
Projektowanie stron internetowych 

Materiały dydaktyczne dla uczestników k u r s u  

Miłosz Olejniczak 

Paweł Sobczak 

Konin 2025 



Tytuł 

Projektowanie stron internetowych 
M at er i ały  d y d ak t y c z n e d l a 

u c z es t n i k ó w k u r s u  

Autorzy 

Miłosz Olejniczak 

Paweł Sobczak 

Projekt pn. 

„Rozwój studiów o profilu praktycznym i form kształcenia ustawicznego 

dostosowanych do potrzeb Wielkopolski Wschodniej”, 

realizowany przez Akademię Nauk Stosowanych w Koninie, 

jest współfinansowany przez Unię Europejską 

ze środków Funduszu na rzecz Sprawiedliwiej Transformacji 

w ramach programu Fundusze Europejskie dla Wielkopolski 2021-2027 

Wydawca 

Akademia Nauk Stosowanych w Koninie 

ul. Przyjaźni 1, 62-510 Konin 



 

3 
 

 

 

Spis treści 
Frontend stron WWW (Miłosz Olejniczak) ......................................................................................6 

Wprowadzenie do technologii internetowych ..............................................................................6 

Znaczenie i rola języka HTML ....................................................................................................6 

Struktura dokumentu HTML5 .....................................................................................................6 

Edytory do pisania kodu ..............................................................................................................7 

Podstawowe znaczniki HTML ........................................................................................................9 

Znaczniki nagłówków (heading) ..................................................................................................9 

Akapity (paragrafy) ................................................................................................................... 10 

Łamanie linii (nowa linia) i linia horyzontalna ........................................................................... 10 

Linia horyzontalna – <hr> ......................................................................................................... 10 

Formatowanie tekstu, listy, linki .................................................................................................... 12 

Formatowanie tekstu w HTML .................................................................................................. 12 

Semantyczne znaczniki wyróżniające treść ................................................................................ 12 

Znaczniki prezentacyjne ............................................................................................................ 13 

Listy ......................................................................................................................................... 13 

Linki (kotwice) ......................................................................................................................... 15 

Grafika na stronie.......................................................................................................................... 16 

Wstawianie obrazów w HTML .................................................................................................. 16 

Formaty plików graficznych ...................................................................................................... 17 

Podpisy i semantyka obrazów.................................................................................................... 18 

Optymalizacja obrazów ............................................................................................................. 18 

Tabele w HTML............................................................................................................................ 19 

Podstawowe znaczniki tabel ...................................................................................................... 19 

Łączenie komórek: colspan i rowspan ....................................................................................... 21 

Właściwości wizualne tabel ....................................................................................................... 22 

Dobre praktyki i semantyka ....................................................................................................... 22 

Elementy blokowe i liniowe, klasy i identyfikatory ....................................................................... 23 

Elementy blokowe a elementy liniowe....................................................................................... 24 

Wprowadzenie do CSS: selektory, Box Model, podstawy stylowania ............................................ 26 

Rola i zastosowanie CSS w projektowaniu stron WWW ............................................................ 26 

Metody osadzania CSS w dokumencie HTML........................................................................... 27 

Podstawowe selektory w CSS.................................................................................................... 28 

Box Model – fundament CSS .................................................................................................... 29 



 

4 
 

Pseudoklasy w CSS....................................................................................................................... 30 

Czym są pseudoklasy?............................................................................................................... 30 

Layout strony, semantyczne sekcje ................................................................................................ 34 

Semantyka i struktura HTML5 .................................................................................................. 34 

Tworzenie layoutu strony .......................................................................................................... 35 

Formularze i komentarze ............................................................................................................... 38 

Formularze w HTML ................................................................................................................ 38 

Komentarze w HTML i CSS...................................................................................................... 40 

Zaawansowane możliwości CSS (czcionki, tekst) .......................................................................... 41 

Czcionki w CSS (font-family, font-size, font-weight, font-style) ................................................ 42 

Podstawy JavaScript i praktyczne zastosowania ............................................................................ 45 

Wprowadzenie do JavaScript..................................................................................................... 45 

Backend stron WWW (Paweł Sobczak) ............................................................................................. 50 

Wprowadzenie do PHP ................................................................................................................. 50 

Jak działa język PHP? ............................................................................................................... 51 

Instalacja oprogramowania ........................................................................................................ 52 

Pierwszy skrypt PHP ..................................................................................................................... 56 

Komentarze w skryptach PHP ....................................................................................................... 57 

Zmienne w PHP ............................................................................................................................ 58 

Deklaracja i inicjalizacja zmiennej w PHP ................................................................................. 58 

Rodzaje zmiennych, typy danych .............................................................................................. 59 

Sprawdzenie typu zmiennej ....................................................................................................... 60 

Opis poszczególnych typów zmiennych..................................................................................... 61 

Operacja na zmiennych w PHP ..................................................................................................... 62 

Przypisanie wartości do zmiennej .................................................................................................. 62 

Wyświetlanie wartości zmiennych ............................................................................................. 62 

Modyfikowanie wartości zmiennych ......................................................................................... 63 

Przypisywanie do zmiennej wartości innej zmiennej .................................................................. 64 

Nadpisywanie wartości innej zmiennej ...................................................................................... 64 

Operatory ...................................................................................................................................... 65 

Instrukcje sterujące ....................................................................................................................... 70 

Instrukcja if ............................................................................................................................... 70 

Instrukcja if else ........................................................................................................................ 71 

Instrukcja if else if..................................................................................................................... 72 

Instrukcje wyboru ......................................................................................................................... 74 

Instrukcja switch ....................................................................................................................... 74 



 

5 
 

Instrukcje iteracyjne (pętle) ........................................................................................................... 75 

Pętla for .................................................................................................................................... 75 

Pętla while ................................................................................................................................ 77 

Pętla do while ........................................................................................................................... 78 

Instrukcje break i continue ........................................................................................................ 78 

Tablice w PHP .............................................................................................................................. 80 

Wprowadzenie do tablic ............................................................................................................ 80 

Pętla foreach ............................................................................................................................. 82 

Tablice asocjacyjne ................................................................................................................... 84 

Operacje na tablicach ................................................................................................................ 86 

Funkcje w PHP ............................................................................................................................. 87 

Elementy programowania obiektowego ......................................................................................... 89 

Bazy danych MySQL .................................................................................................................... 92 

Wprowadzenie do baz ............................................................................................................... 92 

Podstawowe typy danych w bazie danych.................................................................................. 92 

Podstawowe operacje na bazie danych....................................................................................... 93 

Bibliografia ................................................................................................................................... 94 

 

  



 

6 
 

 

Frontend stron WWW (Miłosz Olejniczak) 

Wprowadzenie do technologii internetowych 

Współczesne strony internetowe „pracują” dzięki zestawowi protokołów i standardów, 

pozwalających na szybkie i skuteczne komunikowanie się użytkownika (klienta) z serwerem. 

Jednym z kluczowych elementów tej układanki jest HTTP (Hypertext Transfer Protocol), który 

reguluje sposób, w jaki przeglądarka żąda informacji od serwera. Kiedy zaś w grę wchodzi 

ochrona danych, w szczególności wrażliwych (jak numer karty kredytowej czy dane 

logowania), sięgamy po szyfrowaną wersję tego protokołu – HTTPS. 

Jeżeli wyobrazimy sobie sam proces, wygląda on mniej więcej tak: gdy w przeglądarce 

wpiszesz adres strony (URL), twoja przeglądarka wysyła zapytanie do serwera. Serwer 

odnajduje zasób (np. plik HTML) i odsyła go wraz z potrzebnymi arkuszami stylów, grafikami 

czy skryptami. Twoja przeglądarka składa te wszystkie części w jedną całość, a ty oglądasz 

gotową stronę. 

 

Znaczenie i rola języka HTML 

HTML (HyperText Markup Language) stanowi bazę zdecydowanej większości stron 

internetowych. Można go porównać do konstrukcji nośnej budynku – zapewnia nie tylko 

fundament, ale przede wszystkim określa, jaką formę przyjmują poszczególne elementy  

(np. nagłówek, lista, paragraf). Aktualnie obowiązujący standard, HTML5, usprawnia wiele 

aspektów związanych z integracją elementów multimedialnych (audio, wideo) i ułatwia 

tworzenie stron bardziej zrozumiałych dla przeglądarek i urządzeń wspomagających. 

Warto pamiętać, że choć HTML organizuje treść i nadaje jej znaczenie semantyczne, to nie 

odpowiada bezpośrednio za wygląd – tym zajmuje się CSS (Cascading Style Sheets). Dopiero 

wraz z CSS uzyskujemy pełen obraz, jak strona będzie się prezentowała. Niemniej sam HTML 

jest nieodzowny, ponieważ bez niego nie mielibyśmy żadnego „szkieletu” do ozdobienia. 

 

Struktura dokumentu HTML5 

Każda strona HTML5 zaczyna się od: 

 

<!DOCTYPE html> 

 

 

To niewielkie polecenie w nagłówku dokumentu mówi przeglądarce, że mamy do czynienia  

z nowoczesnym formatem HTML. Zaraz po nim z reguły widzimy: 

 

<html lang="pl"> 

<head> 



 

7 
 

  <meta charset="UTF-8"> 

  <title>Tytuł dokumentu</title> 

</head> 

<body> 

  <!-- Treść strony --> 

</body> 

</html> 

 

 

• <html> – główny kontener całego dokumentu. Atrybut lang="pl" informuje 

przeglądarkę (oraz różne narzędzia typu czytniki ekranowe) o języku zawartości. 

• <head> – przestrzeń na informacje meta, takie jak kodowanie znaków  

(<meta charset="UTF-8">), tytuł (wyświetlany w karcie przeglądarki) oraz linki  

do zewnętrznych arkuszy stylów i skryptów. 

• <body> – tu pojawia się właściwa treść strony, czyli teksty, obrazy, formularze i inne 

elementy, z którymi użytkownik ma bezpośredni kontakt. 

Niezwykle ważnym aspektem jest deklaracja kodowania UTF-8, która zapewnia prawidłowe 

wyświetlanie polskich znaków (ą, ć, ę, ł, ń, ó, ś, ź, ż). Dzięki temu nie musimy obawiać się,  

że odwiedzający naszą stronę użytkownicy zobaczą nieczytelne symbole zamiast poprawnie 

wyświetlonych polskich liter. 

 

Edytory do pisania kodu 

Choć większość systemów operacyjnych oferuje proste narzędzia do edycji plików 

tekstowych (jak Notatnik w Windows), w praktyce warto sięgnąć po bardziej zaawansowane 

edytory, które ułatwiają pracę dzięki szeregowi użytecznych funkcji. Oto kilka popularnych 

propozycji: 

• Visual Studio Code (Microsoft) – wieloplatformowe, darmowe środowisko 

programistyczne z bogatym zestawem wtyczek. 

• Sublime Text (Sublime HQ) – wyróżnia się szybkością działania i dużymi 

możliwościami personalizacji. 

• Atom (GitHub) – przyjazny, otwartoźródłowy edytor, który można szeroko 

konfigurować. 

• Phoenix Code – nowoczesny edytor kodu, który łączy intuicyjność, wydajność  

i zaawansowane funkcje wspierające programistów. 

• Brackets – lekki, otwartoźródłowy edytor kodu stworzony z myślą o projektantach  

i programistach webowych, oferujący funkcje takie jak podgląd na żywo i edycję  

w kontekście. 

• Notepad++ – lekki i intuicyjny, szczególnie polecany osobom rozpoczynającym 

przygodę z tworzeniem stron. 



 

8 
 

Wybór jest uzależniony od indywidualnych preferencji, jednak warto, aby dany edytor 

umożliwiał choćby podstawowe: podświetlanie składni, automatyczne podpowiedzi, a także 

wygodną organizację plików. 

 

Ćwiczenia  

Na koniec tej części zachęcamy do wykonania krótkiego ćwiczenia w celu utrwalenia zdobytej 

wiedzy: 

1. Utwórz główny folder projektu (np. projekt). 

2. Dodaj w nim foldery: images (na pliki graficzne), css (na style) i js (na skrypty). 

3. Otwórz ulubiony edytor kodu i w głównym katalogu stwórz plik index.html. 

4. Wklej szkielet HTML5, np.: 

 

<!DOCTYPE html> 

<html lang="pl"> 

<head> 

  <meta charset="UTF-8"> 

  <title>Moja Pierwsza Strona</title> 

</head> 

<body> 

  <h1>Wprowadzenie do HTML5</h1> 

  <p>Przykładowy akapit z polskimi znakami: ą, ć, ę, ł, ń, ó, ś, ź, ż.</p> 

</body> 

</html> 

 

5. Zapisz plik i otwórz go w wybranej przeglądarce (Google Chrome, Mozilla Firefox 

itp.). Upewnij się, że tekst wyświetla się prawidłowo – zwłaszcza polskie znaki. 

 

Dzięki temu prostemu zadaniu w praktyce sprawdzisz, czy poprawnie zbudowałeś strukturę 

pliku HTML i czy kodowanie znaków działa tak, jak powinno. Jeżeli wszystko jest w porządku, 

możesz śmiało przejść do dalszych zadań i poszerzać możliwości swojej przyszłej strony 

WWW. 

  



 

9 
 

Podstawowe znaczniki HTML 

Tym razem skupimy się na wybranych, najbardziej typowych znacznikach, dzięki 

którym można zorganizować i uporządkować treści na stronie. Świadome posługiwanie się 

nagłówkami, akapitami i innymi elementami HTML pozwala bowiem nie tylko na zapewnienie 

czytelności kodu, lecz także na podniesienie dostępności oraz walorów estetycznych serwisu.  

 

Znaczniki nagłówków (heading) 

Czym są nagłówki? 

Nagłówki (headingi) to elementy stosowane w celu wydzielenia i zasygnalizowania 

ważniejszych części tekstu w dokumencie HTML. Dostępne są w sześciu poziomach: 

 

<h1>Najważniejszy Nagłówek</h1> 

<h2>Podrozdział / Nagłówek Drugiego Poziomu</h2> 

<h3>Kolejne Podpoziomy...</h3> 

<h4></h4> 

<h5></h5> 

<h6></h6> 

 

 

 

• <h1> jest zwykle traktowany jako tytuł główny strony lub sekcji. 

• <h2> i kolejne poziomy służą do hierarchizacji treści: warto wyobrazić je sobie jako 

nagłówki rozdziałów i podrozdziałów pracy pisanej w edytorze tekstu. 

 

Dlaczego to jest istotne? 

Nagłówki znacząco wpływają na sposób interpretacji treści przez przeglądarki, 

wyszukiwarki (SEO) oraz czytniki ekranu dla osób z niepełnosprawnościami wzrokowymi. 

Właściwe wykorzystanie hierarchii sprawia, że cała strona jest łatwiejsza w nawigacji zarówno 

dla użytkowników, jak i dla robotów indeksujących. 

  



 

10 
 

Akapity (paragrafy) 

Podstawowy element treści 

Znacznik <p> („paragraph”) służy do definiowania bloków tekstu, zwanych potocznie 

akapitami. Każdy akapit oddzielany jest wizualnie od następnego standardowym odstępem. 

Przykładowo: 

 

<p>To jest pierwszy akapit.</p> 

<p>To jest drugi akapit.</p> 

 

 

Dzięki temu kod HTML zyskuje większą przejrzystość, co przekłada się na wygodę czytania 

tekstu na stronie. W artykułach i wpisach blogowych akapity pełnią kluczową rolę  

w budowaniu zrozumiałych i przyjaznych w odbiorze treści. 

 

Łamanie linii (nowa linia) i linia horyzontalna 

Nowa linia – <br> 

Znacznik <br> (skrót od break) umożliwia wstawienie ręcznego łamania linii w danym 

miejscu. Stosuje się go w sytuacjach, gdy nie chcemy lub nie możemy rozpoczynać kolejnego 

akapitu, a zależy nam na przejściu do następnej linii – na przykład w wypunktowaniach 

tworzonych bez list HTML lub w wierszach poezji. 

 

<p>To jest tekst, w którym chcę wymusić<br>złamanie linii.</p> 

 

 

 

 

Linia horyzontalna – <hr> 

Znacznik <hr> (ang. horizontal rule) wstawia poziomą linię oddzielającą sekcje treści: 

 

<hr> 

 

 



 

11 
 

Przykładowo może posłużyć do wizualnego wydzielenia cytatu, dygresji bądź podsumowania 

w obrębie artykułu. Choć w wielu nowoczesnych projektach graficzne „linie” tworzy się 

głównie przy użyciu CSS, hr wciąż znajduje zastosowanie jako element semantyczny. 

 

 Ćwiczenia  

Aby przećwiczyć omawiane zagadnienia, warto stworzyć na lokalnym komputerze nowy plik 

HTML (np. podstawowe-znaczniki.html) i umieścić w nim następujące elementy: 

1. Sekwencję nagłówków (od <h1> do <h3> lub <h4>), które będą imitować strukturę 

krótkiego artykułu bądź spisu treści. 

2. Kilka akapitów z przykładowymi treściami, w których sprawdzimy poprawne 

wyświetlanie polskich znaków i odstępów między blokami tekstu. 

3. Celowe łamania linii (<br>) w miejscach, gdzie chcemy od siebie oddzielić krótki 

tekst. 

