, które mają bezpośredni wpływ na działanie wymiarowanej części maszynowej w 

zespole, do którego należy, i na montaż. Są to wymiary mające wpływ na położenie części w 

zespole, na wymagane luzy i wciski itd. 

Do zalet wymiarowania od baz konstrukcyjnych należą:  

a) krótkie łańcuchy wymiarowe, co ułatwia analizę wymiarową całego zespołu i wyrobu 

oraz zwiększa dokładność wykonania części,  

b) niezmienność w znacznym stopniu rysunku części, gdyż zmian technologii nie mają 

wpływu na wymiarowanie.  

Wadą wymiarowania od baz konstrukcyjnych jest właśnie oderwanie się od technologii, co 

zmusza często w przygotowaniu produkcji do przeliczania wymiarów, zacieśniania tolerancji 

                                                           
34 Boder A., Dudziak M., Zapis konstrukcji, Wydawnictwo Politechniki Poznańskiej, Poznań 1995, s. 272 
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itd. Jeżeli przedmiot nie ma powierzchni ważniejszych od innych, to zwykle wymiaruje się go 

od dwóch końców, co często pokrywa się zwymiarowaniem od baz obróbkowych. 

Na rysunkach części współpracujących za bazę wymiarową konstrukcyjną należy 

przyjmować powierzchnię styku tych części po zmontowaniu. Jest to tzw. wymiarowanie od 

wspólnych baz wymiarowych. 

Wymiarowanie od baz obróbkowych stosuje się, gdy zależy przede wszystkim na 

uproszczeniu procesu technologicznego. Dzięki wymiarowaniu od baz obróbkowych osiąga 

się:  

a) łatwiejsze uzyskanie dokładnych wymiarów części obrabianej,  

b) możliwość zaplanowania przez technologa przebiegu obróbki bez potrzeby przeliczania 

wymiarów i zacieśniania tolerancji, dzięki czemu tolerancje wymiarów podane na 

rysunkach mogą być w pełni wykorzystane, co zmniejsza koszty produkcji,  

c) możliwość takiego ustawiania części do obróbki, że budowa uchwytów obróbkowych 

staje się prostsza i tańsza. 

Bazy konstrukcyjne i obróbkowe często nie pokrywają się, w każdym przypadku ich 

niezgodności należałoby rozstrzygnąć czy wymiarować od jednych, czy od drugich. W praktyce 

jednak rzadko stosuje się wymiarowanie tylko od baz konstrukcyjnych lub tylko od 

obróbkowych. Zwykle podaje się wymiary najważniejsze (wchodzące w łańcuchy wymiarowe 

mechanizmów) od baz konstrukcyjnych i toleruje dokładnie, pozostałe zaś wymiary podaje się 

od baz obróbkowych, z większymi tolerancjami lub bez tolerancji. 

Oczywiście, sprawa się upraszcza, gdy bazy obróbkowe pokrywają się z konstrukcyjnymi. 

Przy wymiarowaniu od baz obróbkowych wymiary odnoszące się do jednej operacji należy, o 

ile to możliwe, podawać na jednym rzucie i to grupując je po jednej stronie rzutu35. 

 

 

Rys. 13. Wymiarowanie części współpracujących od wspólnej bazy wymiarowej 

 

                                                           
35 Dobrzański T. Rysunek techniczny maszynowy, Wydawnictwo PWN, 2005, s. 62 
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Wymiarowanie równoległe, szeregowe i mieszane 

Wymiary biegnące w jednym kierunku można podawać na rysunkach w trzech układach: 

równoległym, szeregowym lub mieszanym. 

Wymiarowanie w układzie równoległym (rys. 14) polega na podawaniu wszystkich 

wymiarów równoległych od jednej bazy (powierzchni lub linii). W płaskim prostokątnym 

układzie współrzędnych baz tych, wzajemnie prostopadłych, jest dwie; tak samo dwie bazy 

występują w płaskim biegunowym układzie współrzędnych. Natomiast w układach 

przestrzennych występują trzy wzajemnie prostopadle bazy. 