4. Poziomą linię (<hr>) sygnalizującą koniec jednego rozdziału i początek kolejnego. 

Proponowany kod może wyglądać następująco: 

 

<!DOCTYPE html> 

<html lang="pl"> 

<head> 

  <meta charset="UTF-8"> 

  <title>Nagłówki i Akapity</title> 

</head> 

<body> 

  <h1>Struktura Treści</h1> 

  <p>Pierwszy akapit opisujący cel niniejszego dokumentu.</p> 

 

  <h2>Znaczenie Nagłówków</h2> 

  <p>Drugi akapit podkreślający ważność odpowiedniej hierarchii 

elementów.</p> 

  <br> 

  <p>Kolejny akapit, w którym przykładamy uwagę do czytelności kodu.</p> 

 

  <hr> 

 

  <h3>Podsumowanie</h3> 

  <p>Niniejszy fragment służy do zaprezentowania sposobu użycia  

  <code>&lt;hr&gt;</code> w praktyce.</p> 

</body> 

</html> 

 

 



 

12 
 

Po otwarciu pliku w przeglądarce internetowej możemy na bieżąco obserwować efekty  

i modyfikować zawartość, aby jeszcze lepiej zrozumieć działanie każdego ze znaczników. 

 

 

Formatowanie tekstu, listy, linki 

W tym rozdziale zapoznamy się z kolejnym zestawem kluczowych elementów języka 

HTML, które pozwalają nie tylko na wzbogacenie treści o wyróżnienia i odnośniki, ale także 

na stworzenie przejrzystych struktur w postaci list. Podczas gdy poprzednie zajęcia dotyczyły 

podstawowych znaczników, takich jak nagłówki oraz akapity, w niniejszej części kursu 

nauczymy się nadawać tekstowi odpowiednią „intonację” oraz organizować go w bardziej 

złożone formy.  

 

Formatowanie tekstu w HTML 

Semantyczne znaczniki wyróżniające treść 

• <strong> i <em> – znaczniki te, choć kojarzone odpowiednio z pogrubieniem (strong) 

oraz pochyleniem (em), mają w istocie głębsze znaczenie semantyczne. 

o <strong> wskazuje, iż dana fraza ma szczególne znaczenie lub wyjątkową wagę 

(np. kluczowe pojęcie w akapicie). 

o <em> sugeruje natomiast, że dany fragment jest intonacyjnie lub logicznie 

wyróżniony (np. akcent w zdaniu, cytat lub słowo kluczowe). 



 

13 
 

W przeciwieństwie do czysto wizualnych znaczników <b> i <i> (o których mowa poniżej), 

strong i em pozwalają wyszukiwarkom oraz czytnikom ekranu lepiej zrozumieć, co w tekście 

jest naprawdę istotne. 

 

Znaczniki prezentacyjne 

• <b> (bold) i <i> (italic) – te znaczniki pełnią funkcję wyłącznie wizualnego pogrubienia 

bądź pochylenia tekstu. Nie dodają jednak żadnej informacji semantycznej. 

• <u> (underline) – odpowiedzialny za podkreślenie tekstu. Zalecany ostrożnie, 

ponieważ w wielu projektach podkreślenie wykorzystuje się do oznaczania linków  

i może to wprowadzać niepotrzebne zamieszanie. 

• <mark> – służy do wyróżnienia fragmentu tekstu w sposób przypominający 

zaznaczenie zakreślaczem (np. ważny cytat czy definicja terminu). 

W kontekście projektów serwisów internetowych istotne jest, aby stosować semantyczne 

znaczniki (<strong>, <em>) zamiast czysto prezentacyjnych (<b>, <i>) tam, gdzie 

komunikujemy faktyczne znaczenie lub podkreślamy rangę danej informacji. 

 

 Listy 

Listy w języku HTML to wygodny sposób na uszeregowanie lub wyliczenie pewnych 

elementów. Usprawniają organizację treści oraz zwiększają czytelność dokumentu. 

Listy nieuporządkowane (ang. unordered lists) 

Definiowane za pomocą znacznika <ul> i poszczególnych elementów <li> (list item). Przed 

każdym elementem listy pojawia się symbol wypunktowania (domyślnie kropka, choć można 

to zmienić w CSS). 

 

<ul> 

  <li>Punkt pierwszy</li> 

  <li>Punkt drugi</li> 

  <li>Punkt trzeci</li> 

</ul> 

 

 

 

Taka postać list przydaje się w sytuacjach, gdy nie zależy nam na kolejności elementów,  

np. przy tworzeniu menu nawigacyjnego czy list zadań. 



 

14 
 

Listy uporządkowane (ang. ordered lists) 

Tworzone za pomocą znacznika <ol>, przy czym każdy element nadal definiujemy poprzez 

<li>. Przyjmuje się, że elementy w <ol> są liczone domyślnie od 1 w górę: 

 

<ol> 

  <li>Element pierwszy</li> 

  <li>Element drugi</li> 

  <li>Element trzeci</li> 

</ol> 

 

 

 

Listy uporządkowane sprawdzają się, gdy należy zachować kolejność pozycji, np. przy 

instrukcjach „krok-po-kroku” czy prezentowaniu hierarchii procedur w projekcie inżynierskim. 

Listy zagnieżdżone 

Wewnętrznie można zagnieżdżać kolejne listy <ul> lub <ol> w obrębie elementów <li>,  

co przydaje się przy budowaniu wielopoziomowych struktur: 

 

<ul> 

  <li>Punkt główny 1 

    <ul> 

      <li>Podpunkt 1.1</li> 

      <li>Podpunkt 1.2</li> 

    </ul> 

  </li> 

  <li>Punkt główny 2</li> 

</ul> 

 

 

 

 

Ważne jest, by zachować przejrzystość kodu i czytelne wcięcia, ułatwiające nawigację po treści. 

 



 

15 
 

Linki (kotwice) 

Znacznik <a> i atrybut href 

Linki (hiperłącza) to esencja hipertekstowości w World Wide Web. Tworzymy je za pomocą 

znacznika <a> i podstawowego atrybutu href: 

 

<a href="https://www.przyklad.pl">Kliknij tutaj, aby przejść na inną 

stronę</a> 

 

 

 

Po kliknięciu w powyższy odnośnik przeglądarka przekieruje użytkownika na wskazany adres 

(URL). Linki mogą również prowadzić do innej podstrony w obrębie tego samego serwisu (np. 

onas.html) bądź odwoływać się do zasobów takich jak dokumenty PDF, obrazy czy sekcje  

w ramach jednej strony (tzw. linki kotwicowe). 

Atrybut target i inne 

• target="_blank" – otwiera link w nowej karcie lub nowym oknie przeglądarki. 

• title="Opis linku" – dostarcza dodatkowego opisu linku, widocznego po najechaniu 

kursorem myszy. Atrybut ten bywa pomocny w pozycjonowaniu i w narzędziach 

ułatwiających dostępność. 

 

Ćwiczenia  

1. Formatowanie wybranych fragmentów tekstu 

o Utwórz stronę formatowanie.html i dodaj kilka akapitów, w których 

strategicznie zastosujesz znaczniki <strong>, <em>, <u> oraz <mark>. 

o Obserwuj, jak przeglądarka interpretuje te znaczniki i czytelnie wyróżnia 

fragmenty treści. 

2. Tworzenie list 

o W tym samym pliku lub w nowym, np. listy.html, utwórz przykładową listę 

zakupów w postaci listy nieuporządkowanej (<ul>). 

o Dodaj listę uporządkowaną (<ol>) pokazującą np. kolejność kroków montażu 

urządzenia bądź procedurę w projekcie inżynierskim. 

o Spróbuj też stworzyć listę zagnieżdżoną, aby zobaczyć, jak elementy podlisty są 

reprezentowane przez przeglądarkę. 

 

 



 

16 
 

3. Linki 

o Wypróbuj tworzenie odnośników, zarówno wewnętrznych  

np. href="index.html") jak i zewnętrznych (href="https://..."). 

o Dodaj atrybut target="_blank" do jednego z linków i przetestuj zachowanie  

w przeglądarce. 

 

Grafika na stronie 

Poniższy materiał poświęcony jest zagadnieniu osadzania grafiki w dokumencie 

HTML. Umiejętne korzystanie z obrazów pozwala nie tylko na uatrakcyjnienie warstwy 

wizualnej witryny, lecz także na wzbogacenie przekazu informacyjnego. Poniższy rozdział 

prezentuje zarówno podstawowe aspekty techniczne, takie jak formaty plików czy atrybuty 

znacznika <img>, jak i kwestie związane z semantyką, dostępnością oraz optymalizacją.  

 

Wstawianie obrazów w HTML 

Najpopularniejszym i najprostszym sposobem umieszczenia grafiki w dokumencie HTML 

pozostaje znacznik <img>. Jest elementem pustym, co oznacza, że nie posiada pary 

zamykającej (np. </img>). Jego użycie sprowadza się do zadeklarowania atrybutów 

odpowiadających za lokalizację pliku oraz opis dodatkowy. 

<img src="images/przyklad.jpg" alt="Opis grafiki" title="Tytuł obrazka" 

width="300" height="200"> 

 

• src (source) – wskazuje ścieżkę do pliku graficznego (może być ścieżka względna,  

np. images/przyklad.jpg, lub absolutna, np. https://www.przyklad.pl/baner.jpg). 

• alt (alternative text) – kluczowy atrybut z perspektywy dostępności (accessibility)  

i pozycjonowania (SEO). Tekst wpisany do alt jest odczytywany przez czytniki ekranu 

(np. wykorzystywane przez osoby niewidome) i wyświetlany w sytuacji, gdy grafika 

nie może zostać załadowana. 

• title – wyświetla dodatkowy opis lub podpowiedź (tzw. tooltip) po najechaniu kursorem 

na grafikę. 

• width i height – określają wymiary obrazka w pikselach. W praktyce często rezygnuje 

się z bezpośredniego definiowania szerokości i wysokości w HTML na rzecz 

elastycznych stylów w CSS. 

Warto pamiętać o semantyce i funkcji atrybutu alt. Na przykład, jeżeli grafika jest czysto 

dekoracyjna i nie wnosi treści informacyjnej, można pozostawić pusty alt="", aby czytniki 

ekranu mogły ją pominąć. 

 

  



 

17 
 

Formaty plików graficznych 

W kontekście projektowania stron internetowych wyróżnia się kilka kluczowych 

formatów plików graficznych, z których każdy sprawdza się w nieco innych zastosowaniach. 

1. JPEG (JPG) 

o Najczęściej używany do fotografii oraz obrazów o bogatej kolorystyce. 

o Umożliwia stratną kompresję, co przekłada się na mniejszy rozmiar pliku,  

ale może skutkować utratą jakości. 

o Dobrze sprawdza się w sytuacjach, gdy priorytetem jest redukcja rozmiaru 

pliku. 

2. PNG (Portable Network Graphics) 

o Obsługuje kompresję bezstratną i kanał przezroczystości (alpha channel). 

o Zalecany przy logotypach, ikonach, wykresach i wszelkich grafikach 

wymagających ostrości krawędzi. 

o Lepszy wybór w przypadku obrazów z tekstem lub silnymi kontrastami. 

3. GIF (Graphics Interchange Format) 

o Formatuje obrazy w ograniczonej palecie (do 256 kolorów). 

o Zyskał popularność przede wszystkim z uwagi na możliwość tworzenia krótkich 

animacji (tzw. animowane gify). 

o Mniej przydatny do wyświetlania fotografii, ale nadal stosowany w prostych 

animowanych banerach czy ikonach. 

Obecnie można również spotkać format WebP (wspierany przez nowsze przeglądarki), który 

oferuje wysoką kompresję przy zachowaniu dobrej jakości, a także format SVG (ang. Scalable 

Vector Graphics), idealny do prezentacji elementów wektorowych, takich jak logotypy lub 

ikony skalowane w nieskończoność. Wybór optymalnego formatu wpływa znacząco  

na wydajność strony i doświadczenia użytkowników – grafiki o zbyt dużej wadze mogą 

wydłużać czas ładowania witryny. 

 

  



 

18 
 

Podpisy i semantyka obrazów 

<figure> i <figcaption> 

Wprowadzony wraz z HTML5 zestaw znaczników <figure> i <figcaption> pozwala  

na semantyczne grupowanie obrazu (i/lub innej zawartości multimedialnej) wraz z jego 

podpisem. Przykład: 

 

<figure> 

  <img src="images/diagram.png" alt="Schemat działania aplikacji"> 

  <figcaption>Schemat przedstawiający główny mechanizm działania 

aplikacji.</figcaption> 

</figure> 

 

 

• <figure> – blok, w którym umieszczamy grafikę (lub np. tabelę, wykres, kod) 

stanowiącą samodzielny element treści. 

• <figcaption> – podpis opisujący dany element (np. tytuł, źródło). 

Takie rozwiązanie jest rekomendowane w sytuacjach, gdy obraz pełni istotną rolę  

w zrozumieniu przekazu lub wymaga dodatkowego komentarza. Zabieg ten wspiera dobre 

praktyki semantyki i dostępności. 

 

Optymalizacja obrazów 

W projektach, szczególnie tych rozbudowanych, znaczną wagę przywiązuje się  

do optymalizacji w celu zapewnienia szybkiego ładowania stron. Poniżej zaprezentowano kilka 

kluczowych zasad: 

1. Kompresja – w przypadku JPEG można dostosować stopień kompresji (tzw. quality). 

Z kolei PNG z reguły zapewnia bezstratną kompresję, natomiast warto korzystać  

z narzędzi redukujących nieużywane informacje (np. pngquant). 

2. Odpowiedni rozmiar – czasem wystarczającym rozwiązaniem jest zmniejszenie 

wymiarów pliku w edytorze graficznym (np. GIMP, Photoshop), aby dostosować obraz 

do faktycznych potrzeb projektu. 

3. Lazy loading – strategia polegająca na ładowaniu obrazów dopiero w momencie,  

gdy pojawiają się w widocznym obszarze ekranu (tzw. viewport). Znacząco skraca  

to czas pierwszego renderowania strony. 

4. Formy wektorowe – w przypadku ikon lub logo dobrze rozważyć zastosowanie 

formatu SVG, który jest skalowalny i zwykle ma mniejszy rozmiar niż odpowiednik 

PNG przy porównywalnej jakości. 

Dbałość o te elementy stanowi ważny krok w kierunku budowania profesjonalnych, wydajnych 

witryn internetowych. 



 

19 
 

Ćwiczenia  

1. Osadź grafikę w HTML 

o Utwórz nowy plik, np. grafika.html. 

o Wstaw do niego co najmniej dwa obrazy, jeden w formacie JPEG, drugi w PNG. 

o Każdemu przypisz atrybut alt (nadaj mu sensowny opis), tytuł title oraz określ 

wymiary w pikselach lub pozostaw ich naturalny rozmiar do stylowania w CSS. 

2. Zastosuj <figure> i <figcaption> 

o Zaprojektuj sekcję, w której umieścisz obraz wraz z podpisem pod nim. 

o W ten sposób przećwiczysz semantyczne sposoby reprezentacji danych  

w HTML5. 

3. Porównaj rozmiar i jakość plików 

o Przygotuj dwa obrazy w różnych formatach (np. JPEG i PNG), a następnie 

sprawdź, jak różnią się ich rozmiary. 

o Zastanów się, który format jest bardziej odpowiedni w konkretnych sytuacjach 

(np. fotografia produktu vs. schematyczny diagram). 

 

Tabele w HTML 

Ten rozdział poświęcony jest zagadnieniu prezentacji danych w formie tabel. Jest to 

kolejny krok w stronę kompleksowego zrozumienia struktury dokumentu HTML, który 

doskonale uzupełnia dotychczas nabyte umiejętności tworzenia i formatowania treści czy 

osadzania grafiki. Choć w wielu współczesnych projektach coraz częściej wykorzystuje się 

zaawansowane narzędzia i biblioteki do prezentowania danych, znajomość podstaw tabel 

HTML pozostaje nieoceniona. W niniejszym rozdziale przyjrzymy się podstawowym 

znacznikom pozwalającym na budowanie tabel, omówimy ich znaczenie semantyczne, a także 

zaprezentujemy dobre praktyki związane z czytelnością i dostępnością. 

 

Podstawowe znaczniki tabel 

Struktura elementarna: <table>, <tr>, <td>, <th> 

• <table> – główny kontener, w którym umieszczamy całą tabelę. 

• <tr> (table row) – reprezentuje pojedynczy wiersz tabeli. 

• <td> (table data) – odpowiada za pojedynczą komórkę (cechuje się zawartością 

tekstową lub innymi elementami HTML). 

• <th> (table header) – działa analogicznie do <td>, jednak jest przeznaczony  

na nagłówki kolumn bądź wierszy, co semantycznie wyróżnia je w tabeli. 



 

20 
 

Przykład minimalnej tabeli: 

 

<table> 

  <tr> 

    <th>Nagłówek 1</th> 

    <th>Nagłówek 2</th> 

  </tr> 

  <tr> 

    <td>Wartość 1</td> 

    <td>Wartość 2</td> 

  </tr> 

</table> 

 

 

 

Dzięki th przeglądarka oraz czytniki ekranu mogą lepiej zinterpretować, że dana komórka pełni 

funkcję nagłówka, co jest istotne z punktu widzenia dostępności. 

 

Dodatkowe sekcje: <thead>, <tbody>, <tfoot> 

• <thead> (table head) – część tabeli przeznaczona na wiersze nagłówkowe. 

• <tbody> (table body) – zawiera główną treść tabeli (wiersze z danymi). 

• <tfoot> (table foot) – sekcja zamykająca, w której można umieścić np. podsumowania, 

sumy czy statystyki. 

Tego typu podział ułatwia obsługę i stylowanie tabel w języku CSS, a także pozwala czytnikom 

ekranu (ang. screen readers) wyraźniej zidentyfikować strukturę danych. Przykład: 

 

<table> 

  <thead> 

    <tr> 

      <th>Produkt</th> 

      <th>Cena</th> 

    </tr> 

  </thead> 

  <tbody> 

    <tr> 

      <td>Książka</td> 

      <td>35 PLN</td> 

    </tr> 

    <tr> 



 

21 
 

      <td>Długopis</td> 

      <td>2 PLN</td> 

    </tr> 

  </tbody> 

  <tfoot> 

    <tr> 

      <th>Razem</th> 

      <td>37 PLN</td> 

    </tr> 

  </tfoot> 

</table> 

 

 

 

 

Choć sekcje <thead> i <tfoot> nie są obligatoryjne w najprostszych przypadkach,  

to w rozbudowanych projektach zdecydowanie ułatwiają porządkowanie struktury. 

 

Łączenie komórek: colspan i rowspan 

W pewnych sytuacjach pojawia się potrzeba połączenia kilku komórek w poziomie  

(np. w wierszu nagłówkowym obejmującym wiele kolumn) lub w pionie. Do tego celu służą 

atrybuty colspan (łączenie w poziomie) oraz rowspan (łączenie w pionie): 

 

<table> 

  <tr> 

    <th colspan="2">Nagłówek łączony</th> 

  </tr> 

  <tr> 

    <td>Komórka 1</td> 

    <td>Komórka 2</td> 

  </tr> 

</table> 

 

 

 



 

22 
 

Przy wykorzystaniu colspan="2" nagłówek zostanie rozciągnięty na dwie kolumny,  

a analogiczne działanie w pionie (scalanie komórek w obrębie kolumny) uzyskuje się przez 

rowspan. Podobna funkcjonalność bywa pomocna, gdy chcemy sformatować np. tabelę 

podsumowującą wyniki eksperymentu w pracy inżynierskiej. 

Właściwości wizualne tabel 

W dawniejszych czasach HTML-a powszechnie stosowano atrybuty takie jak border="1", 

cellpadding, cellspacing czy bgcolor. Obecnie zaleca się jednak kontrolowanie wyglądu tabel 

poprzez CSS, co pozwala na oddzielenie warstwy semantycznej (treść i struktura)  

od prezentacyjnej (style): 

 

table { 

  border-collapse: collapse; /* łączy krawędzie sąsiadujących komórek */ 

  width: 100%; 

} 

 

th, td { 

  border: 1px solid #ccc; 

  padding: 8px; 

  text-align: left; 

} 

 

thead { 

  background-color: #f2f2f2; 

} 

 

 

 

Takie podejście zapewnia większą elastyczność, łatwiejszą konserwację kodu i zgodność  

z dobrymi praktykami tworzenia stron internetowych. 

 

Dobre praktyki i semantyka 

1. Czytelne nagłówki – zawsze warto używać <th> zamiast <td> w wierszach  

i kolumnach nagłówkowych, co znacząco ułatwia odbiór danych. 

2. Zwięzła treść – opisanie komórek w sposób zwięzły, a jednocześnie trafny, zwiększa 

czytelność, zarówno w przypadku wyświetlania przez przeglądarki graficzne, jak  

i narzędzia wspomagające. 



 

23 
 

3. Minimalizm wizualny – unikajmy przeładowania tabel zbyt wieloma kolorami  

i ramkami, by nie zaciemnić przedstawianych danych. 

 

Ćwiczenia  

1. Prosta tabela z nagłówkiem 

o Stwórz nowy plik HTML (np. tabela.html) i zbuduj tabelę prezentującą kilka 

przykładowych danych (np. lista przedmiotów z ceną). 

o Zastosuj semantyczne elementy <thead>, <tbody>, a w <th> użyj scope="col". 

2. Łączenie komórek 

o W tej samej tabeli połącz dwa nagłówki w poziomie (atrybut colspan)  

i przećwicz łączenie komórek w pionie (rowspan). 

o Dodaj do jednej z komórek wartości objaśnienia, np. „Dane łączone w wierszu 

2 i 3”. 

3. Stylizacja w CSS 

o Utwórz plik styles.css i zdefiniuj podstawowe reguły wpływające na wygląd 

tabeli (szerokość, ramki, odstępy). 

o Zaimportuj plik CSS do dokumentu HTML za pomocą <link rel="stylesheet" 

href="styles.css">. 

Wykonanie tych ćwiczeń pozwoli w praktyce zrozumieć mechanizmy konstrukcji tabeli  

w HTML, a także przećwiczyć korzystanie z atrybutów semantycznych i możliwości 

stylizowania. 

 

Elementy blokowe i liniowe, klasy i identyfikatory 

Tym razem skoncentrujemy się na dwóch istotnych obszarach związanych z językiem 

HTML. Po pierwsze, omówimy koncepcję elementów blokowych oraz liniowych, co pozwali 

zrozumieć ich wpływ na układ strony i pozycjonowanie poszczególnych fragmentów treści.  

Po drugie, znaczenie klas oraz identyfikatorów (ID), które umożliwiają elastyczne i wydajne 

zarządzanie stylami w języku CSS, a także pomagają w selektywnym odwoływaniu się  

do konkretnych elementów w dokumentach HTML. 

  



 

24 
 

Elementy blokowe a elementy liniowe 

Podstawowe różnice 

• Elementy blokowe 

                

        
                

        

                

        

                
 

o Zajmują całą dostępną szerokość kontenera, w którym się znajdują  

(np. szerokość strony lub elementu nadrzędnego). 

o Zawsze rozpoczynają się od nowej linii i powodują przeniesienie kolejnych 

elementów niżej (co wizualnie formuje tzw. blok). 

o Mogą zawierać inne elementy blokowe i liniowe. 

 

Przykładami elementów blokowych są: <div>, <p>, <h1>–<h6>, <ul>, <table>. 

• Elementy liniowe 

               

        

              

        

               

        
             

 

o Zajmują tylko tyle miejsca, ile wynika z ich treści (np. długość tekstu czy 

wielkość ikony). 

o Nie powodują automatycznego przejścia do nowej linii. 

o Mogą zawierać tylko elementy liniowe (z kilkoma wyjątkami, jak np.  

<a> mogące obejmować także niektóre elementy blokowe w HTML5, jednak  

w praktyce stosuje się to z rozwagą). 

Przykładowymi elementami liniowymi są: <span>, <a>, <em>, <strong>, <img>. 

  



 

25 
 

Znaczenie w układzie strony 

Zrozumienie, że np. <div> (typowo element blokowy) zajmuje całą dostępną szerokość 

i „spycha” kolejny element poniżej, jest kluczowe w budowaniu layoutów stron. Elementy 

liniowe, takie jak <span>, można natomiast umieszczać wewnątrz akapitów, aby wyróżnić 

wybrane fragmenty tekstu, nie przerywając ciągłości linii. Dzięki temu łatwiej tworzyć złożone 

projekty, w których chcemy dzielić treść na sekcje (bloki) oraz modyfikować konkretny tekst 

czy grafikę wewnątrz tych sekcji (inline). 

 

Klasy (class) i identyfikatory (id) 

Klasy (class) 

• Czym jest klasa w HTML? 

Klasa to atrybut, którego można użyć wielokrotnie w różnych miejscach w obrębie jednego 

dokumentu HTML. 

o class="nazwa-klasy" 

• Zastosowanie: 

o Nadawanie jednego stylu wspólnego dla wielu elementów (np. .czerwony-tekst, 

.duzy-naglowek). 

o Grupowanie tematyczne (np. .oferta, .product-box) w celu selektywnego 

stylowania i jednoczesnego zachowania porządku. 

• Przykład: 

 

<p class="czerwony-tekst">Ten akapit będzie wyróżniony kolorem 

czerwonym.</p> 

<span class="czerwony-tekst">Ten fragment wciąż należy do tej samej 

klasy.</span> 

 

 

W arkuszu stylów (CSS) wystarczy użyć selektora .czerwony-tekst, aby zdefiniować reguły dla 

wszystkich elementów, które posiadają taką klasę. 

Identyfikatory (id) 

• Charakterystyka identyfikatora 

o id musi być unikatowe w obrębie całego dokumentu – nie powinno się 

powtarzać. 

o Nadajemy je elementom, które wymagają specyficznego, unikalnego stylu lub 

są kluczowe dla mechaniki strony (np. #header, #footer, #formularz-

kontaktowy). 



 

26 
 

• Przykład: 

 

<div id="nawigacja"> 

  <!-- Element odpowiadający za menu nawigacyjne strony --> 

</div> 

 

 

W arkuszu stylów użyjemy selektora #nawigacja w celu stylizowania konkretnego elementu, 

np.: 

 

#nawigacja { 

    background-color: #333; 

    color: #fff; 

  } 

 

 

Różnice w praktyce 

Zarówno class jak i id pełnią podobną funkcję – służą do odwoływania się do 

konkretnego elementu lub ich grupy. Kluczowa różnica polega na tym, że klasę można 

stosować wiele razy, zaś identyfikator powinien być unikatowy. To sprawia, że class jest 

bardziej elastyczna w projektach wielokrotnie używających tych samych reguł CSS, a id jest 

idealne, gdy potrzebujemy jednego specyficznego stylu bądź chcemy łatwo nawigować do 

wybranego fragmentu strony (np. w linku kotwicowym href="#formularz-kontaktowy"). 

 

Wprowadzenie do CSS: selektory, Box Model, podstawy 

stylowania 

Ta część materiału stanowi przełomowy punkt w kursie, gdyż wprowadzamy kolejny 

kluczowy element w procesie projektowania stron – kaskadowe arkusze stylów (CSS). O ile 

HTML odpowiada za strukturę i semantykę treści, o tyle CSS nadaje stronom finalny wygląd, 

pozwalając kontrolować kolorystykę, typografię, rozmieszczenie elementów oraz wszelkie 

inne aspekty wizualne. Niniejszy dział przedstawia najważniejsze informacje związane  

z rozpoczęciem pracy z CSS, a jednocześnie zawiera wskazówki i przykłady ułatwiające 

zrozumienie tej technologii w przystępny sposób. 

 

Rola i zastosowanie CSS w projektowaniu stron WWW 

Czym jest CSS?  

CSS (Cascading Style Sheets) to język służący do definiowania sposobu prezentacji 

treści na stronach internetowych. Dzięki CSS możliwe jest modyfikowanie koloru i rozmiaru 

tekstu, tła, obramowań, a także rozmieszczanie elementów w układzie kolumnowym  

czy tworzenie bardziej złożonych kompozycji graficznych. 



 

27 
 

Dlaczego „kaskadowe”? 

Przymiotnik „kaskadowe” wynika z hierarchicznego (kaskadowego) sposobu 

interpretacji arkuszy stylów. Oznacza to, że styl zadeklarowany w jednym miejscu może zostać 

nadpisany (przezwyciężony) przez bardziej szczegółową lub wyżej priorytetyzowaną definicję 

w innym miejscu. Kolejność i specyficzność reguł odgrywają tu ważną rolę, stąd mowa  

o kaskadzie, w której poszczególne zasady mogą „spływać” przez różne poziomy deklaracji. 

 

Metody osadzania CSS w dokumencie HTML 

1. Osadzanie w linii (ang. inline styles) 

o Stosowanie atrybutu style="..." w obrębie konkretnego znacznika HTML, np. 

 

<p style="color: red;">Przykładowy tekst w kolorze czerwonym</p> 

 

 

o Metoda szybka i prosta w użyciu, jednak utrudniająca utrzymanie spójności 

stylów w większych projektach. 

2. Style osadzone (ang. embedded styles) 

o Umieszczanie reguł CSS w sekcji <head> dokumentu, wewnątrz znacznika 

<style>. 

o Użyteczne w przypadku niewielkich stron lub gdy chcemy przetestować 

konkretne reguły bezpośrednio w dokumencie HTML. 

 

<head> 

  <style> 

    p { color: blue; } 

  </style> 

</head> 

 

 

3. Zewnętrzny arkusz stylów (ang. external stylesheet) 

o Najbardziej rekomendowana forma w większości przypadków – stylizację 

umieszcza się w osobnym pliku .css, a w dokumencie HTML dodaje się link: 

 

<link rel="stylesheet" href="styles.css"> 

 

 



 

28 
 

o Pozwala na łatwiejszą konserwację kodu, ponowne wykorzystanie reguł w wielu 

plikach oraz utrzymanie logicznego podziału między strukturą (HTML)  

a wyglądem (CSS). 

W wszelkich zadaniach o większej skali najczęściej stosuje się zewnętrzne arkusze stylów, 

ponieważ promują modularność i pozwalają na zachowanie wysokiej czytelności kodu. 

 

Podstawowe selektory w CSS 

1. Selektor tagu (elementu) 

o Odnosi się bezpośrednio do nazwy znacznika w HTML, np. 

 

p { 

    font-size: 16px; 

    line-height: 1.5; 

  } 

 

 

o Wszystkie paragrafy (<p>) w dokumencie zostaną sformatowane zgodnie  

z powyższymi zasadami. 

2. Selektor klasy 

o Używamy kropki . przed nazwą klasy, np.: 

 

.czerwony-tekst { 

    color: red; 

  } 

 

o Dotyczy wszystkich elementów w HTML, które posiadają atrybut 

class="czerwony-tekst" (patrz poprzednie spotkania). 

3. Selektor identyfikatora 

o Poprzedzony znakiem #, np.: 

 

#nawigacja { 

    background-color: #333; 

    color: #fff; 

  } 

 

 

o Odnosi się wyłącznie do elementu o atrybucie id="nawigacja". Pamiętajmy,  

że id musi być unikatowe w dokumencie. 



 

29 
 

4. Selektory zagnieżdżone (descendant selectors) 

o Pozwalają na bardziej precyzyjne targetowanie elementów. Przykładowo: 

 

div p { 

    color: #555; 

  } 

 

 

o Reguła ta mówi: „Nadaj kolor #555 wszystkim akapitom (<p>) znajdującym się 

wewnątrz elementu <div>”. 

Prócz nich istnieje wiele bardziej zaawansowanych selektorów (np. selektory potomków, 

rodzeństwa, pseudoklasy), jednak na początkowym etapie nauki warto skupić się na 

fundamentach, by móc efektywnie tworzyć stylizowane strony. 

 

Box Model – fundament CSS 

Box Model (model pudełkowy) definiuje, jak przeglądarki obliczają rozmiary i przestrzeń 

wokół elementów HTML. Zrozumienie go jest kluczowe przy układaniu layoutu: 

• content – obszar treści (np. tekst, obraz). 

• padding – wewnętrzne wypełnienie między treścią a krawędzią elementu. 

• border – obramowanie. 

• margin – zewnętrzne odstępy wokół elementu, oddzielające go od sąsiednich 

elementów. 

W praktyce, jeśli ustawimy width: 200px; dla danego elementu, to rzeczywista całkowita 

szerokość pudełka może być większa, gdy doliczymy do niej padding, border i margin. 

Przykładowa deklaracja: 

 

div { 

    width: 200px; 

    padding: 20px; 

    border: 2px solid #000; 

    margin: 10px; 

  } 

 

 

Wygląd i zachowanie tego „pudełka” w obrębie strony będą zależały właśnie od ustawionych 

wartości i sposobu interpretacji modelu pudełkowego (Domyślnie: box-sizing: content-box; 

alternatywnie: box-sizing: border-box). 

 



 

30 
 

Ćwiczenia  

1. Stworzenie zewnętrznego pliku CSS 

o Załóż plik style.css i podłącz go do nowo utworzonej strony HTML (np. 

index.html) poprzez <link rel="stylesheet" href="style.css">. 

o W pliku CSS zdefiniuj proste reguły, np. body { font-family: Arial, sans-serif; }. 

2. Wykorzystanie różnych selektorów 

o Napisz selektor tagu (np. h1 { color: blue; }), 

o selektor klasy (.podkreslony { text-decoration: underline; }), 

o selektor identyfikatora (#stopka { text-align: center; }). 

o Następnie zaimplementuj te klasy i identyfikatory w kodzie HTML. 

3. Testowanie Box Model 

o Utwórz <div> z tekstem i nadaj mu wyraźne padding i border. 

o Obserwuj, jak zmiana wartości margin wpływa na odstępy od sąsiednich 

elementów. 

o Rozważ zastosowanie box-sizing: border-box; i sprawdź, jak modyfikuje  

to wymiary elementu. 

Wykonanie tych ćwiczeń pozwoli na praktyczne zrozumienie, dlaczego CSS nazywamy 

kaskadowym oraz jak ważne jest rozróżnianie podstawowych selektorów i stosowanie Box 

Model przy projektowaniu layoutów. 

 

Pseudoklasy w CSS 

Czym są pseudoklasy? 