Przy wymiarowaniu w układzie równoległym dokładność każdego wymiaru uzyskana w 

wyniku obróbki zależy tylko od dokładności samej obróbki, a nie zależy w ogóle od 

dokładności innych wymiarów przedmiotu. Dlatego też ten sposób wymiarowania stosuje się, 

gdy zależy na uzyskaniu dokładnego położenia pewnej ilości powierzchni przedmiotu od 

wybranej uprzednio bazy. 

Poza tym wymiarowanie równoległe ma tę zaletę, że dowolny wymiar przedmiotu nie 

podany na rysunku można obliczyć jako wypadkowy tylko dwóch podanych wymiarów. 

Wymiarowania równoległego nie należy jednak stosować, gdy dokładne mają być właśnie 

wymiary wynikające jako wypadkowe przy takim wymiarowaniu, gdyż zmusza to do 

znacznego zmniejszania tolerancji wymiarów, z których wynika wymiar wypadkowy. 

 

 

Rys. 14. Wymiarowanie w systemie równoległym 

 

Wymiarowanie w układzie szeregowym polega na wpisywaniu wymiarów równoległych 

jeden za drugim (rys. 15). Ten sposób wymiarowania stosuje się gdy zależy na dokładności 

wzajemnego położenia sąsiednich elementów przedmiotu, a nie na dokładnym ich położeniu 
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względem jednej bazy. W ten sposób wymiaruje się często przedmioty , które mają być 

obrabiane zespołem narzędzi pracujących jednocześnie (np. równoczesne wiercenie wielu 

otworów przy użyciu głowicy wielowrzecionowej). 

 

 

Rys. 15. Wymiarowanie w systemie szeregowym 

 

Wymiarowanie w układzie mieszanym (rys. 16) jest połączeniem obu sposobów 

omówionych wyżej i jednoczy zalety obu tych sposobów. Przy wymiarowaniu mieszanym 

położenie tych powierzchni, które powinny się znajdować w ściśle określonych odległościach 

od pewnej bazy, wymiaruje się od tej bazy, zaś położenia pozostałych powierzchni względem 

poprzednich lub między sobą określa się krótkimi łańcuchami wymiarowymi, czyli wymiaruje 

szeregowo. Dzięki takiemu wymiarowaniu, wszystkie ważne wymiary przedmiotu mogą być 

na rysunku bezpośrednio podane, a zatem i bezpośrednio sprawdzone. 

 

 

Rys. 16. Wymiarowanie w systemie mieszanym 

 

Przed wyborem sposobu wymiarowania należy każdorazowo zbadać, które wymiary części 

maszynowej są ważne ze względu na jej przyszłe działanie, oraz zorientować się co do 
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przypuszczalnego przebiegu procesu technologicznego tej części. Najczęściej stosuje się 

wymiarowanie mieszane36. 

 

5.4. Zadania 

Zadanie numer 1. Proszę o wykonanie rzutowanie europejskie dla poniższego elementu 

 

Rozwiązanie dla zadania numer 1 

                                                           
36 Dobrzański T. Rysunek techniczny maszynowy, Wydawnictwo PWN, 2005, s. 57 
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Zadanie numer 2. Proszę o wykonanie rzutowanie europejskie dla poniższego elementu 
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Rozwiązanie dla zadania numer 2 

 

 

Zadanie numer 3. Proszę o wykonanie przekroju dla poniższego elementu 
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Rozwiązanie zadania numer 3 

 

 

Zadanie numer 4. Proszę o wykonanie przekroju dla poniższego elementu 
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Rozwiązanie zadania numer 4 

 

 

Zadanie numer 5. Proszę o wykonanie wymiarowania dla poniższego elementu 

 

Rozwiązanie zadania numer 5 
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Zadanie numer 6. Proszę o wykonanie wymiarowania dla poniższego elementu 

 

Rozwiązanie zadania numer 6 
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