Pseudoklasy (ang. pseudo-classes) to rozszerzenie koncepcji selektorów w CSS, 

umożliwiające stylowanie elementów w zależności od ich specyficznych stanów, pozycji  

w drzewie dokumentu lub interakcji użytkownika. Dzięki nim możemy zmieniać wygląd 

elementu np. w momencie najechania kursorem, zaznaczenia, kliknięcia lub kiedy pełni  

on określoną rolę w strukturze strony. 

• Składnia pseudoklasy polega na dodaniu dwukropka (:) po nazwie selektora, a następnie 

nazwy pseudoklasy, np.: 

 

a:hover { 

    color: red; 

  } 

 

 



 

31 
 

• Pseudoklasy przydają się szczególnie w projektach, w których chcemy dynamicznie 

reagować na działania użytkownika (np. najechanie myszką, fokus w polu formularza) 

lub wyróżniać pierwszy/ostatni element listy bądź poszczególne fragmenty formularza. 

 

Najpopularniejsze pseudoklasy 

1. :hover 

o Stylowany element, gdy kursor myszy znajduje się nad nim. 

o Najczęściej używany dla linków (np. zmiana koloru, podkreślenie), ale może 

dotyczyć też innych elementów (div, button itp.). 

o Przykład: 

 

a:hover { 

    text-decoration: underline; 

    color: #f00; 

  } 

 

 

2. :focus 

o Stan aktywnego fokusu, np. gdy użytkownik kliknie w pole formularza  

lub przejdzie do niego klawiszem TAB. 

o Pozwala na podkreślenie aktualnie aktywnego elementu, co jest ważne z punktu 

widzenia dostępności. 

o Przykład: 

 

input:focus { 

    outline: 2px solid #00f; 

  } 

 

 

3. :active 

o Zastosowanie w chwili „aktywności” elementu, np. gdy użytkownik klika link 

czy przycisk i jeszcze nie zwolnił przycisku myszy. 

o Dobrze sprawdza się np. w tworzeniu wrażeń interaktywnych (przycisk może 

się „wciskać”). 

 

 



 

32 
 

o Przykład: 

 

button:active { 

    background-color: #ccc; 

    transform: scale(0.98); 

  } 

 

 

4. :visited 

o Dotyczy linków, które zostały już odwiedzone przez użytkownika. 

o Pomaga w odróżnieniu wcześniej otwieranych stron. 

o Przykład: 

 

a:visited { 

    color: #800080; /* fioletowy */ 

  } 

 

 

5. :first-child, :last-child, :nth-child() 

o Pseudoklasy umożliwiające stylowanie elementu w zależności od jego pozycji 

wśród rodzeństwa w drzewie DOM. 

o :first-child – odnosi się do pierwszego dziecka w obrębie rodzica. 

o :last-child – odnosi się do ostatniego dziecka. 

o :nth-child() – pozwala na wskazanie konkretnej pozycji bądź wzorca,  

np. co drugi element listy. 

o Przykłady: 

 

li:first-child { 

    font-weight: bold; 

  } 

   

  li:nth-child(2) { 

    color: green; 

  } 

   

  li:nth-child(odd) { 

    background-color: #fafafa; 

  } 

 



 

33 
 

6. :not() 

o Pozwala wykluczyć selektor z określonego wzorca, np. 

 

p:not(.wyrozniony) { 

    color: #555; 

  } 

 

 

o Stylowanie wszystkich paragrafów z wyjątkiem tych oznaczonych klasą 

.wyrozniony. 

 

Zasady priorytetów i łączenie pseudoklas 

Pseudoklasy można łączyć z innymi selektorami (tagu, klasy, identyfikatora), tworząc 

jeszcze bardziej precyzyjne reguły. Na przykład: 

 

button.duzy-przycisk:hover { 

    background-color: #ff0; 

  } 

 

 

Z uwagi na kaskadowość i specyficzność stylów, może się zdarzyć, że reguły z pseudoklasą 

zostaną nadpisane przez inne, mocniejsze selektory (np. z użyciem !important lub selektorów 

ID). Dlatego warto dbać o czytelność i unikać niepotrzebnie skomplikowanych „łańcuchów” 

pseudoklas. 

 

Dlaczego pseudoklasy są ważne? 

• Reagowanie na interakcje: :hover, :focus, :active wprowadzają elementy dynamiki  

i lepszą dostępność. 

• Precyzyjne stylowanie: :first-child, :nth-child() itp. oszczędzają konieczność 

dodawania zbędnych klas w HTML. 

• Czytelność i oszczędność kodu: możemy mniej polegać na dodatkowych znacznikach 

i atrybutach, a bardziej na selektorach i pseudoklasach. 

Dzięki pseudoklasom możemy stworzyć stronę, która nie tylko wygląda statycznie ładnie, lecz 

także w sposób przyjazny reaguje na działania użytkownika. To istotny krok na drodze  

do profesjonalnych i dopracowanych layoutów, szczególnie w połączeniu z innymi technikami 

(flexbox, grid, responsywność). 

  



 

34 
 

Layout strony, semantyczne sekcje 

Ten rozdział stanowi rozszerzenie dotychczas zdobytej wiedzy dotyczącej HTML i CSS 

o bardziej zaawansowane zagadnienia związane z tworzeniem układu (layoutu) strony.  

W niniejszym rozdziale skupimy się na semantycznych znacznikach wprowadzonych  

w HTML5, takich jak <main>, <header>, <nav>, <aside>, <footer>, <article> i <section>. 

Omówimy również rolę klasycznego kontenera <div>, niezbędnego w wielu konstrukcjach 

układu. Celem jest pokazanie, jak w sposób świadomy i uporządkowany tworzyć rozbudowane 

struktury, które będą zarówno czytelne dla deweloperów, jak i przyjazne użytkownikom oraz 

wyszukiwarkom. 

 

Semantyka i struktura HTML5 

Dlaczego semantyka jest ważna? 

Semantyczne znaczniki HTML5 dają przeglądarkom i narzędziom (np. czytnikom 

ekranu) wyraźne wskazówki, jak interpretować poszczególne fragmenty treści. Ułatwiają 

również utrzymanie czytelności kodu na większych projektach, gdyż zamiast serii <div>  

z różnymi klasami otrzymujemy czytelne wyróżnienie roli poszczególnych sekcji strony. 

Kiedy stosować semantyczne elementy? 

Zaleca się, aby w miarę możliwości używać znaczników takich jak <header> czy <nav> 

zamiast zwykłego <div>, o ile dany element faktycznie pełni określoną funkcję – np. jest 

nagłówkiem całej strony, listą linków nawigacyjnych czy sekcją poboczną. 

Omówienie poszczególnych sekcji 

1. <header> 

o Przeznaczony na główkę strony lub nagłówek sekcji. 

o Często zawiera logo, tytuł, menu główne bądź inne elementy identyfikacyjne. 

2. <nav> 

o Przeznaczony dla obszaru nawigacji: menu linków, spis treści, itp. 

o Ułatwia narzędziom wspomagającym (np. screen readerom) szybkie wykrycie 

obszaru nawigacji w witrynie. 

3. <main> 

o Rdzeń dokumentu: w tym znaczniku umieszczamy główną treść, unikalną dla 

danej strony. 

o Zaleca się, by w danej witrynie stosować jeden <main>. 

4. <aside> 

o Zawiera treści poboczne, uzupełniające główny wątek, np. pasek boczny  

z reklamami, ciekawostkami, dodatkowymi informacjami. 

  



 

35 
 

 

5. <footer> 

o Umieszczamy w nim informacje „stopki” strony: prawa autorskie, linki  

do kontaktu, odnośniki do regulaminu, itp. 

o Można stosować również w obrębie pojedynczych sekcji, np. <article>, jeżeli 

zachodzi potrzeba dodania stopki konkretnego artykułu. 

6. <article> 

o Definiuje samodzielny, niezależny fragment treści, np. wpis blogowy, artykuł, 

komentarz. 

o Może zawierać własne nagłówki, stopki czy sekcje. 

7. <section> 

o Służy do pogrupowania powiązanych tematycznie elementów w wyodrębnionej 

sekcji strony. 

o Zalecane przy dzieleniu dłuższego contentu na logiczne części (np. rozdziały, 

bloki tematyczne). 

8. <div> 

o Uniwersalny kontener blokowy (block-level), używany do grupowania 

elementów w celu zastosowania wspólnych reguł CSS lub dynamicznych 

operacji w JavaScripcie. 

o Mimo że sam w sobie nie ma znaczenia semantycznego, jest nadal nieodzowny 

w wielu scenariuszach, szczególnie gdy potrzebujemy złożyć złożony layout. 

 

Tworzenie layoutu strony 

Prosta struktura 

 

<!DOCTYPE html> 

<html lang="pl"> 

<head> 

  <meta charset="UTF-8"> 

  <title>Moja strona</title> 

  <link rel="stylesheet" href="style.css"> 

</head> 

<body> 

 

  <header> 

    <h1>Tytuł Strony</h1> 

    <!-- Logo, ewentualnie menu --> 

  </header> 



 

36 
 

 

  <nav> 

    <ul> 

      <li><a href="#sekcja1">Sekcja 1</a></li> 

      <li><a href="#sekcja2">Sekcja 2</a></li> 

    </ul> 

  </nav> 

 

  <main> 

    <section id="sekcja1"> 

      <h2>Nagłówek Sekcji 1</h2> 

      <p>Treść główna tej sekcji...</p> 

    </section> 

 

    <section id="sekcja2"> 

      <h2>Nagłówek Sekcji 2</h2> 

      <p>Inna część strony...</p> 

    </section> 

 

    <aside> 

      <h3>Wiadomości poboczne</h3> 

      <p>Przykładowy blok boczny.</p> 

    </aside> 

  </main> 

 

  <footer> 

    <p>&copy; 2025 Moja Strona – wszystkie prawa zastrzeżone.</p> 

  </footer> 

 

</body> 

</html> 

 

 



 

37 
 

 

Powyższy układ obrazuje standardowe zastosowanie semantycznych znaczników HTML5, 

gdzie <main> trzyma zasadniczą treść, <nav> zapewnia menu nawigacyjne, a <aside> pojawia 

się jako obszar dodatkowy – często z prawej lub lewej strony. 

 

Rola CSS w rozmieszczeniu elementów 

Aby nadać stronie atrakcyjny wygląd i układ (np. kolumnowy), sięgamy po narzędzia 

CSS, takie jak display (m.in. flex, grid), float (dawniej) czy pozycjonowanie. Dzięki nim 

można zdefiniować, czy <aside> ma być po prawej, <nav> poziomy czy pionowy, i jak 

zachowuje się layout przy zmianie rozmiaru okna przeglądarki (responsive design). 

 

Ćwiczenia praktyczne 

1. Tworzenie semantycznego szablonu strony 

o Utwórz plik index.html zawierający strukturę z <header>, <nav>, <main>, 

<section>, <aside> i <footer>. 

o Wypełnij je przykładową treścią, np. nagłówkami i krótkimi akapitami, tak aby 

zachować logikę i czytelność. 

2. Podstawowy layout CSS 

o W pliku style.css ustaw elementy <header>, <nav>, <main>, <aside> i <footer> 

tak, aby tworzyły sensowny układ (np. nagłówek i stopka na całą szerokość, 

obok <main> sekcja <aside> z wąską szerokością). 



 

38 
 

o W tym celu możesz skorzystać z display: flex; i ustawić np. .container { display: 

flex; } dla głównego kontenera. 

3. Responsywność 

o Jeżeli czas pozwoli, dodaj proste reguły media queries (@media) w CSS, aby 

kolumny zmieniały się w jeden wąski układ przy mniejszych szerokościach 

okna. 

o Sprawdź, jak zachowują się poszczególne elementy przy zwężaniu ekranu 

przeglądarki. 

Formularze i komentarze 

Ten rozdział koncentruje się na dwóch pozornie niezależnych zagadnieniach, które 

jednak są niezwykle istotne w procesie tworzenia stron WWW. Po pierwsze, zapoznamy się  

z formularzami – jednym z głównych sposobów interakcji użytkownika z serwisem, 

umożliwiającym wysyłanie danych (np. w celu logowania, rejestracji, wysyłki wiadomości). 

Po drugie, omówimy komentarze w HTML i CSS, dzięki którym możliwe jest lepsze 

dokumentowanie kodu, co nabiera szczególnego znaczenia w większych projektach 

internetowych. 

 

Formularze w HTML 

Formularze stanowią podstawę wielu aplikacji internetowych, gdyż pozwalają 

użytkownikom przekazać dane na serwer, np. podczas wysyłania maila za pomocą formularza 

kontaktowego, rejestrowania konta czy składania zamówienia w sklepie online. 

Podstawowe elementy formularza 

1. Znacznik <form> 

o Służy do zdefiniowania obszaru formularza, w którym umieścimy pola, 

przyciski oraz inne elementy. 

o Główne atrybuty to: 

▪ action – określa adres (URL) strony lub skryptu obsługującego 

przesyłane dane, 

▪ method – definiuje metodę przesyłu (np. GET lub POST), 

▪ enctype – sposób kodowania danych (np. multipart/form-data dla 

przesyłania plików). 

Przykład: 

 

<form action="wyslij.php" method="POST"> 

  <!-- Pola formularza --> 

</form> 

 



 

39 
 

 

2. Pola <input> 

o Podstawowy element do wprowadzania danych, z wieloma wariantami atrybutu 

type: 

▪ type="text" – zwykłe pole tekstowe, 

▪ type="password" – ukrywa wpisywane znaki, 

▪ type="email" – w HTML5 może wspomagać walidację adresu email, 

▪ type="checkbox" – pole wyboru (można zaznaczyć wiele opcji), 

▪ type="radio" – przyciski radiowe (zwykle wybór jednej opcji z wielu), 

▪ type="file" – umożliwia wgranie pliku z dysku, 

▪ type="submit" – przycisk zatwierdzający formularz. 

3. Etykiety (ang. labels) 

o Znacznik <label> powiązany z konkretnym polem input (za pomocą for="id-

pola"). 

o Ułatwia dostępność, np. umożliwiając klikanie w tekst etykiety,  

co automatycznie ustawia fokus w powiązanym polu: 

 

<label for="email">Adres email:</label> 

<input type="email" id="email" name="email"> 

 

 

4. <select> i <option> 

o Lista rozwijana, pozwalająca wybrać jedną (lub kilka – przy multiple)  

z dostępnych opcji: 

 

<select name="kraj"> 

  <option value="pl">Polska</option> 

  <option value="de">Niemcy</option> 

  <option value="uk">Wielka Brytania</option> 

</select> 

 

 

5. <textarea> 

o Pole tekstowe wielolinijkowe, przydatne np. w formularzu kontaktowym, gdy 

chcemy wprowadzić dłuższą wiadomość. 



 

40 
 

6. Przycisk wysyłający 

o type="submit" – standardowy przycisk wysyłający dane formularza do adresu 

określonego w action. 

o Można też używać button type="submit" i wewnątrz np. ikon, aby bardziej 

customizować wygląd. 

 

Walidacja formularzy w HTML5 

HTML5 wprowadził szereg atrybutów, które pozwalają wstępnie zweryfikować dane 

jeszcze przed wysłaniem na serwer, m.in.: 

• required – użytkownik nie może pominąć pola, 

• pattern="[0-9]{3}" – dopasowanie do wyrażenia regularnego (np. wymuszenie 

wpisania dokładnie 3 cyfr), 

• min, max, maxlength – ograniczenia co do wartości liczbowej, zakresu czy długości 

tekstu. 

Walidacja po stronie klienta (przeglądarki) jest wygodna i oszczędza użytkownikowi zbędnych 

odświeżeń strony, ale nie zwalnia z konieczności weryfikowania danych na serwerze. 

 

Komentarze w HTML i CSS 

Komentarze stanowią nieodzowną część kodu źródłowego, zwłaszcza w zespołowych 

projektach, gdzie uczestnicy muszą rozumieć zamierzenia i kontekst poszczególnych 

fragmentów. 

Komentarze w HTML 

• Składnia: 

 

<!-- To jest komentarz w HTML. Nie będzie widoczny w przeglądarce. --> 

 

 

• Zastosowanie: 

o Wyłączanie fragmentów kodu z renderowania (testy, debugowanie). 

o Dokumentowanie sekcji, np. wyjaśnianie, co oznaczają danego rodzaju bloki 

(<!-- stopka strony -->). 

  



 

41 
 

 

Komentarze w CSS 

• Składnia: 

 

/* To jest komentarz w CSS. Nie będzie interpretowany przez przeglądarkę. */ 

 

 

• Zastosowanie: 

o Komentowanie reguł, opis np. zastosowania poszczególnych selektorów, 

o Czasowe wyłączanie reguł (np. zablokowanie stylu, gdy testujemy inny 

wariant). 

Dzięki komentarzom w HTML i CSS możemy znacznie szybciej odświeżyć sobie założenia 

projektu po przerwie bądź skutecznie podzielić się wiedzą z innymi osobami uczestniczącymi 

w pracach nad danym serwisem. 

 

Ćwiczenia  

1. Tworzenie prostego formularza kontaktowego 

o Utwórz plik formularz.html z podstawową strukturą <form>. 

o Dodaj pola: Imię (text), Email (email), Wiadomość (textarea) oraz przycisk 

„Wyślij”. 

o Nad etykietami i w pola wprowadź atrybut required dla tych, które  

są obowiązkowe. 

o W sekcji <head> osadź proste reguły CSS (lub w pliku zewnętrznym), aby 

formularz był czytelnie ułożony. 

2. Komentarze w HTML i CSS 

o Zamieść komentarz w dokumencie HTML, opisujący cel formularza (np. <!-- 

Formularz kontaktowy do przesyłania uwag użytkowników -->). 

o W pliku CSS dopisz komentarze opisujące reguły np. kolorów i rozmiarów 

czcionki. 

 

Zaawansowane możliwości CSS (czcionki, tekst) 

W rozdziale skupiamy się na bardziej zaawansowanych aspektach języka CSS, 

koncentrując się na stylistyce tekstu i typografii oraz na kluczowych wskazówkach dotyczących 

dalszego rozwoju w tym obszarze.  

 



 

42 
 

Czcionki w CSS (font-family, font-size, font-weight, font-style) 

Typografia i jej znaczenie 

Współczesne witryny internetowe coraz częściej przywiązują ogromną wagę do estetyki 

wyświetlanego tekstu. Właściwy dobór kroju pisma, rozmiaru czy grubości pozwala nie tylko 

na zwiększenie czytelności, lecz także na wzmocnienie identyfikacji wizualnej projektu. 

1. font-family 

o Definiuje rodzinę czcionek, jaką chcemy zastosować w danym elemencie, np.: 

 

body { 

    font-family: 'Open Sans', Arial, sans-serif; 

  } 

 

 

o Zwykle dodajemy tzw. fallbacki (np. Arial, sans-serif), dzięki czemu jeśli 

przeglądarka nie znajdzie fontu „Open Sans”, użyje kolejnego dostępnego kroju. 

 

2. font-size 

o Odpowiada za rozmiar czcionki. Najczęściej stosuje się wartości w pikselach 

(px), em, rem lub %: 

 

p { 

    font-size: 16px; 

  } 

 

 

o W kontekście responsywności i dostępności, popularne są jednostki relatywne 

(em, rem), które skalują się w zależności od ustawień bazowych przeglądarki. 

3. font-weight 

o Steruje grubością pisma, np. normal, bold, bądź wartością liczbową (np. 300, 

400, 700): 

 

h1 { 

    font-weight: 700; 

  } 

 

  



 

43 
 

4. font-style 

o Definiuje styl pisma (np. normal, italic, oblique). W zależności od użytego kroju 

pisma może niekiedy brakować danego stylu. 

Czcionki z Google Fonts 

Niezwykle popularnym źródłem bezpłatnych krojów pisma jest Google Fonts. Integracja 

polega najczęściej na wklejeniu linku w sekcji <head>: 

 

<link rel="stylesheet" 

href="https://fonts.googleapis.com/css2?family=Open+Sans:wght@400;700&display=

swap"> 

 

 

a następnie zdefiniowaniu w CSS: 

 

body { 

    font-family: 'Open Sans', sans-serif; 

  } 

 

 

Ta metoda umożliwia uatrakcyjnienie wyglądu witryny bez konieczności instalowania czcionek 

po stronie użytkownika. 

 

Zaawansowane formatowanie tekstu w CSS 

1. color – określa barwę tekstu, np.: 

 

p { 

    color: #333; 

  } 

 

 

2. text-align – wyrównanie tekstu (left, center, right, justify): 

 

.centered-text { 

    text-align: center; 

  } 

   

  

https://fonts.google.com/


 

44 
 

3. text-decoration – dekoracja tekstu (np. underline, line-through): 

 

a { 

    text-decoration: none; 

  } 

 

   

 

4. text-transform – zmiana wielkości liter (uppercase, lowercase, capitalize): 

 

h2 { 

    text-transform: uppercase; 

  } 

 

 

5. letter-spacing i line-height – odstępy między znakami i wysokość linii: 

 

p { 

    letter-spacing: 0.5px; 

    line-height: 1.6; 

  } 

 

 

6. text-shadow – dodawanie cienia do tekstu: 

 

h1 { 

    text-shadow: 2px 2px 4px rgba(0,0,0,0.3); 

  } 

 

 

Odpowiednie użycie tych właściwości potrafi znacząco poprawić czytelność i atrakcyjność 

projektowanej strony. 

  



 

45 
 

 

Podstawy JavaScript i praktyczne zastosowania 

Język JavaScript (w skrócie JS) jest trzecim, nieodłącznym filarem współczesnych 

aplikacji webowych, pozwalając na tworzenie dynamicznych i interaktywnych witryn. 

 

Wprowadzenie do JavaScript 

 

Charakterystyka i zastosowania 

JavaScript to język programowania działający po stronie klienta, interpretowany przez 

przeglądarki internetowe. Dzięki niemu można: 

• Reagować na interakcje użytkownika w czasie rzeczywistym (np. kliknięcia, 

wprowadzanie tekstu w formularzach). 

• Modyfikować zawartość i wygląd strony bez konieczności jej ponownego 

przeładowania (ang. DOM manipulation). 

• Tworzyć gry, wizualizacje danych, rozbudowane aplikacje typu SPA (Single-Page 

Application). 

JavaScript jest również podstawą wielu nowoczesnych frameworków (np. React, Vue, 

Angular), dzięki czemu stał się kluczowym narzędziem w świecie front-end developmentu. 

 

Włączenie JavaScript do strony 

Najprostszym sposobem jest dodanie znacznika <script> w pliku HTML: 

 

<!DOCTYPE html> 

<html lang="pl"> 

<head> 

  <meta charset="UTF-8"> 

  <title>Moja Strona z JavaScript</title> 

</head> 

<body> 

  <h1>Witamy w świecie JavaScript!</h1> 

   

  <script> 

    alert("Dzień dobry! Skrypt został załadowany."); 

  </script> 

</body> 

</html> 

 

 



 

46 
 

 

 

Jednak w większych projektach zaleca się umieszczenie kodu w osobnym pliku .js, np. script.js, 

a następnie zaimportowanie go przez: 

 

<script src="script.js"></script> 

 

 

Podstawy składni i struktury języka 

 

Zmienne i stałe 

• var – starsza forma deklaracji zmiennej, obecnie rzadziej zalecana (ma zakres 

funkcyjny i może powodować konflikty nazw). 

• let – zmienna o zakresie blokowym; preferowana w nowoczesnych projektach. 

• const – stała, której wartości nie można później zmienić. 

Przykłady: 

 

let imie = "Jan"; 

const WERSJA = 1.0; 

 

 

Typy danych 

JavaScript charakteryzuje się dynamicznym typowaniem: 

• String (łańcuch znaków): "Tekst" 

• Number (liczba): 123, 3.14 

• Boolean: true lub false 

• Null i undefined: oznaczają brak wartości 

• Object, Array, Function: bardziej złożone struktury 

 

let wiek = 25;        // Number 

let nazwisko = "Kowalski"; // String 

let czyAktywny = true; // Boolean 

 



 

47 
 

Operatory i instrukcje warunkowe 

• Operatory arytmetyczne: +, -, *, /, % (reszta z dzielenia) 

• Operatory porównania: === (równość ścisła), !==, <, >, <=, >= 

• Instrukcje warunkowe: if, else, switch 

 

if (wiek >= 18) { 

    console.log("Pełnoletni"); 

  } else { 

    console.log("Niepełnoletni"); 

  } 

 

 

Pętle 

• for – iteracja po określonej liczbie powtórzeń, 

• while / do...while – iteracja dopóki warunek jest spełniony. 

 

for (let i = 0; i < 5; i++) { 

    console.log("Iteracja nr: " + i); 

  } 

 

 

Funkcje 

• Definicja standardowa: 

 

function obliczSume(a, b) { 

    return a + b; 

  } 

 

 

• Funkcja strzałkowa (ang. arrow function): 

 

const obliczRoznice = (a, b) => { 

    return a - b; 

  } 

  // lub 

  const obliczRozniceKrotko = (a, b) => a - b; 

 

 

Funkcje pozwalają na modularyzację kodu i ponowne wykorzystanie logiki. 



 

48 
 

 

Manipulacja DOM i zdarzenia 

DOM (Document Object Model) to struktura dokumentu HTML „reprezentowana”  

w przeglądarce jako drzewa obiektów. Za pomocą JavaScript możemy dynamicznie tworzyć, 

usuwać lub modyfikować elementy, reagując na akcje użytkownika. 

Wybieranie elementów 

• document.getElementById("nazwa") 

• document.querySelector(".klasa") (lub #id, element) 

 

const przycisk = document.getElementById("przycisk-klik"); 

const tytul = document.querySelector("h1"); 

 

 

Reagowanie na zdarzenia 

• addEventListener – umożliwia przypisanie funkcji do konkretnego zdarzenia 

(kliknięcia, najechania, zmiany rozmiaru okna, itp.). 

 

przycisk.addEventListener("click", () => { 

    tytul.textContent = "Tekst zmieniony po kliknięciu!"; 

  }); 

 

 

Praktyczne przykłady 

1. Rozwijane menu – Po kliknięciu przycisku menu, klasa .aktywny dodaje się do <nav>, 

co powoduje wyświetlenie / ukrycie elementów nawigacji (Skrzypek, 2020). 

2. Walidacja formularza – Przed wysłaniem danych na serwer możemy sprawdzić 

poprawność wypełnienia pól (np. email, hasło) i wyświetlić komunikaty. 

3. Prosty slider obrazów – Zmiana źródła <img> co kilka sekund lub po kliknięciu 

strzałek. 

Ćwiczenia praktyczne 

1. Interaktywny przycisk 

o W HTML stwórz przycisk o id przycisk-toggle. 

o W JavaScript podłączony do tej samej strony zapisz kod, który po kliknięciu 

zmienia kolor tła dokumentu (np. toggluje klasę .dark-mode w <body>). 

  



 

49 
 

2. Prosta walidacja formularza 

o Wykorzystaj istniejący formularz kontaktowy (z poprzednich zajęć). 

o Dodaj skrypt, który po wciśnięciu przycisku „Wyślij” sprawdzi, czy pola nie  

są puste; jeśli są, wyświetli komunikat ostrzegawczy w elemencie <span> obok 

pola. 

3. DOM – dodawanie elementów 

o Stwórz pustą listę <ul id="lista"> w HTML. 

o Utwórz przycisk „Dodaj element”, który po kliknięciu dopisuje nowy <li>  

z kolejnym numerem do listy. 

 

Niniejszy zakres materiału stanowi dopiero początek przygody z JavaScript. W dalszej 

kolejności warto przyjrzeć się: 

• Asynchroniczności (AJAX, fetch API, Promises, async/await) – pozwala na pobieranie 

i wysyłanie danych bez przeładowywania strony. 

• Modułom (import/export) – ułatwiają podział kodu na mniejsze pliki i ich ponowne 

wykorzystanie. 

• Frameworkom i bibliotekom (React, Vue, Angular, jQuery) – przyspieszają pracę przy 

większych projektach, zapewniając wiele gotowych rozwiązań. 

• ESNext – stałe aktualizacje standardu ECMAScript (który definiuje JavaScript) wnoszą 

kolejne możliwości do języka. 

Poznanie podstaw JavaScript – obok umiejętności pisania semantycznego kodu HTML oraz 

stylów w CSS – czyni z uczestników kursu wszechstronnych twórców front-endu, zdolnych do 

kreowania nowoczesnych i funkcjonalnych stron internetowych. 

  



 

50 
 

 

Backend stron WWW (Paweł Sobczak) 

Wprowadzenie do PHP 

Język PHP (Hypertext Preprocessor) to popularny, otwarty język skryptowy, który jest 

używany szczególnie do tworzenia aplikacji webowych. PHP działa po stronie serwera i jest 

często wykorzystywany do generowania dynamicznych stron internetowych oraz zarządzania 

danymi na stronach. Pełnię swoich możliwości osiąga dzięki integracji z bazami danych, takimi 

jak MySQL czy PostgreSQL. Znajomość języka PHP stanowi jedną z fundamentalnych 

kompetencji, które powinien posiadać każdy twórca serwisów internetowych. Jest to 

nieodzowna umiejętność zarówno przy tworzeniu zaawansowanych, profesjonalnych portali, 

jak i przy projektowaniu prostszych stron domowych. Dzięki swojej wszechstronności PHP 

umożliwia realizację szerokiego zakresu funkcjonalności, od dynamicznego generowania 

treści, po integrację z bazami danych i zaawansowanymi systemami zarządzania treścią. Era 

statycznego HTML-a należy już do przeszłości – obecnie standardem w branży jest dynamiczne 

generowanie treści, które zapewnia elastyczność, interaktywność i możliwość dostosowywania 

stron do indywidualnych potrzeb użytkowników. Co więcej, PHP jako język szeroko wspierany 

przez społeczność programistów i regularnie aktualizowany, pozostaje jednym z filarów 

nowoczesnego programowania internetowego, idealnie wpisując się w wymagania 

współczesnych aplikacji webowych.  

Możliwości języka PHP są niezwykle szerokie i wszechstronne. Od podstawowych 

zadań, takich jak przetwarzanie danych z formularzy w witrynach internetowych, po bardziej 

zaawansowane operacje, takie jak przetwarzanie tekstu czy budowa złożonych aplikacji 

współpracujących z dużymi bazami danych. Język PHP wspiera wiele protokołów sieciowych, 

w tym NNTP, SMTP, POP3 i IMAP, a także umożliwia komunikację sieciową za pomocą 

gniazd (ang. sockets). Dodatkowo, dzięki jego funkcjonalnościom, można dynamicznie 

generować obrazy, dokumenty PDF, czy dane w formacie XML. 

  



 

51 
 

Jak działa język PHP? 

PHP działa na zasadzie skryptu po stronie serwera. Oznacza to, że kod PHP jest 

wykonywany na serwerze, a wynik tej operacji (zazwyczaj HTML lub inny format danych) jest 

wysyłany do przeglądarki użytkownika. Cały proces wygląda następująco: 

1. Przeglądarka wysyła żądanie do serwera – Gdy użytkownik wchodzi na stronę 

internetową, przeglądarka wysyła żądanie do serwera, na którym znajduje się strona 

(np. kliknięcie w link lub wpisanie adresu URL). 

2. Serwer odbiera żądanie i przetwarza skrypt PHP – Na serwerze zainstalowane jest 

oprogramowanie, które interpretuje kod PHP (np. serwer Apache z wtyczką PHP). 

Serwer przetwarza skrypt PHP zawarty w pliku (np. index.php), wykonując zapisane  

w nim instrukcje. 

3. PHP przetwarza dane – Skrypt PHP może wykonać różnorodne operacje, takie jak: 

• Przetwarzanie danych z formularzy (np. zapisanie danych do bazy danych). 

• Pobieranie i wyświetlanie danych z bazy danych (np. wyświetlenie listy 

produktów z bazy). 

• Generowanie dynamicznego HTML-a na podstawie warunków, zmiennych  

i danych wejściowych. 

4. Wynik zwrócony do przeglądarki – Po przetworzeniu skrypt PHP generuje 

odpowiedź, którą najczęściej jest zwykły kod HTML, CSS lub JavaScript.  

Ta odpowiedź jest przesyłana do przeglądarki użytkownika. 

5. Przeglądarka wyświetla stronę – Przeglądarka odbiera dane i wyświetla zawartość 

strony, którą użytkownik widzi w swoim oknie przeglądarki. 

 

Przykład prostego procesu: 

1. Użytkownik wchodzi na stronę www.przyklad.com. 

2. Serwer odbiera żądanie i znajduje plik index.php. 

3. Skrypt PHP w pliku index.php łączy się z bazą danych, pobiera listę produktów,  

a następnie generuje HTML z danymi produktów. 



 

52 
 

4. PHP wysyła ten HTML do przeglądarki użytkownika. 

5. Przeglądarka wyświetla listę produktów. 

 

Kluczowe elementy: 

• Interpretacja: PHP jest językiem interpretowanym, co oznacza, że kod jest 

wykonywany linia po linii w czasie rzeczywistym, a nie kompilowany przed 

uruchomieniem. 

• Dynamiczność: PHP umożliwia generowanie dynamicznych treści na podstawie 

zmiennych, danych wejściowych (np. z formularzy) oraz danych z baz danych. 

• Bezpieczeństwo: Ponieważ kod PHP jest wykonywany po stronie serwera, 

użytkownicy nie mają dostępu do samego kodu źródłowego, co zapewnia pewien 

poziom bezpieczeństwa. 

Zatem zadaniem skryptowego języka PHP jest takie przetworzenie danych, aby została 

wygenerowana strona zawierająca kod zrozumiały dla przeglądarki WWW (np. kod HTML),  

co w sposób ideowy przedstawia rys. 2.1. 

 

 

Rys. 2.1 Ideowa interpretacja działania języka PHP 

Źródło: Opracowanie własne. 

 

Instalacja oprogramowania 

XAMPP to pakiet oprogramowania, który pozwala zamienić komputer domowy  

w serwer internetowy, który będzie potrafił interpretować i wykonywać skrypty PHP. Składniki 

pakietu to: serwer WWW Apache, baza danych MySQL oraz język skryptowy PHP (rys. 2.2). 

 



 

53 
 

 

Rys. 2.2 Pakiet oprogramowania XAMPP 

Źródło: Opracowanie własne. 

 

Pakiet oprogramowanie można pobrać ze strony internetowej pod adresem: 

https://www.apachefriends.org/pl/index.html. Jest to szczególnie wygodny pakiet dla celów 

testowych, my jednak zainstalujemy tylko Server Apache i język programowania PHP, bazę 

internetową zainstalujemy sobie za pomocą innego oprogramowania, ale o tym w dalszej części 

skryptu. Podczas instalacji XAMP odznaczamy wszystko co możliwe i zostawiamy PHP  

i Apache (rys. 2.3). Katalog instancji wybieramy c:\xampp, a język to angielski.  

 

 

Rys. 2.3 Instalacja pakietu oprogramowania XAMPP 

Źródło: Opracowanie własne. 

  



 

54 
 

 

Po zainstalowaniu pakietu możemy uruchomić Apache, jak zostało to pokazane na rys. 2.4. 

 

 

Rys. 2.4. Uruchomienie serwera Apache 

Źródło: Opracowanie własne. 

 

Działanie serwera można sprawdzić, wpisując w pasku adresowym przeglądarki 

http://localhost/, wówczas powinna pojawić się strona startowa widoczna na rys. 2.5. Strona 

ta jest umieszona w katalogu c:\xampp\htdocs. W tym właśnie katalogu utworzymy katalog 

kurs i w nim będziemy trzymać wszystkie pliki (skrypty) PHP, jak zostało to pokazane na  

rys. 2.6.    

 

 

Rys. 2.5. Strona startowa serwera Apache 

Źródło: Opracowanie własne. 

 



 

55 
 

 

Rys. 2.6. Utworzenie katalogu kurs w katalogu c:\xampp\htdocs   

Źródło: Opracowanie własne. 

 

Od teraz wszystkie skrypty będziemy uruchamiać, wpisując w pasku adresowym przeglądarki 

http://localhost/kurs/nazwa_skrpytu.php. W celu napisania pierwszego skryptu PHP można 

wykorzystać dowolny prosty edytor tekstu, taki jak Notatnik czy Notepad++. Można również 

wykorzystać bardziej zaawansowane narzędzie, takie jak Visual Studio Code, które można 

pobrać ze strony: https://code.visualstudio.com/. Po zainstalowaniu edytora warto dodać nasz 

katalog kurs do Workspace (obszaru roboczego), jak zostało to pokazane na rys. 2.7. 

 

 

Rys. 2.7. Dodanie katalogu kurs do obszaru roboczego    

Źródło: Opracowanie własne. 

 



 

56 
 

Pierwszy skrypt PHP 

Poznawanie nowego języka programowania najlepiej rozpocząć od przykładu, który 

spowoduje wyświetlenie dowolnego napisu/tekstu. Każdy skrypt będziemy zapisywać  

z rozszerzeniem .php (nazwa_pliku.php). Skrypt w języku PHP umieszcza się w znacznikach 

<?php   ?>, można go łączyć ze znacznikami HTML. Czyli np. w znaczniku <body> możemy 

umieścić skrypt PHP, ale również w skrypcie PHP możemy używać znaczników HTML. 

 

 

Rys. 2.8. Pierwszy skrypt PHP wyświetlający napis/tekst 

Źródło: Opracowanie własne. 

 

Teraz możemy uruchomić nasz skrypt, który zapisaliśmy pod nazwą start.php, wpisując  

w pasku adresowym przeglądarki http://localhost/kurs/start.php. Efekt wykonania skryptu 

prezentuje rys. 2.9, czyli po prostu wyświetlenie napisu „Pierwszy skrypt PHP!”.  

 

 

 

Rys. 2.9. Efekt uruchomienia pierwszego skryptu wyświetlającego napis/tekst 

Źródło: Opracowanie własne. 

 



 

57 
 

Warto zauważyć, że instrukcja echo wyświetla tekst, a na końcu linii znajduje się znak ;. Prawie 

po każdej linii w języku PHP stawia się znak średnika. Wszystko to, co znajduje się między 

znacznikami <?php   ?>, stanowi kod PHP i jest przetwarzane przez aparat wykonawczy PHP. 

 

 

Rys. 2.10. Skrypt PHP ze znacznikiem HTML 

Źródło: Opracowanie własne. 

 

Tak jak już zostało wspomniane, w skryptach PHP można używać znaczników HTML  

(rys. 2.10). Efekt wykonania skryptu przedstawia rys. 2.11, czyli wyświetlenie pogrubionego 

tekstu „To jest skrypt PHP”.  

 

 

Rys. 2.11. Skrypt PHP ze znacznikami HTML 

Źródło: Opracowanie własne. 

 

 

Komentarze w skryptach PHP 

Pisząc kod skryptu w PHP, można stosować komentarze, które są ignorowane w trakcie 

przetwarzania skryptu, pozwalają za to umieścić w kodzie uwagi, które mogą być dla nas 

przydatne podczas jego późniejszej analizy. Do wyboru mamy trzy rodzaje komentarzy: 

• komentarz blokowy, obejmujący więcej linii /*    */ 

• komentarz jednowierszowy // 

• komentarz jednowierszowy uniksowy #.  



 

58 
 

Przykład wykorzystania komentarzy prezentuje rys. 2.12. Po uruchomieniu skryptu  

w przeglądarce wyświetli się jedynie tekst „Witamy na stronie”, pozostały tekst to różne 

komentarze. 

 

 

Rys. 2.12. Przykład wykorzystania komentarza w PHP 

Źródło: Opracowanie własne. 

 

Zmienne w PHP 

Zmienne to takie wirtualne „pudełka”, które pozwalają na przechowywanie danych. Każda 

zmienna posiada swoją nazwę, dzięki której można się do niej odwoływać w kodzie, oraz typ 

określający, jakiego rodzaju dane może przechowywać. Nazwa zmiennej nadawana jest 

przez programistę. Zasadniczo może być ona dowolna, choć musi spełniać następujące 

kryteria: 

• musi zaczynać się od litery lub znaku podkreślenia, 

• może zawierać jedynie litery, cyfry i znaki podkreślenia, 

• przed nazwą zmiennej należy postawić znak $, 

• nazwa zmiennej powinna zaczynać się od małej litery, 

• w PHP rozróżniane są wielkie i małe litery, a zatem przykładowo $Liczba i $liczba to 

dwie różne zmienne! 

 

Deklaracja i inicjalizacja zmiennej w PHP  

Podczas deklaracji zmiennej nie trzeba podawać typu danych, jakie będzie 

przechowywać. Aby zadeklarować zmienną, należy podać jej nazwę i przypisać jej wartość 

(inicjalizacja).  



 

59 
 

$nazwaZmiennej = wartośćZmiennej 

 

 

Rys. 2.13, Przykład deklaracji zmiennych w PHP 

Źródło: Opracowanie własne. 

 

Przykład deklaracji zmiennych prezentuje rys. 2.13. Zmienna $imie i $nazwisko przechowują 

tekst, czyli typ napisowy, z kolei $liczba i $liczba1 przechowuje liczby całkowite, a $zm 

przechowuje liczbę zmiennoprzecinkową. W PHP, podobnie jak np. w języku Python, bardzo 

wygodne jest to, że nie trzeba podawać typu deklarowanej zmiennej. Efekt uruchomienia 

skryptu z deklaracją zmiennych pokazany został na rys. 2.14.     

 

 

Rys. 2.14. Uruchomienie skryptu z deklaracją zmiennych 

Źródło: Opracowanie własne. 

 

Rodzaje zmiennych, typy danych 

• W klasycznych językach programowania każda zmienna ma swój typ.  

• Typ zmiennej określa wartości, jakie mogą być jej przypisywane.  



 

60 
 

• W języku PHP, zmienna może przechowywać dowolne wartości. 

• Nie oznacza to jednak, że nie ma ona typu, ale to, że jej typ może się dynamicznie 

zmieniać w trakcie działania kodu.  

• W PHP typy danych możemy podzielić na trzy ogólne rodzaje: (typy skalarne,  

typy złożone, typy specjalne). 

 

Typy skalarne to inaczej typy proste, dzielimy je na następujące rodzaje: 

• typ boolean,  // true, false 

• typ integer,  // 52, 100 

• typ float, double, // 3.2, 10.9 (separatorem jest .) 

• typ string  // ”Szkolenie”. 

 

Sprawdzenie typu zmiennej  

Sprawdzenie typu zmiennej możesz wykonać na dwa sposoby: 

• var_dump() 

• gettype() 

 

 

Rys. 2.15. Przykład skryptu sprawdzającego typ zmiennej 

Źródło: Opracowanie własne. 

 



 

61 
 

Rys. 2.15 przedstawia przykład skryptu sprawdzającego typ zmiennej na dwa sposoby, za 

pomocą funkcji var_dump() i gettype(), z kolei rys. 2.16 przedstawia efekt uruchomienia 

skryptu z rys. 2.15.  

 

 

Rys. 2.16. Efekt uruchomienia skryptu sprawdzającego typ zmiennej 

Źródło: Opracowanie własne. 

 

Opis poszczególnych typów zmiennych  

• Typ boolean – jest to typ logiczny, który może przyjmować tylko dwie wartości – true 

(prawda) lub false (fałsz). Ten typ wykorzystywany jest przy konstruowaniu wyrażeń 

logicznych oraz sprawdzaniu warunków. 

True, true, False, false 

• Typ integer – jest to typ całkowitoliczbowy, dzięki któremu można reprezentować 

zarówno dodatnie, jak i ujemne liczby całkowite. 

123456, 28, -29, 0 

• Typ float, double – jest to typ reprezentuje dodatnie i ujemne liczby rzeczywiste. 

123.54, -32.5, 0.5 

• Typ string – jest to typ łańcuchowy, który służy do zapamiętywania sekwencji znaków. 

Łańcuch znaków można utworzyć za pomocą apostrofów i cudzysłowów. Jest jednak 

pewna różnica z użyciem tych znaków, wspomnimy o niej podczas zajęć.  

‘Szkolenie, ”Szkolenie” 

 

Typy złożone dzielą się na dwa rodzaje. Są to: 

• typ array (tablicowy), 



 

62 
 

• typ object (obiektowy). 

 

Typy specjalne 

• Typ null – jest typem specjalnym informującym o tym, że dana zmienna nie 

przechowuje żadnej wartości. Wielkość liter nie ma znaczenia, prawidłowe są zatem 

zapisy: null, NULL, 

$zmienna = null. 

 

Operacja na zmiennych w PHP 

Przypisanie wartości do zmiennej 

Utworzenie zmiennej polega na umieszczeniu w kodzie skryptu jej nazwy poprzedzonej 

znakiem $ i przypisaniu jej wartości. 

 

$nazwa_zmiennej = wartość_zmiennej; 

 

Powyższy zapis oznacza: utwórz zmienną o nazwie $nazwa_zmiennej oraz przypisz jej 

wartość wartość_zmiennej. 

Wyświetlanie wartości zmiennych 

  Do wyświetlenia wartości zmiennej, a dokładniej do wysłania tej wartości w postaci  

ciągu znaków do okna przeglądarki, posługujemy się zazwyczaj instrukcją echo.  

 

echo $nazwa_zmiennej; 

 

Przykład skryptu wyświetlającego wartości zmiennych pokazany jest na rys. 2.17, a efekt 

wykonania tego skryptu przedstawia rys. 2.18. 

 



 

63 
 

 

Rys. 2.17. Przykład skryptu wyświetlającego wartości zmiennych 

Źródło: Opracowanie własne. 

 

 

Rys. 2.18. Efekt uruchomienia skryptu wyświetlającego wartości zmiennych 

Źródło: Opracowanie własne. 

 

Modyfikowanie wartości zmiennych 

Modyfikacji wartości zmiennej wykonujemy tak samo jak byśmy przypisywali wartość do 

zmiennej, z tą różnicą, że musimy podać taką samą nazwę istniejącej już zmiennej, aby ją zmodyfikować. 

 

$nazwaStarejZmiennej = nowaWartośćStarejZmiennej; 

 

Przykład skryptu modyfikującego wartość zmiennej pokazany jest na rys. 2.19, a efekt 

wykonania tego skryptu przedstawia rys. 2.20. 

 



 

64 
 

 

Rys. 2.19. Przykład skryptu modyfikującego wartość zmiennej 

Źródło: Opracowanie własne. 

 

 

Rys. 2.20. Efekt uruchomienia skryptu modyfikującego wartość zmiennej 

Źródło: Opracowanie własne. 

 

Przypisywanie do zmiennej wartości innej zmiennej 

Polega na przypisaniu do istniejącej zmiennej wartości innej zmiennej podając jej nazwę 

 

$zmienna1 = 5; 

$zmienna2 = $zmienna1; 

 

$zmienna1 ma wartość 5, do zmiennej $zmienna2 zostaje przypisana wartość zmiennej 

$zmienna1, która ma wartość 1. Od tego momentu również $zmienna2 ma wartość 1.   

Nadpisywanie wartości innej zmiennej 

Czynność ta, polega na przypisaniu do istniejącej zmiennej wartości innej zmiennej 

podając jej nazwę, przykład poniżej. W poniższym przykładzie $zmienna2 ma wartość równą 

100, jednak po nadpisaniu zmienną $zmienna1 ma wartość 5 (czyli taką samą jak $zmienna1). 

 

$zmienna1 = 5; 

$zmienna2 = 100; 



 

65 
 

$zmienna2 = $zmienna1; 

 

Przykład operacji na zmiennych 

Utwórz 5 zmiennych (zm_1, zm_2…), które będą przechowywać poniższe wartości. 

• Ciekawe 

• Programowanie 

• Jest 

• Wciągające 

• I 

Następnie w kodzie przypisz zmienne do zmiennych, tak by odczytując kolejne wartości 

zmiennych otrzymać tekst "Programowanie Jest Ciekawe I Wciągające". Do rozwiązania 

zadania wykorzystaj dodatkową zmienną. Przykładowe rozwiązania powyższego zadania 

zostało pokazane na rys. 2.21. W przykładzie tym zostało pokazane, jak połączyć w instrukcji 

echo tekst z wyświetleniem wartości zmiennej (konkatenacja).  

 

Operatory  

W języku programowania PHP występują operatory, które służą do wykonywania 

różnorodnych operacji, można podzielić na kilka grup: 

• arytmetyczne, 

• logiczne, 

• przypisania, 

• relacyjne (porównywania), 

• inkrementacji/dekrementacji, 

• trójargumentowy. 

 



 

66 
 

 

Rys. 2.21. Efekt uruchomienia skryptu nadpisującego wartości zmiennych 

Źródło: Opracowanie własne. 

 

Operatory arytmetyczne (**, *, /, +, -, %) 

# $wynik = 2 ** 3; (potęgowanie) 

# $wynik = 2 * 3; (mnożenie) 

# $wynik = 5 / 3; (dzielenie) 

# $wynik = 7 + 5; (dodawanie) 

# $wynik = 8 - 3; (odejmowanie) 

# $wynik = 7 % 3; (reszta z dzielenia) 

 

Operatory logiczne 

Operatory logiczne pozwalają na wykonywanie operacji logicznych. Można je 

wykonywać na argumentach, które posiadają wartość logiczną prawda lub fałsz. W języku PHP 

wartości te są oznaczane jako true i false. Iloczyn logiczny and lub &&, suma logiczna or lub ||, 

negacja! 



 

67 
 

# $a and $b lub # $a && $b 

# $a or $b lub # $a || $ 

# !$ab 

 

Operatory przypisania 

Operatory są dwuargumentowe i powodują przypisanie wartości argumentu 

znajdującego się z prawej strony operatora temu znajdującemu się z lewej. Można 

stosować zapis skrócony (np. x += y), jednak początkowym programistą nie zalecamy tej formy 

zapisu.  

# x = y 

# x = x + y 

# x = x – y 

# x = x * y 

# x = x / y 

# x = x % y 

# x = x . y 

 

Operatory inkrementacji i dekrementacji 

Operatory inkrementacji, czyli zwiększania (++), oraz dekrementacji, czyli zmniejszania (--). 

• Operator ++ zwiększa po prostu wartość zmiennej o jeden, a -- zmniejsza o jeden. 

• Oba mogą występować w formie przedrostkowej lub przyrostkowej.  

 

++$liczba,  $liczba++ 

 

• Jak różnica? Obie postacie powodują zwiększenie wartości o jeden, ale w przypadku 

formy przedrostkowej (++$liczba) odbywa się to przed wykorzystaniem zmiennej,  

a w przypadku przyrostkowej ($liczba++) - dopiero po jej wykorzystaniu. 

 

Operatory relacyjne 

Operatory relacyjne służą do porównywania argumentów (stąd też nazywane są również 

operatorami porównywania). Wynikiem ich działania jest wartość logiczna true lub false, czyli 

prawda lub fałsz. 

• == Wynikiem jest true, jeśli argumenty są sobie równe.  $a == $b 

• === Wynikiem jest true, jeśli argumenty są sobie równe i są tego samego typu.  

$a === $b 



 

68 
 

• <> Wynikiem jest true, jeśli argumenty są różne.  $a <> $b 

• != Wynikiem jest true, jeśli argumenty są różne. $a != $b 

• !== Wynikiem jest true, jeśli argumenty są różne lub są różnych typów.  $a !== $b 

• >  $a > $b 

• <  $a < $b 

• >=  $a >= $b 

• <=  $a <= $b 

 

Operator trójargumentowy 

Wyrażenie warunkowe to pewien specyficzny operator – operator trójargumentowy.  

 

{warunek} ? {wartość pierwsza} : {wartość druga} 

 

Przykład 

$a = 10; 

 $b = 15; 

 $wynik = $a < $b ? $b : $a; 

 echo ($wynik); 

1. Najpierw obliczane jest wyrażenie po lewej stronie znaku zapytania ($a < $b). W tym 

przypadku 10 < 15, co jest prawdą (true). 

2. Jeśli wyrażenie jest prawdziwe, zwracana jest wartość znajdująca się po znaku 

zapytania, a przed dwukropkiem ($b). Jeśli wyrażenie jest fałszywe, zwracana jest 

wartość znajdująca się po dwukropku ($a). 

3. W naszym przypadku, ponieważ $a < $b jest prawdą, operator trójargumentowy 

zwraca wartość $b, czyli 15. 

4. Ta wartość (15) jest następnie przypisywana do zmiennej $wynik. 

5. echo ($wynik); wyświetla wartość zmiennej $wynik, czyli 15. 

  

Przykład podsumowujący dotychczasowy materiał  

Napisz program, w którym zadeklarujesz dwie zmienne typu int o nazwach x oraz y. 

Przypisz do nich losowe liczby, a następnie za pomocą operatorów logicznych  

i matematycznych wyświetl wynik następujących zdań logicznych: 

• Czy x jest większe od y? 

• Czy x pomnożone przez 2 jest większe od y? 



 

69 
 

• Czy y jest mniejsze od sumy x+3 i jednocześnie większe od x pomniejszonego o 2? 

• Czy iloczyn liczb x i y jest parzysty? (Wykorzystaj do sprawdzenia operację modulo). 

Do utworzenia losowej liczby wykorzystaj funkcję rand(0,100) – która zwraca liczbę losowa 

z przedziału od 0 do 100. Rys. 2.22 przedstawia przykładowe rozwiązanie przykładu 

podsumowującego dotychczasowy materiał.   

 

 

Rys. 2.22. Efekt uruchomienia skryptu podsumowującego 

Źródło: Opracowanie własne. 

 

  



 

70 
 

Zadanie 

Napisz program, który wykonuje sumę cen produktów dla konkretnego zamówienia: 

• Chleb (5,99 zł / 1 szt.) 

• Mleko (3,50 zł / 1l) 

• Cukierki (32,99 / 1kg) 

• Zamówienie: 3 szt. chleba + 4 l mleka + 0,5 kg cukierków 

 

Zadanie 

Zaprojektuj odpowiedni algorytm i oblicz poniższą wartość z wykorzystaniem zmiennych: 

• Samochód na 100 km spala 8,5 l paliwa.  

Ile spali paliwa po przejechaniu 782 km? 

 

Instrukcje sterujące 

Instrukcja if 

Podczas pisania programów (skryptów) bardzo często zachodzi konieczność 

wykonywania różnych operacji w zależności od prawdziwości jakiegoś warunku. Aby  

to zrealizować należy skorzystać z instrukcji sterującej if. Instrukcja ta występuje w kilku 

wersjach, najprostsza z nich ma postać: 

 

if (warunek){ 

  instrukcja1; 

  instrukcja2; 

… 

 } 

 

Jeżeli warunek jest prawdziwy, zostaną wykonane instrukcje w {}, w przeciwnym razie zostanie 

wykonana kolejna instrukcja, która występuje po instrukcji if. Gdy w {} mamy tylko jedną 

instrukcję, klamry można pominąć, jednak dla poczatkujących programistów zaleca się pisanie 

tych klamer. Przykład skryptu, który zawiera instrukcje if przedstawia rys. 2.23. Skrypt 

sprawdza, czy wartość zmiennej jest mniejsza od zera, a następnie w drugim if sprawdzamy, 

czy zmienna jest większa lub równa zeru.  

 



 

71 
 

 

Rys. 2.23. Przykład instrukcji sterującej if 

Źródło: Opracowanie własne. 

 

Instrukcja if else 

Instrukcja ta działa podobnie jak if, z tą różnicą, że blok else jest wykonywany  

w sytuacji, gdy warunek jest fałszywy (nieprawdziwy). 

 

if (warunek){  

// Instrukcje do wykonania, gdy warunek jest prawdziwy  

}  

else{  

// Instrukcje do wykonania, gdy warunek jest fałszywy 

} 

 

Przykład realizacji instrukcji if else prezentuje rys. 2.24. Gdy $zm1 ma większą wartość od 

$zm2, to wówczas wykona się instrukcja po if, w przeciwnym razie instrukcja po else.  

W każdym bloku jest po jednej instrukcji, więc można pominąć {}. Skrypt nie zadziała 

prawidłowo, gdyby zmienne miały taką samą wartość.   

 



 

72 
 

 

Rys. 2.24. Przykład instrukcji sterującej if else 

Źródło: Opracowanie własne. 

 

Instrukcja if else if 

Kolejna wersja instrukcji if pozwala na badanie wielu warunków. Po if może wystąpić 

wiele dodatkowych bloków else if.  

 

f (warunek1){ 

  instrukcje1; 

 } 

 else if (warunek2){ 

  instrukcje2; 

 } 

else{ 

 instrukcje; 

 } 

 

W języku PHP instrukcję if…else if można również zapisać tak, by ciąg elseif stanowił jedno 

słowo. Efekt wykonania instrukcji jest taki sam, a zapis bardziej przejrzysty. 

 

if (warunek1){ 

  instrukcje1; 

 } elseif (warunek2) { 

  instrukcje2; 

 } 

 



 

73 
 

Przykład realizacji instrukcji if elseif przedstawia rys. 2.25. W skrypcie tym wyeliminowano 

problem nieprawidłowego działania skryptu, gdy zmienne są równe z rys. 2.24. 

 

 

Rys. 2.25. Przykład instrukcji sterującej if elseif 

Źródło: Opracowanie własne. 

 

Zarówno w bloku if, jak i w else mogą wystąpić dowolne instrukcje PHP. Oznacza to, 

że można tam umieścić kolejne instrukcje if, a więc że mogą być zagnieżdżane. Wyrażenia 

warunkowe, stosowane w instrukcji if, mogą składać z wielu członów połączonych operatorami 

logicznymi. Warto poszczególne człony rozdzielone operatorami logicznymi umieszczać  

w nawiasach, co daje większą przejrzystość kodu. 

 

Zadanie 

Napisz program, który sprawdza, czy wpisana liczba jest liczbą parzystą, czy nieparzystą. 

Wykorzystaj operator reszty z dzielenia (%). 

 

Zadanie 

Napisz program, który oblicza wartość współczynnika BMI wg wzoru (waga / wzrost**2). 

Wzrost podawany jest w metrach. Jeżeli wynik jest w przedziale (18.5 – 24.9), to wypisuje 

„prawidłowa waga”, jeżeli poniżej to „niedowaga”, jeżeli powyżej to „nadwaga”. 

 

Zadanie 

Zadeklaruj trzy zmienne i sprawdź, czy z odcinków o takich długościach da się zbudować 

trójkąt prostokątny. Załóżmy, że dwie pierwsze zmienne stanowią długości boków 

przyprostokątnych, natomiast trzecia zmienna stanowi długość przeciwprostokątnej. 

 



 

74 
 

Instrukcje wyboru 

Instrukcja switch 

Instrukcja switch pozwala w wygodny sposób sprawdzić ciąg warunków i wykonać 

różne instrukcje w zależności od wyników porównywania. Instrukcja idealnie nadaje się do 

pogrupowania operacji w zależności o wartości zmiennej, która steruje wykonaniem operacji 

w instrukcji switch. 

 

switch(wartość){ 

  case wartość1 : 

 instrukcje1; 

 break; 

  case wartość2 : 

instrukcje2; 

 break; 

 default : 

instrukcje; 

 } 

 

Przykład wykorzystania instrukcji switch pokazany jest na rys. 2.26. Poniższy rysunek  

(rys. 2.26) przedstawia jedynie fragment skryptu, który realizuje funkcje kalkulatora prostego. 

W zależności od wartości zmiennej sterującej $z instrukcja switch wykona dodawanie, 

odejmowanie, mnożenie lub dzielenie. Gdy osoba wykonująca skrypt wprowadzi 

nieprawidłowy operator (+, -, *, /), wykona się opcja domyślna, czyli wyświetli się napis  

o błędnym operatorze. 

   



 

75 
 

 

Rys. 2.26. Przykład fragmentu skryptu wykorzystującego instrukcję switch 

Źródło: Opracowanie własne. 

 

Zadanie 

Napisz prosty kalkulator, który pozwala użytkownikowi kolejno na: 

• wprowadzenie pierwszej liczby, 

• wprowadzenie jednego z podstawowych działań matematycznych ( +, -, /, *), 

• wprowadzenie drugiej liczby. 

 

Instrukcje iteracyjne (pętle) 

Pętlami nazywamy konstrukcje języka, które pozwalają na wielokrotne wykonywanie 

powtarzających się instrukcji (np. 100 razy wyświetlamy napis ”Witaj Świecie!”). W języku 

programowania PHP występują cztery rodzaje instrukcji iteracyjnych: (for, while, do…while, 

foreach). Każda z tych pętli ma inne przeznaczenie.  

Pętla for 

Ten rodzaj pętli wykorzystuje się, gdy wiemy, ile razy ma wykonać się dana instrukcja. 

Pętla typu for ma ogólną postać: 



 

76 
 

 

for(wyrażenie początkowe; wyrażenie warunkowe; wyrażenie modyfikujące){ 

 instrukcje do wykonania 

 } 

 

• wyrażenie początkowe jest stosowane do zainicjowania zmiennej używanej jako 

licznik liczby wykonań pętli,  

• wyrażenie warunkowe określa warunek, jaki musi zostać spełniony, aby wykonać 

kolejny obieg pętli, 

• wyrażenie modyfikujące jest zwykle używane do modyfikacji zmiennej będącej 

licznikiem (inkrementacji, bądź dekrementacji). 

 

Przykład użycia pętli for przedstawiony został na rys. 2.27. Skrypt wyświetli na ekranie  

10 razy napisy „Ala ma kota”. Na zajęciach zostanie szczegółowo wyjaśniona kolejność 

wykonywanych operacji. 

 

 

Rys. 2.27. Przykład pętli for 

Źródło: Opracowanie własne. 

 

Wewnątrz każdej pętli można umieścić dowolne instrukcje, a więc i kolejną pętlę. Pętle 

mogą być zagnieżdżane. Najczęściej zagnieżdżane są właśnie pętle for. 

 

Zadanie 

Napisz program, który spośród liczb 1-100 wyświetli tylko te podzielne przez 4. 

 

Zadanie 

Zaimplementuj mechanizm obliczania potęgi bez użycia operatora ** 

• Użytkownik podaje podstawę i wykładnik potęgi. 

• Wykorzystując mechanizm pętli zaimplementuj odpowiedni kod. 



 

77 
 

• Pamiętaj, wszystko, co jest podniesione do potęgi 0, jest równe 1. 

• Wykładnikiem potęgi są liczby >= 0. 

 

Pętla while 

Pętla typu while służy, podobnie jak for, do wykonywania powtarzających się 

czynności. Pętlę for wykorzystuje się najczęściej, gdy liczba powtarzanych operacji jest znana 

(np. jest zapisana w pewnej zmiennej), natomiast pętlę while, gdy liczby powtórzeń z góry nie 

znamy, a zakończenie pętli jest uzależnione od spełnienia pewnego warunku 

 

while (warunek){ 

 instrukcje; 

 } 

 

Podobnie jak w przypadku instrukcji if w pętlach możemy pominąć klamry {}, gdy występuje 

tylko jedna instrukcja, jednak nie jest to zalecane dla początkujących programistów. Pętla 

będzie wykonywała instrukcje tak długo, jak warunek będzie prawdziwy. W pętli while 

najpierw sprawdzany jest warunek, a dopiero potem wykonywana jest instrukcja, gdy 

warunek jest prawdziwy. Gdy warunek będzie od początku fałszywy, pętla nie wykona się 

ani razu!   

 

 

Rys. 2.27. Przykład pętli while 

Źródło: Opracowanie własne. 

 

  



 

78 
 

Pętla do while 

Kolejny rodzaj pętli występującej w języku PHP to do...while. Ogólna postać tej pętli 

została przedstawiona poniżej:  

 

do{ 

instrukcje; 

} 

while(warunek); 

 

W pętli do while najpierw wykonywana jest instrukcja, a dopiero potem sprawdzany jest 

warunek. Nawet gdy warunek będzie od początku fałszywy, pętla wykona się 

przynajmniej jeden raz! Przykład wykorzystania pętli do while przedstawia rys. 2.28. 

 

 

Rys. 2.28. Przykład pętli do while 

Źródło: Opracowanie własne. 

 

Zadanie 

Napisz pętlę, która będzie losowała liczby z zakresu 1-10. 

• Każda wylosowana liczba jest wypisywana. 

• Pętla ma skończyć swoje działanie, jeżeli wylosuje cyfrę 7. 

• Ostatecznie pętla powinna wypisać po ilu próbach wylosowała cyfrę 7. 

 

Instrukcje break i continue 

Podczas korzystania z pętli bardzo często korzysta się z instrukcji break i continue. 

Instrukcje break i continue pozwalają na modyfikacje zachowań pętli i można je stosować  



 

79 
 

z każdym ich rodzajem niezależnie od tego, czy będzie to for, while, do…while, czy foreach. 

Instrukcja break była już przedstawiona w instrukcji switch. 

• Instrukcja break powoduje przerwanie działania całej pętli. 

• Instrukcja continue powoduje przerwanie działania jednej iteracji pętli. 

  

 

Rys. 2.29. Przykład użycia instrukcji break 

Źródło: Opracowanie własne. 

 

 

Rys. 2.30. Przykład użycia instrukcji continue 

Źródło: Opracowanie własne. 

 

Przykład użycia instrukcji break pokazany jest na rys. 2.29, z kolei instrukcji continue 

na rys. 2.30. W powyższych przykładach instrukcja break służy do przerwania nieskończonej 

pętli, natomiast instrukcja continue służy do pominięcia liczb nieparzystych podczas 

wyświetlania wartości zmiennej. 

 

  



 

80 
 

Zadanie 

Zaprojektuj pętlę, która wypisze liczby z zakresu od -50 do 50, przy założeniach: 

• Liczby ujemne są wypisane tylko nieparzyste. 

• Liczby dodatnie są wypisane tylko parzyste. 

• Zero jest wypisane. 

 

Zadanie 

Zaprojektuj program, w którym użytkownik podaje dowolną liczbę z zakresu 0-20. 

• Zaprojektuj program, który będzie losował w zakresie liczb 0-20 tak długo, aż wylosuje 

wprowadzoną wartość przez użytkownika.  

• Każda wylosowana liczba zostanie wypisana. 

 

Tablice w PHP 

Wprowadzenie do tablic 

Tablica jest to zbiór danych tego samego typu. Na uwagę zasługuje fakt, że w PHP 

wartości poszczególnych komórkach tablicy nie muszą być tego samego typu  

(w odróżnieniu od wielu innych języków).  Najprostszym typem tablicowym są stringi. 

 

$imie = ”Paweł”; 

0 1 2 3 4 

P a w e ł 

 

echo $imie[1];  // a 

echo $imie[4];  // ł 

echo strlen($imie);  // 5 – służy do określania długości ciągu znaków 

 

Tablice są to struktury danych pozwalające na przechowywanie uporządkowanego 

zbioru elementów. W celu utworzenia tablicy używamy słowa kluczowego array. 

 

$tablica = array(wartość1, wartość2, ..., wartość_n); 

 

Przykład deklaracji tablicy jest pokazany na rys. 2.31. Aby uzyskać dostęp do wartości 

zapisanej w danej komórce, należy podać jej indeks w nawiasie kwadratowym występującym 

za nazwą tablicy. Należy pamiętać, że indeksowanie tablicy zaczyna się od 0, co oznacza,  



 

81 
 

że indeksem pierwszej komórki jest 0. Jeśli tablica ma duży rozmiar, to do odczytu jej 

zawartości lepiej użyć pętli. Może być to zarówno zwykła pętla for, jak i pętla typu foreach, 

przykład skryptu można zobaczyć na rys. 2.32. 

 

 

 

Rys. 2.31. Przykład deklaracji tablicy 

Źródło: Opracowanie własne. 

 

 

Rys. 2.32. Przykład wykorzystania pętli do odczytu elementów tablicy 

Źródło: Opracowanie własne. 

 

Nie ma konieczności, aby wypełniać tablice danymi już podczas ich tworzenia. 

Mogą być one także przypisywane w dalszej części skryptu. Można jedynie zadeklarować pustą 

tablicę, a następnie przypisać wartości poszczególnym elementom tablicy. Podczas 



 

82 
 

zapisywania w tablicy nowego elementu nie trzeba podawać jego indeksu, element 

zostanie dopisany wówczas na końcu tablicy.   

 

$kolory = array(); 

 $kolory[0] = "czerwony"; 

 $kolory[1] = "zielony"; 

 $kolory[2] = "niebieski"; 

 $kolory[] =”czarny”; 

 

Zadanie 

Przy pomocy pętli wygeneruj tablicę 10 losowych liczb 0-100, a następnie wypisz te liczby 

oraz oblicz ich średnią. Poszukaj najmniejszego i największego elementu tablicy. 

 

Pętla foreach 

Po wprowadzaniu tablic można przejść do opisu pętli foreach, która pozwala na dostęp 

do kolejnych elementów tablicy. Elementami tablic mogą być wartości, napisy, obiekty itp. 

Może występować w dwóch postaciach: 

• pierwsza postać, 

 

foreach($tablica as $wartość){ 

instrukcje; 

} 

 

• druga postać 

 

foreach($tablica as $klucz => $wartość){ 

instrukcje; 

} 

 

Jest to wygodny sposób na przetworzenie każdego elementu tablicy (kolekcji) bez 

konieczności ręcznego zarządzania indeksami. Będziemy się w pętli odwoływać do 

elementów tablicy o nazwie $tablica. W każdej iteracji pętli do tej zmiennej $wartość 



 

83 
 

przypisywana jest wartość aktualnego elementu tablicy. Wewnątrz bloku {} mamy dostęp do 

zmiennej $wartość, która zawiera aktualny element tablicy. Przykład wykorzystania pętli 

forech w pierwszej postaci pokazany jest na rys. 2.33.  

Pierwsza postać pętli foreach zwraca jedynie w pętli wartości poszczególnych 

elementów tablicy. Gdy oprócz wartości elementów tablicy potrzebujemy ich klucze, to 

wówczas należy użyć pętli w drugiej postaci. Wewnątrz bloku {} podczas każdej iteracji pętli 

mamy dostęp do zmiennych $klucz i $wartość. Przykład wykorzystania pętli forech w drugiej 

postaci pokazany jest na rys. 2.34. 

 

 

Rys. 2.33. Przykład wykorzystania pętli forech do odczytu elementów tablicy (pierwsza postać) 

Źródło: Opracowanie własne. 

 

Pętli foreach jest szczególnie przydatna, gdy pracujemy z tablicami asocjacyjnymi, czyli 

takimi, w których elementy są identyfikowane za pomocą kluczy (tekstowych lub 

numerycznych), a nie tylko indeksów liczbowych. 

 



 

84 
 

 

Rys. 2.34. Przykład wykorzystania pętli forech do odczytu elementów tablicy (druga postać) 

Źródło: Opracowanie własne. 

Tablice asocjacyjne 

Oprócz tablic indeksowanych numerycznie w języku PHP istnieją również tablice 

asocjacyjne. Ten rodzaj tablicy został wykorzystany w drugim przykładzie pętli foreach  

(rys. 2.34). W tablicach tego typu każdemu indeksowi można nadać unikalną nazwę, czyli 

zamiast indeksów 0, 1, 2 itd. mogą występować indeksy: imie, nazwisko, wiek itp. Zamiast 

terminu „indeks” stosuje się określenie „klucz”. Kluczami mogą być ciągi znaków bądź 

wartości całkowite. Tablicę tego typu tworzy się, podobnie jak w przypadku tablic klasycznych 

indeksowanych numerycznie, za pomocą słowa kluczowego array, konstrukcja ta ma jednak 

nieco inną postać. 

 

$nazwa_tablicy = array( 

klucz1 => wartość1, 

klucz2 => wartość2, 

klucz3 => wartość3,  

); 

 



 

85 
 

Drugim ze sposobów tworzenia tablicy asocjacyjnej jest użycie składni z nawiasami 

kwadratowymi, podobnie jak miało to miejsce w przypadku tablic indeksowanych 

numerycznie. 

 

$nazwa_tablicy["nazwa_klucza"] = wartość_klucza; 

 

Przykład 

$kolory["kolor1"] = "czerwony";  

$kolory["kolor2"] = "zielony"; 

$kolory["kolor3"] = "niebieski"; 

 

Do odczytu tablic asocjacyjnych można użyć pętli, podobnie jak dla zwykłych tablic. Nie może 

być to jednak zwykła pętla for, gdyż nie może ona „twierdzić”, jakie są wartości kluczy.  

W związku z tym tablice asocjacyjne najczęściej są obsługiwane przez pętle typu foreach. Taka 

pętla potrafi pobrać kolejne wartości kluczy. Modyfikacji zawartości tablic asocjacyjnych 

dokonuje się w sposób analogiczny jak w przypadku tablic klasycznych. Oczywiście zamiast 

indeksów numerycznych trzeba zastosować wartości kluczy. Ogólna postać: 

 

$tablica["klucz"] = wartość; 

 

Przykład 

$kolory["kolor1"] = "zielony"; 

 

Zadanie 

Napisz skrypt, który zamieni ciąg cyfr na formę tekstową. Znaki niebędące cyframi mają być 

ignorowane, konwertujemy cyfry, nie liczby, a zatem:  

• 911 to "dziewięć jeden jeden" 

• 1100 to "jeden jeden zero zero”. 

Wykorzystaj tablice asocjacyjne. 

 

Zadanie 

Wykorzystując poznane typy sekwencyjne zaprojektuj kod dla poniższej funkcjonalności: 

Użytkownik podaje dwie cyfry z zakresu (1-9) słownie: np. "jeden", "cztery", a program oblicza 

sumę liczb. 

 



 

86 
 

Operacje na tablicach 

Funkcja count($tablica) zwraca liczbę elementów zwykłej tablicy i tablicy 

asocjacyjnej. Często w pętlach musimy znać liczbę elementów tablicy podczas iteracji na jej 

elementach.   

Do dodawanie elementów do tablicy można użyć funkcji array_push. Funkcja służy 

do dodawania jednego lub więcej elementów na końcu tablicy: 

 

array_push($nazwa_tablicy, "wartość"); 

 

Funkcja przyjmuje dwa argumenty: $nazwa_tablicy, do której chcemy dodać element oraz 

wartość.  

Usunięcie ostatniego elementu tablicy można dokonać za pomocą funkcji array_pop. 

 

array_pop($nazwa_tablicy); 

 

Funkcja przyjmuje jako argument nazwę tablicy, z której zostanie usunięty ostatni element. 

Funkcja unset() w PHP służy do usuwania zmiennych, w tym również elementów 

tablicy identyfikowanych przez ich indeks (klucz). Jest to podstawowy sposób na usuwanie 

elementów z tablic w PHP. Zapis 

 

unset($tablica[$indeks]); 

  

usuwa element tablicy o podanym indeksie $indeks. 

 

 Do usuwania lub modyfikacji wybranego indeksu z tablicy służy funkcja 

array_splice. Funkcja array_splice() przyjmuje co najmniej dwa argumenty: 

• nazwa_tablicy, z której chcemy usunąć elementy, 

• indeks_początkowy, od którego rozpoczynamy usuwanie, 

• ile_elementów (opcjonalny), liczba elementów do usunięcia; jeśli pominiemy ten 

argument, zostaną usunięte wszystkie elementy od indeks_początkowy do końca 

tablicy, 

• nazwa_tablicy_zastępującej (opcjonalny), tablica z elementami, które mają zastąpić 

usunięte elementy; jeśli ten argument nie zostanie podany, elementy zostaną tylko 

usunięte. 



 

87 
 

Do szukania w tablicy wartości służy funkcja array_search, która zwraca klucz 

tablicy pod którym znajduje się szukana wartość. 

 

Funkcje w PHP 

Funkcje są to wydzielone bloki kodu przeznaczone do wykonywania konkretnych 

zadań. Dzięki nim unikniemy wielokrotnego powtarzania w skrypcie tych samych instrukcji,  

a kod stanie się krótszy i bardziej czytelny. W celu utworzenia funkcji należy użyć słowa 

kluczowego function. 

function nazwa_funkcji() 

 { 

// instrukcje wnętrza funkcji 

 } 
 

W nazewnictwie funkcji obowiązują podobne zasady jak przy zmiennych. Aby wykonać 

instrukcje znajdujące się wewnątrz funkcji (pomiędzy znakami {}), należy ją wywołać. 

Wywołanie polega na umieszczeniu w kodzie skryptu nazwy funkcji wraz z występującym po 

niej nawiasem okrągłym. Przykład użycia funkcji został pokazany na rys. 2.35. Funkcjom 

można przekazywać argumenty, czyli wartości, które mogą wpływać na ich zachowanie lub też 

być przez nie przetwarzane. Listę parametrów należy umieścić w nawiasie okrągłym za nazwą 

funkcji, oddzielając je od siebie przecinkami. 

 

function nazwa_funkcji(parametr1, parametr2, ...) 

 {  

// instrukcje z wnętrza funkcji 

 

 } 

 



 

88 
 

 

Rys. 2.35. Przykład wykorzystania funkcji w skrypcie 

Źródło: Opracowanie własne. 

 

Począwszy od wersji 7 PHP, dozwolone jest deklarowanie typów parametrów przekazywanych 

do funkcji (typ: int, float, string itp.). 

 

function nazwa_funkcji(typ1, parametr1, typ2, parametr2, ...) 

 {  

// instrukcje z wnętrza funkcji 

 

 } 

 

Funkcje oprócz obierania argumentów (parametrów), mogą również zwracać wartości przez 

funkcje. Czynność ta jest wykonywana za pomocą instrukcji return. Również można 

deklarować typ zwracanej wartości. 

 

function nazwa_funkcji(parametry) 

{ 

// Instrukcje z wnętrza funkcji 

 return wartość; 

} 

 

Przykład funkcji, która pobiera parametry, a zarazem zwraca wartość jest funkcja z rys. 2.36. 



 

89 
 

 

 

Rys. 2.36. Przykład funkcji z parametrami  

Źródło: Opracowanie własne. 

   

Zadanie 

Utwórz 10-cio elementową tablicę losowych liczb 0-100, a następnie napisz funkcję, która jako 

parametr przyjmuje ww. tablicę i zwróci: 

• średnią elementów tablicy. 

 

Elementy programowania obiektowego 

Obiekty mogą przechowywać pewne dane (atrybuty) i wykonywać pewne zadania 

(funkcje). Nie można jednak tworzyć obiektów bez ich wcześniejszego zaprojektowania za 

pomocą klasy (która określa, jak będą zbudowane obiekty tworzone na jej podstawie). Innymi 

słowy, klasa to zdefiniowany przez programistę nowy typ danych. Klasa jest definiowana 

za pomocą słowa kluczowego class. Ogólna postać takiej konstrukcji jest następująca: 

 

class NazwaKlasy{ 

 //definicja klasy 

 } 

 



 

90 
 

Klasa może zawierać: 

• Nieograniczoną liczbę zmiennych (nazywanych polami lub właściwościami). 

• Nieograniczoną liczbę funkcji (nazywanych metodami) – elementy te nazywa się 

składowymi klasy. 

 

Przykład klasy: 

class Samochod{ 

  public $marka; 

 public $model; 

  public $rokProdukcji; 

} 

 

Gdy mamy zdefiniowaną klasę (czyli nowy typ danych), możemy na jej podstawie tworzyć 

obiekty, czyli konkretne egzemplarze tej klasy, używając słowa kluczowego new. 

 

$obiekt = new NazwaKlasy();  np. $obiekt = new Samochod(); 

 

Odwołania do składowych obiektu wykonuje się za pomocą operatora operatora ->. 

• Dla pól: $obiekt->nazwa_pola; 

• Dla metod $obiekt->nazwa_metody(argumenty_metody); 

 

Programowanie obiektowe to bardzo złożony i obszerne zagadnienie, dlatego więcej 

informacji na ten temat podanych zostanie podczas kurs. Przykład programowania obiektowego 

pokazany został na rys. 2.38. 

 

Zadanie 

Napisz program składający się z klasy Auto, która zawiera pola (marka, model, cena, kolor). 

Utwórz 3 obiekty klasy Auto i wypisz ich cechy na ekran. 

 

Zadanie 

Napisz program, który będzie dodawał pracowników w postaci obiektów do tablicy  

w poniższym zakresie danych: (imie, nazwisko, data_urodzenia, staz) a następnie wyświetli 

elementy listy obiektów wprowadzonych do listy. 

 



 

91 
 

 

Rys. 2.38. Przykład skryptu z programowania obiektowego  

Źródło: Opracowanie własne. 

 

 

 

 

 



 

92 
 

Bazy danych MySQL 

Wprowadzenie do baz 

Baza danych to kolekcja wzajemnie powiązanych danych przechowywana  

w pamięciach dyskowych i udostępniania jej użytkownikom na określonych zasadach. Bazy 

danych umożliwiają szybkie wyszukiwanie informacji według określonego kryterium, nawet  

z bardzo dużego zbioru. Każdy użytkownik komputera może stworzyć własna bazę danych, 

pod warunkiem, że zna podstawowe metody jej tworzenia. Baza danych może zawierać jedną 

lub więcej tabel, w których przechowywane będą połączone informacje. Język SQL (Structured 

Query Language) jest najbardziej znanym i rozpowszechnionym strukturalnym językiem 

zapytań, który służy do tworzenia, modyfikacji oraz zarządzania bazami danych. Język ten nie 

służy do tworzenia programów, lecz wysyłaniu zapytań (query) do bazy i odebraniu  

/ przetworzeniu zwrotnego wyniku. Podczas szkolenia zdecydujemy jakie oprogramowanie 

zainstalujemy, by mieć możliwość tworzenia relacyjnych baza danych.  

Podstawowe typy danych w bazie danych 

Podobnie jak w PHP są typy danych, tak również podczas tworzenia baz danych, 

a w nich tabel musimy zaprojektować kolumny o właściwym typie.   

Liczbowe: 

• Całkowite: TINYINT, SMALLINT, MEDIUMINT, INT, BIGINT (różne zakresy). 

• Zmiennoprzecinkowe: FLOAT, DOUBLE, DECIMAL (różna precyzja). 

Tekstowe (łańcuchowe): 

• CHAR(n): Stała długość n znaków. 

• VARCHAR(n): Zmienna długość do n znaków. 

• TEXT, MEDIUMTEXT, LONGTEXT: Długie teksty. 

• ENUM, SET: Typy wyliczeniowe. 

Data i czas: 

• DATE: Data (RRRR-MM-DD). 

• DATETIME: Data i czas. 

• TIMESTAMP: Znacznik czasu. 

• TIME: Czas. 

• YEAR: Rok. 



 

93 
 

Podczas projektowania baz danych i kolumn w tabelach pojawią się takie własności pól:  

• PRIMARY KEY (klucz główny) – powoduje, że dane w kolumnie nie mogą się 

powtarzać, służy do identyfikacji rekordu. 

• FOREIGN KEY (klucz obcy) – odwołanie do klucza głównego z innej tabeli.  

• UNIQUE (niepowtarzalny) – dane nie mogą przyjmować tych samych wartości. 

• AUTO_INCREMENT – automatyczne zwiększanie wartości. 

• NOT NULL – konieczność wypełnia pola. 

• DEFAULT wartość – przypisanie wartości domyślnej. 

 

Podstawowe operacje na bazie danych 

• Dodawanie rekordów do tabeli (INSERT) 

insert into table(column1,column2, …) values (value1,value2, ...); 

• Aktualizowanie rekordów (UPDATE) 

update table_name set column1=expression1,column2=expression2, ... [where] 

• Usuwanie rekordów – wierszy z tabeli (DELETE) 

delete from table_name where … 

• Pobierania danych z bazy danych, tabel (SELECT) 

SELECT kolumna1, kolumna2, ... FROM nazwa_tabeli; 

• Pobierania warunkowe danych z bazy danych, tabel (SELECT) 

SELECT kolumna1, kolumna2, ... FROM nazwa_tabeli WHERE warunek; 

 Do konstruowania zapytań można wykorzystywać operatory relacyjne, logiczne itp. 

 

To tylko podstawowe operacje na bazie danych, które możemy przeprowadzić na tabelach bazy 

danych, w rzeczywistości jest ich znacznie więcej i pozwalają na pobieranie danych  

w określonym porządku, agregowanie, porcjowanie danych, pobieranie z różnych tabel 

jednocześnie, łączenie tabel itp., które w miarę możliwości wprowadzane na szkoleniu.     

 



 

94 
 

Bibliografia 

Nixon, R. (2018). PHP i MySQL. Tworzenie stron WWW. Vademecum profesjonalisty. Gliwice: 

Helion. 

Welling, L., & Thomson, L. (2017). PHP i MySQL. Wprowadzenie. Gliwice: Helion. 

Ullman, L. (2020). PHP i MySQL dla każdego. Warszawa: Wydawnictwo Naukowe PWN. 

Gilmore, J. W. (2021). PHP i MySQL. Od podstaw do zaawansowanych technik. Gliwice: 

Helion. 

Zandstra, M. (2019). PHP. Obiekty, wzorce, narzędzia. Gliwice: Helion. 

Duckett, J. (2022). PHP i MySQL. Aplikacje internetowe po stronie serwera. Kraków: Znak. 

Beighley, L., & Morrison, M. (2015). Head First PHP & MySQL. Warszawa: Wydawnictwo 

Naukowe PWN. 

Zalewski, M. (2019). Tao of the Web: Architektura nowoczesnych aplikacji internetowych. 

Gliwice: Helion. 

Duckett, J. (2014). HTML i CSS. Zaprojektuj i zbuduj witrynę WWW. Gliwice: Helion. 

MacCaw, A. (2012). JavaScript. Aplikacje WWW. Gliwice: Helion. 

Lis, M. (2017). PHP i MySQL. Dla każdego. Gliwice: Helion. 

 


